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h  i  g  h  l  i  g  h  t  s

� Natural degradation  of  RDX  is  very  slow  and  its  release  into  the  environment  is  a  concern.
� Molasses enhances  biodegradation  of RDX  and  complete  degradation  occurred  within  few  weeks.
� Low  molasses  dose  of  1:40  (molasses  to water  ratio)  was  as  effective  as  the  higher  dose (1:20).
� The  combination  of  Guinea  Grass  (Panicum  maximum)  and  molasses  did  not  improve  RDX  degradation.
� Addition  of  molasses  to  soil  in  army  training  ranges  can  prevent  migration  of  RDX  to  groundwater  and  off-site.
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a  b  s  t  r  a  c  t

A  15-week  treatability  study  was  conducted  in  a greenhouse  to  evaluate  the  potential  effects  of molasses
on the  bioremediation  and  phytoremediation  potential  of  Guinea  Grass  (Panicum  maximum)  for  treating
energetic  contaminated  soil  from  the  open  burn/open  detonation  area  of  the  Makua  Military  Reservation,
Oahu,  HI  (USA).  The  energetics  in  the  soil  were  royal  demolition  explosive  (RDX)  and  high-melting  explo-
sive  (HMX).  Among  the  6  treatments  employed  in this  study,  enhanced  removal  of  RDX  was  observed
from  treatments  that  received  molasses  and  went  to completion.  The  RDX  degradation  rates  in  treat-
ments  with  molasses  diluted  1:20  and  1:40  were  comparable  suggesting  that  the  lower  dose  worked
as  well  as the  higher  dose.  Treatments  without  molasses  degraded  RDX  slowly  and  residuals  remained
after  15  weeks.  The  bacterial  densities  in  molasses-treated  units  were  much  greater  than  those  without
molasses.  Phytoremediation  alone  seems  to have  little  effect  on  RDX  disappearance.  For  HMX,  neither
bioremediation  nor  phytoremediation  was  found  to be  useful  in  reducing  the  concentration  within  the
experimental  period.  The  concentrations  of  nitrogen  and  phosphorous  in the  soil  did  not  change  signif-
icantly  during  the  experiment,  however,  a slight  increase  in  soil  pH  was  observed  in  all  treatments.  The
study showed  that  irrigating  with  diluted  molasses  is effective  at enhancing  RDX  degradation  mainly  in
the root  zone  and  just  below  it.  The  long  term  sustainability  of  active  training  ranges  can  be  enhanced
by  bioremediation  using  molasses  treatments  to  prevent  RDX  deposited  by on-going  operations  from
migrating  through  the  soil  to groundwater  and  off-site.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Modern explosives or energetic materials like RDX (C3H6N6O6,
research department explosive also called royal demolition
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explosive), HMX  (C4H8N8O8, high-melting explosive), TNT
(C7H5N3O6, trinitrotoluene) and DNT (C7H6N2O4, dinitrotoluene)
are polynitro organic compounds with the potential for self-
oxidation. Among 20 different chemicals, RDX and HMX  are the
most powerful and common energetic compounds used by the
military in conventional munitions [1].  RDX is an environmental
pollutant that can be biotransformed by indigenous soil microor-
ganisms, photo-oxidized by sunlight, and/or migrate through
subsurface soil to cause groundwater contamination [2].  RDX has
been detected in leachate waters below live fire hand grenade
ranges and in surface waters leaving range impact areas [3,4].
Live-fire military training can deposit millimeter-sized particles of
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explosives on surface soils even when rounds explode as intended
[5]. These particles dissolve over an extended period of time and
this is the primary mechanism for the transport and dissemination
of energetics throughout the environment [6].  EPA (1998) [7]
classifies RDX as a possible human carcinogen class C and may
cause generalized seizures [8].  HMX  may  be harmful to the central
nervous system [9].

The 4249 acre Makua Military Reservation (MMR)  on Oahu has
been in operation since the 1940s as a combined-arms live-fire
exercise training site. MMR  contains an 18 acre open burning/open
detonation (OB/OD) area that was used for the disposal of ord-
nance from the 1960s through the early 1990s. The MMR  contains
extensive coverage with Guinea grass (Panicum maximum).  The
energetics RDX and HMX  have been detected in the MMR  (OB/OD)
soils and vadose zone pore water at concentrations above EPA
Region 9 Preliminary Remediation Goals (PRGs). RDX concen-
trations up to 9 mg/kg (>5.5 mg/kg residential soils PRG) were
observed in MMR  soil [10]. The vadose zone shallow pore water
contained an average of 5,712 �g/l (range: 27–21,000 �g/l) of RDX
and 1081 �g/l (range 3.8–2700 �g/l) of HMX. These values are gen-
erally higher than the Region 9 PRG of 1800 �g/l.

Hawaiian soils are acidic (pH 4.0–7.3), have a net positive charge
(unlike most tropical soils), and high iron and aluminum content.
The percent saturation of these soils is high under field conditions
(70–100%). The OB/OD area soils have high levels of lead (Pb), mod-
erately elevated levels of zinc (Zn) and chromium (Cr) compared to
levels present in the parental volcanic rocks.

Bioremediation has been successfully employed to treat cer-
tain RDX and HMX  contaminated soils [11] by creating reducing
conditions using a supplemental carbon source such as starch
or molasses. Various microorganisms isolated from RDX contam-
inated soil were able to degrade RDX [12,13].  The degradation
of RDX can occur via the two-electron reductive pathway
(Nitroso route) and via denitration [14,15].  Enterobacteria,  and
Escherichia coli are some of the bacteria that can degrade RDX
using the reductive degradation pathway. In the reductive pathway
RDX is reduced to hexahydro-1-nitroso-3,5-dinitro-,3,5triazine
(MNX) and then hexahydro-,3-dinitroso-5-nitro-1,3,5-triazine
(DNX) and hexahydro1,3,5-trinitroso-1,3,5-triazine (TNX). The
denitration pathway can be aerobic or anaerobic. Bacteria
like Klebsiella pneumoniae can denitrate RDX anaerobically [15]
and Williamsia,  and Gordonia can denitrate RDX aerobically
[16].

Phytoremediation is evolving as an inexpensive remediation
technology for energetics contaminated soil [17,18]. Vegetation
increases the amount of organic carbon in the soil, stimulates
microbial activity in the root zone, reverses the downward migra-
tion of contaminants by transpiring considerable amounts of water,
and improves aeration of soil [19,20].  There is some evidence in the
literature of beans and other plants taking up RDX [21,22].  Our pre-
liminary studies showed that Guinea grass from MMR  could uptake
small amounts of RDX and HMX  [23,24].

The objective of the treatability study was to evaluate the poten-
tial of Guinea grass as a phytoremediation plant and molasses as a
bioremediation carbon source to effectively treat RDX in the unique
chemistry of Hawaiian soils. Molasses is readily available and rel-
atively inexpensive in Hawai‘i and is also known to enhance the
growth of Guinea grass potentially assisting both bioremediation
and phytoremediation. Although previous studies have demon-
strated the applicability of phytoremediation and biodegradability
of RDX and HMX, no work had been done with Guinea grass or
with Hawaiian soils. Also in Hawaii, the contamination extends well
below the root zone in the pore water and because the substratum
is highly permeable, once the contaminants pass the carbon rich
root zone (upper 30 cm)  the risk for contamination of groundwater
is increased [25].

2. Materials and methods

2.1. Experimental design

The 15-week treatability study was  conducted in the Hawaiian
Agricultural Research Center greenhouse at Kunia, Oahu based on
a randomized complete block design. There were 54 experimental
units (plastic pots) of 4 gallons capacity each. Each experimental
unit (pot) with 9 replications received one of the 6 treatments: (A)
bare soil receiving irrigation; (B) bare soil not receiving irrigation;
(C) Guinea grass, seeded in the pots; (D) molasses added at a 1:20
dilution; (E) molasses added at a 1:40 dilution; and (F) both Guinea
grass and molasses added at 1:20 dilution. Molasses was  added to
treatments D–F as a 500 ml  soil drench every 2 weeks.

Approximately 32 cubic feet of soil was excavated from a
location adjacent to the OB/OD area at MMR.  Soil was  screened
through a 9.5-mm screen and further homogenized using a cement
mixer. Six grab samples of the homogenized soil were analyzed
for the background concentration of energetic compounds before
pots were filled. The RDX and HMX  concentrations were non-
homogeneous with RDX varying from 0.17 to 1.48 mg/kg (mean
0.69, standard deviation (SD) 0.53) and HMX  varying from 0.03 to
0.05 mg/kg (mean 0.04, SD 0.01). All pots were inoculated with
additional energetic compounds at the beginning using spiked
water containing 4.96 mg/l RDX and 0.35 mg/l HMX  giving an addi-
tion of 0.60 mg/kg RDX and 0.042 mg/kg HMX  to each pot. The
estimated initial concentrations were therefore 1.29 mg/kg RDX
and 0.082 mg/kg HMX. The background concentrations of RDX
daughter products (MNX, DNX and TNX) were not measured. The
irrigation with the spiked water at the beginning and with clean
water thereafter was  intended to reach soil field capacity but not
to the point of drainage. Similar sized Guinea grass plants were
planted in 18 experimental units (treatments C and F).

Among the six treatments, treatments A and B acted as controls.
Treatment A (bare soil with irrigation) simulated natural attenua-
tion of the energetic compounds in the OB/OD soil during the wet
season. Treatment B (bare soil, no irrigation) simulated the condi-
tion of the contaminated soil during the dry season. Comparison
between these two  controls could show the effect of precipitation
on the natural attenuation processes of the energetic compounds
in the soil.

2.2. Sampling protocol

Soil samples were analyzed for energetics at weeks 1, 2, 4, 8 and
15. One composite sample for each treatment (9 pots) was collected
at the end of weeks 1 and 2 by grabbing small (2–3 g) aliquots from
the top three inches of each pot (using a 6 mm  cork borer). Eighteen
pots (3 pots from each treatment) were sacrificed at the end of
weeks 4, 8, and 15. This left 36 pots from week 5 to week 8 and
18 pots from week 9 to week 15. Triplicate composite soil samples
consisting of nine sub-samples were collected from each sacrificed
pot during week 4, week 8 and week 15. The contents of sacrificed
pots were spread out evenly on a tarp with a 3-by-3 grid, from
which three soil composites were prepared by randomly grabbing
soil from all 9 grid squares. After collecting samples, the remaining
soil was placed back into the pot and artificial leachate was  induced
by adding 4 l of clean water. The induced leachate was  sampled to
determine whether residual energetics and/or their degradation
products were leachable.

To estimate bacteria densities, small samples of soil were col-
lected from the surface of each pot at weeks 2, 4, 6, 8, 12 and 14 and
the samples from all replicates of each treatment were combined
and mixed. 1 g of the mixed soil from each treatment was used to
estimate the bacterial population densities. Eight samples of plant
tissues (roots and shoots) were collected (from treatments C and F)
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at the end of 4 and 15 weeks to determine any plant uptake of RDX
and HMX.

2.3. Sample analyses

A total of 180 soil samples were analyzed for RDX, HMX, and
nitroso metabolites of RDX (MNX, DNX, and TNX). And 51 leachate
and 8 plant tissue samples were analyzed for RDX and HMX. The
chemical and physical parameters were analyzed in the University
of Hawai‘i Water Resources Research Center lab. The water and soil
samples for energetic were analyzed by EPA Method 8330 utilizing
a CN reverse phase High Pressure Liquid Chromatography (HPLC)
column, with a C18 column for confirmation. Soil extractions were
conducted using the ultrasonic extraction method contained in EPA
Method 8330. A modification was that we used 4 g soil samples
instead of 2 g in the method; we also used 20 ml  acetonitrile instead
of 10 ml  in the method to maintain the same ratio. The detec-
tion limits for all energetics was 0.01 mg/kg in soil samples and
0.001 mg/l in liquid (leachate) samples as per method 8830A. Soil
pH was measured by EPA method 150.2, total nitrogen by dry com-
bustion method (Leco CN2000 instrument) and total phosphorus by
using modified Truog method developed for tropical soils [26]. Soil
bacteria density (colony forming units, cfu) was measured using
the procedure of Schenck (see Supporting Information, Fig. S1) [27]

Supplementary material related to this article found, in the
online version, at http://dx.doi.org/10.1016/j.jhazmat.2012.10.043.

Soil samples from MMR  were also analyzed for aerobic RDX
degraders. Soil samples were suspended in sterile water and
placed on a rotary shaker for 10 min  followed by centrifugation
at 1500 rpm and the supernatant poured off. This was repeated
three times to eliminate soil organic matter. Soil samples were then
placed in liquid medium containing RDX as the sole nitrogen source
and glucose as the carbon source and allowed to grow for five days
with shaking. Subsequently, samples of the growth medium were
spread on petri plate of RDX medium and colonies grew from colony
forming units. These were transferred several more times and only
those aerobic microorganism species able to live with RDX as the
only nitrogen source were isolated.

Plant materials were extracted into 100% acetonitrile using a
Dionex ASE 200 accelerated solvent extractor. ASE 200 conditions
were: 1500 psi, 100 ◦C, preheat time 5 min, static time 5 min  and
flush volume 60%. Sample cleanup procedure included 2 ml  of sam-
ple extract added to an acetonitrile-rinsed Forisil SPE cartridge on
a vacuum manifold. Two additional ml  of acetonitrile were added
to the cartridge and collected together with the sample. This efflu-
ent was then diluted 1:1 with the calcium chloride (CaCl2) reagent
specified in EPA method 8330A (same as for soil extracts), then
filtered using a 0.45 �m syringe filter. The extracts were then ana-
lyzed for energetics using a Thermo Finnigan Surveyor HPLC with
Photodiode array detector monitoring 230 nm and 254 nm wave-
lengths.

3. Results and discussion

3.1. Bacterial population measurements

The bacterial densities in soil samples from each treatment were
determined (Fig. 1). Much higher densities were present in treat-
ments D–F compared to treatments A–C during the entire 15-week
experimental period indicating that molasses enhances bacterial
activity in energetics contaminated soil.

All molasses amended treatments experienced bacteria density
increase during the first 6 weeks although the highest densities
appeared at different times for the different treatments. The main-
tenance of higher bacteria densities in treatment F with Guinea
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Fig. 1. Average bacteria densities for each treatment over time in near-surface soil
samples.

grass throughout the entire 14 weeks may  be due to the presence
of root exudates or to the plant’s ability to hold soil water. The
drop in bacterial density for treatment D at week 14 and treat-
ment E at week 12 very likely indicates that the molasses had
been used up. The molasses dilution of 1:40 (lower molasses con-
centration) enhanced the bacterial density nearly as much as the
1:20 dilution (higher molasses concentration). Five different aero-
bic bacteria species able to use RDX as sole nitrogen source were
isolated.

3.2. Energetics removal

The change in concentration of RDX, HMX, and RDX degradation
products in soil, leachate and plant tissue samples were monitored.

3.2.1. RDX transformations in soil
RDX was  detectable in treatments A–C (Group 1) and either not

detected or nearly so in treatments D–F (Group 2) in weeks 4, 8, and
15 when pots were sacrificed in triplicate (Fig. 2) and triplicate com-
posite samples collected from each pot (source of error bars). This
indicates that RDX was  mostly degraded in the Group 2 treatments
very rapidly (before the first pots were sacrificed at 4 weeks). Small
volume surface samples were collected from all pots and compo-
sited by treatment in weeks 1 and 2 for bacteria densities. These
samples were analyzed for RDX to get an idea of what happened
prior to the 4-week major sampling event. Although the data show
a large variability (0.25–4 mg/kg in week 1), they indicate that RDX
remained in all treatments in week 1, that it decreased dramatically
by week 2 in the Group 2 treatments, and that it did not decrease in
the Group 1 treatments from week 1 to week 2. The large variabil-
ity of RDX concentration is assumed to be due to the nature of the
field contamination which consists of particles of RDX. If a sample
contains a particle or several particles of pure RDX, it will have a
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Fig. 3. Average RDX concentration in artificially induced leachate collected from
sacrificed pots. Each bar represents 3 sacrificed pots for the same treatment.

high concentration, and if it does not contain any particles, it will
have a much lower concentration. This phenomenon has been cited
in the literature [5,28,29].

These results indicate that the Group 2 treatments are more
efficient in removing RDX from soil and that biodegradation was
very rapid (mostly occurring in the second week). The error bars
in Group 1 for week 15 overlapped; therefore there were no sig-
nificant differences in RDX concentration for the three treatments
during the experiment. Comparing only the data from week 4 and
week 15, treatment A and C did show a lower RDX concentration
at week 15. For treatment B, the overlapping error bars indicate no
significant differences among the data from week 4, week 8 and
week 15. These results (comparing A and B) indicate that irrigation
can improve RDX attenuation, probably by sustaining microbial
activity. The results for treatment C with Guinea grass did not
show a more significant RDX reduction than the irrigated bare soil.
This is interpreted to mean that phytoremediation alone (without
molasses addition) did not enhance soil-based natural attenuation.
The concentrations of RDX degradation products MNX, DNX, TNX
in extracts from soil samples were all below detection limit during
the 15-week experiment.

3.2.2. RDX in leachate
No naturally formed leachate was observed or collected from

the 54 pots during the treatability study. The presence of RDX in
induced leachate (from sacrificed pots) could indicate the possibil-
ity of ground water contamination through leaching (Fig. 3). Similar
to the composite soil samples, leachate from Group 2 had signif-
icantly lower RDX concentrations compared to that of Group 1.
The lower concentrations in Group 2 can be attributed to enhanced
biodegradation due to molasses addition. There appears to be little
difference in RDX concentration among the treatments within each
group. The higher dilution (1:40) of molasses appears to have the
same effect as the lower dilution (1:20). In Group 1, irrigation and
Guinea grass each seem to have a positive effect on the RDX attenu-
ation process (compared to non-irrigation). Also, Guinea grass does
not appear to affect natural attenuation greater than just irrigation
of bare soil.

3.2.3. RDX degradation products in induced leachate
Unlike in the composite soil samples, RDX degradation prod-

ucts were observed in some of the leachate samples providing
evidence of biodegradation. MNX  showed up in leachate from
Group 1 treatments (Fig. 4) with concentrations in the range of
0.002–0.01 mg/kg. MNX  concentrations in leachate from Group 2
treatments are lower than those in Group 1, but still present. This
could be interpreted as accumulation of the first biotransformation
product (MNX) in Group 1 treatments due to slower biodegradation
as well as more rapid biodegradation in Group 2 treatments. DNX,
the degradation product of MNX  was not present in any samples at 4
weeks but was  found in many of the leachate samples (Fig. 5) begin-
ning in week 8. TNX, the degradation product of DNX, was observed
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Fig. 4. Average MNX  concentration in artificially induced leachate collected from
sacrificed pots. Each bar represents 3 sacrificed pots for the same treatment.
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Fig. 5. Average DNX concentration in artificially induced leachate collected from
sacrificed pots. Each bar represents 3 sacrificed pots for the same treatment.

in only a few samples from treatment B (bare soil no irrigation)
probably indicating that it is readily degraded to simpler com-
pounds (Fig. 6) and does not accumulate in molasses treated pots.
Overall, the leachate data indicate that in Group 1 treatments, less
RDX is degraded in 15 weeks, and more MNX, DNX, and TNX remain
in the soil at all sampling events, compared to Group 2 treatments.
This indicates that addition of molasses enhanced biodegradation
of RDX and its daughter products over the 15-week experiment.

3.3. HMX

Although HMX  remediation was not a study objective, its pres-
ence was  monitored as it was  a known contaminant at the site.
HMX was  present in both soil (Fig. 7) and leachate (Fig. 8) and the
concentrations did not change significantly over time or with dif-
ferent treatments. The final concentration of HMX in the soil was
in the range of 0.06–0.213 mg/kg and that in the induced leachate
was  in the range of 0.015–0.091 mg/l. The similar HMX  concentra-
tions in leachate from all treatments also indicate that irrigation,
Guinea grass, and molasses did not enhance the leaching poten-
tial of HMX. The results suggest that neither Guinea grass nor
molasses had a significant effect on HMX  degradation within the
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Fig. 6. Average TNX concentration in artificially induced leachate collected from
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Fig. 7. Average HMX  concentration in soil over time for each treatment. Weeks 1
and  2 represent 3 near-surface grab samples and weeks 4, 8, and 15 represent 9
composite samples (3 each from 3 sacrificed pots).
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Fig. 8. Average HMX  concentration in artificially induced leachate collected from
sacrificed pots. Each bar represents 3 sacrificed pots for the same treatment.

experimental period. This does not mean that HMX  is non-
biodegradable in Hawaiian soils. It is possible that biodegradation
of HMX  may  not begin until after RDX degradation is complete [30],
however, this study was designed for only 15 weeks.

3.4. Nitrogen, phosphorus, and pH measurements

Soil concentrations of nitrogen (497 mg/kg average in excavated
soil) and phosphorus (7.2 mg/kg) did not change appreciably dur-
ing the study, indicating that there were adequate amounts of
these nutrients in the soil and supplements would not be required
in full-scale operations. The soil pH, however, increased slightly
(from approximately 5.0 to approximately 5.5) in all pots during
the experiment. This small increase in soil pH should not cause
adverse effects.

3.5. Energetics in plant tissues

Plant tissues from treatments with Guinea grass were collected
at weeks 4 and 15 and then analyzed for energetic compounds. RDX
and HMX  were found in most plant tissue samples but none of the
breakdown products were observed. Plant tissues from treatment
C contained 1.67 mg/kg RDX at week 4 and increased to 2.83 mg/kg
at week 15. Plant tissues from treatment F contained <0.1 mg/kg
RDX at week 4 and this increased to 3.37 mg/kg RDX at week 15.
This indicates that the Guinea grass was able to adsorb/absorb some
RDX and HMX from the soil.

4. Conclusions

The study showed that irrigating with molasses is effective at
enhancing RDX degradation mainly in the root zone and just below
it in Hawaiian soils. The unique characteristics such as acidity
and positive charge, high iron and aluminum did not hinder this
approach. Data showed that molasses significantly increased bacte-
ria densities. The low concentration of RDX in both soil and leachate
samples and the presence of known RDX degradation products
indicate that RDX in soil was removed by biodegradation, rather
than leaching enhancement (washout). The transformation of RDX
with added molasses occurred in weeks as compared to months
without molasses. The lower dose of molasses (1:40 dilution) is
recommended for future studies as it was nearly as effective as the
higher dose (1:20 dilution) at promoting increased bacteria den-
sities and enhanced RDX degradation. The combination of Guinea
grass with molasses seemed to only slightly enhance RDX removal
under the conditions of this study, however, it did sustain the high-
est bacteria densities through the end of the study period. Guinea
grass is good for erosion control and grows well with molasses
and is recommended in combination with molasses irrigation for
range management. The long term sustainability of training ranges
like MMR  can be enhanced by treating active training areas with
molasses to prevent migration of RDX through the soil to ground-
water and off-site.
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