
Space-efficient algorithms for reachability in surface-embedded graphs

Derrick Stolee

Department of Computer Science and Engineering
Department of Mathematics

University of Nebraska–Lincoln
Lincoln, NE, USA

dstolee@cse.unl.edu

N. V. Vinodchandran

Department of Computer Science and Engineering
University of Nebraska–Lincoln

Lincoln, NE, USA
vinod@cse.unl.edu

Abstract—This work presents a log-space reduction which
compresses an n-vertex directed acyclic graph with m(n)
sources embedded on a surface of genus g(n), to a graph
with O(m(n) + g(n)) vertices while preserving reachability
between a given pair of vertices. Applying existing algorithms
to this reduced graph yields new deterministic algorithms with
improved space bounds as well as improved simultaneous time-
space bounds for the reachability problem over a large class of
directed acyclic graphs. Specifically, it significantly extends the
class of surface-embedded graphs with log-space reachability
algorithms: from planar graphs with O(log n) sources, to
graphs with 2O(

√
log n) sources embedded on a surface of genus

2O(
√

log n). Additionally, it yields an O(n1−ε) space algorithm
with polynomial running time for reachability over graphs with
O(n1−ε) sources embedded on surfaces of genus O(n1−ε).

Keywords-reachability; surface-embedded graphs; acyclic di-
graph; log-space algorithm;

I. INTRODUCTION

Graph reachability problems are central to space-bounded

computations. Different versions of this problem character-

ize several important space complexity classes. The problem

of deciding whether there is a path from a given vertex u
to a vertex v in a directed acyclic graph is the canonical

complete problem for non-deterministic log-space (NL). The

recent breakthrough result of Reingold implies that the

undirected reachability problem characterizes the complexity

of deterministic log-space (L) [1]. It is also known that

certain restricted promise versions of the directed reachabil-

ity problem characterize randomized log-space computations

(RL) [2]. Clearly, progress in space complexity studies is di-

rectly related to progress in understanding graph reachability

problems. We refer the readers to a (two decades old, but

excellent) survey by Avi Wigderson [3] and a recent update

by Eric Allender [4] to further understand the significance

of reachability problems in complexity theory.

In this paper we focus on designing deterministic algo-

rithms for reachability with improved space complexity. For

the general directed graph reachability problem the best

known result remains the 40-year old O(log2 n) space bound

due to Savitch [5] (where n is the number of vertices

in the graph). Designing a deterministic algorithm for the

directed graph reachability problem that asymptotically beats

Savitch’s bound is the most significant open questions in

this topic. While this remains a difficult open problem,

investigating classes of directed graphs for which we can

design space efficient algorithms that beat Savitch’s bound

is an important research direction with some outstanding

results, including Saks and Zhou’s O(log3/2 n) bound for

reachability problems characterizing RL computations [6]

and Reingold’s log-space algorithm for the undirected reach-

ability problem [1]. In this paper we consider the reachability

problem over directed acyclic graphs that are embedded on
topological surfaces. We present the best (to date) space

complexity upper bounds for the reachability problem over

this class of directed graphs.

Prior Results: Jakoby, Liśkiewicz, and Reischuk [7] and

Jakoby and Tantau [8] show that various reachability and

optimization questions for series-parallel graphs admit de-

terministic log-space algorithms. Series-parallel graphs are a

very restricted subclass of planar DAGs. In particular, such

graphs have a single source and a single sink. Allender,

Barrington, Chakraborty, Datta, and Roy [9] extended the

result of Jakoby et al. to show that the reachability problem

for Single-source Multiple-sink Planar DAGs (SMPDs) can

be decided in logarithmic space. Building on the work of

Allender et al. [9], in [10], the present authors show that

reachability for planar DAGs with O(log n) sources can be

decided in logarithmic space. Theorem 1 below is implicit

in [10].

Theorem 1 ([10]). Let G(m) denote the class of planar
DAGs with at most m = m(n) sources, where n is the
number of vertices. The reachability problem over G(m)
can be solved by a log-space nondeterministic machine
using a one-way certificate of O(m) bits. In particular,
reachability over G(m) can be decided deterministically in
min{O(log n + m), O(log n · log m)} space.

The O(log n + m) space bound is obtained by a brute-

force search over all certificates of length O(m). Setting

m = O(log n) we get a deterministic log-space algorithm

for reachability over planar graphs with O(log n) source

nodes. The O(log n · log m) bound is obtained by first

2012 IEEE 27th Conference on Computational Complexity

1093-0159/12 $26.00 © 2012 IEEE

DOI 10.1109/CCC.2012.15

326

converting the nondeterministic algorithm to a layered graph

with m layers and poly(n) vertices in each layer, and then

applying Savitch’s algorithm on this layered graph. The

second bound leads to a deterministic algorithm that beats

Savitch’s bound for reachability over DAGs with 2o(log n)

sources (for example, setting m = 2log1−ε n, it gives a

log2−ε n space algorithm for reachability over planar graphs

with 2log1−ε n source nodes).
However, if we are aiming for deterministic algorithms

with O(log n) space complexity, the above theorem could

not handle asymptotically more than log n sources. In this

paper we improve the upper bound from min{O(log n +
m), O(log n · log m)} to O(log n + log2 m). This yields

a new deterministic log-space algorithm for reachability

over planar DAGs with m = 2O(
√

log n) source nodes.

We also extend our results to graphs embedded on higher

genus surfaces. In addition, techniques of this paper also

lead to new results on simultaneous time-space bounds for

reachability which are not implied by [10].
The main technique of [10] (that leads to O(log n · log m)

bound) can be viewed as a log-space reduction that takes

〈G, u, v〉 where G ∈ G(m) and outputs 〈G′, u′, v′, 〉 so that

(a) there is a directed path from u to v in G if and only if

there is a directed path from u′ to v′ in G′, (b) G′ is a layered

graph with m layers and poly(n) vertices per layer. This

poly(n) factor in the size of G′ makes it useless for obtaining

a logarithmic space bound. We get rid of this poly(n) factor

by avoiding the intermediate nondeterminism and giving a

direct reduction to a new reachability instance. This requires

a more careful analysis of the topological interaction of paths

in surface-embedded graphs.
New Results. Let n be the number of vertices in the

input graph. Let G(m, g) denote the class of DAGs with

at most m = m(n) source vertices embedded on a surface

(orientable or non-orientable) of genus at most g = g(n).
Our main technical contribution is the following log-space

reduction that compresses an instance of reachability for

such surface-embedded DAGs.

Theorem 2. There is a log-space reduction that given an
instance 〈G, u, v〉 where G ∈ G(m, g) and u, v vertices of
G, outputs an instance 〈G′, u′, v′〉 where G′ is a directed
graph and u′, v′ vertices of G′, so that (a) there is a directed
path from u to v in G if and only if there is a directed path
from u′ to v′ in G′, (b) G′ has O(m + g) vertices.

By a direct application of Savitch’s theorem on the

reduced instance we get the following result.

Theorem 3. The reachability problem for graphs in G(m, g)
can be decided in deterministic O(log n + log2(m + g))
space.

This improves the earlier-known space bound of

min{O(log n + m), O(log n · log m)} and also extends it to

higher genus graphs.

By setting m = g = 2O(
√

log n) we get a determin-

istic log-space algorithm for reachability over graphs in

G(2O(
√

log n), 2O(
√

log n)).

Corollary 4. The reachability problem for directed acyclic
graphs with 2O(

√
log n) sources embedded on surfaces of

genus 2O(
√

log n) can be decided in deterministic logarith-
mic space.

By setting m and g to be no(1) we get o(log2 n) bound.

The following corollary as stated is implicit in [10]. How-

ever, the space bound we get for any specific function nl(n)

where l(n) ∈ o(1) is better than what is implied by the

results of [10].

Corollary 5. The reachability problem for directed acyclic
graphs embedded on surfaces with sub-polynomial genus

and with sub-polynomial number of sources can be decided
in deterministic space o(log2 n).

Theorem 2 leads to new simultaneous time-space bound

for the reachability problem. Designing algorithms for reach-

ability with simultaneous time and space bound is another

important direction that has been of considerable interest in

the past. Since a depth first search can be implemented in

linear time and linear space, the goal here is to improve

the space bound while maintaining a polynomial running

time. The most significant result here is Nisan’s O(log2 n)
space, nO(1) time bound for RL [11]. The best upper

bound for general directed reachability is the 20-year old

O(n/2
√

log n) space, nO(1) time algorithm due to Barnes,

Buss, Ruzzo and Schieber [12]. Combining our reduction

with a simple depth-first search gives better simultaneous

time-space bound for reachability over a large class of

graphs that beats the Barnes et al. bound.

Theorem 6. The reachability problem for graphs in G(m, g)
can be decided in polynomial time using O(log n + m + g)
space.

Note that Theorem 6 has a space bound which matches

the O(log n + m) space bound of Theorem 1, except it

guarantees polynomial time, where the previous bound gave

2O(m) poly(n) running time. For any ε < 1, we get a

polynomial time algorithm for reachability over graphs in

G(O(nε), O(nε)) that uses O(nε) space.

Corollary 7. For any ε with 0 < ε < 1, the reachability
problem for graphs in G(O(nε), O(nε)) can be decided in
polynomial time using O(nε) space.

We note that the upper bound on space given in Theorem 6

can be slightly improved to O
(
(m + g)2−

√
log(m+g)

)
by

using the Barnes et al. algorithm instead of depth-first

search, which will give a o(nε) space bound in the above

corollary.

327

Theorem 8. The reachability problem for graphs in G(m, g)
can be decided in deterministic polynomial time using
O

(
log n + m+g

2
√

log(m+g)

)
space.

Before we go into further details, we note that throughout

this paper certain known log-space primitives are frequently

used as subroutines without explicit reference to them. In

particular, Reingold’s log-space algorithm for undirected

reachability is often used, for example to identify connected

components in certain undirected graphs.

II. PRELIMINARIES

We mainly deal with directed graphs. A directed edge

e = xy has the direction from x to y and we call x the tail
denoted by Tail(e), and y the head denoted by Head(e).
We assume that the input graph G is embedded on a surface

S where every face is homeomorphic to an open disk.

Such embeddings are called 2-cell embeddings. We assume

that such an embedding is presented as a combinatorial
embedding where for each vertex v the circular ordering

of the edges incident to v is specified. In the case of a

non-orientable surface, the signature of an edge is also

given, specifying if the orientation of the rotation switches

across this edge. Since computing or approximating a low-

genus embedding of a non-planar graph is an NP-complete

problem [13], [14], we require the embedding to be given

as part of the input and we consider reachability in G(m, g)
to be a promise problem. In the case of genus zero, we can

compute a planar embedding in log-space and the promise

condition can be removed.

Let G be a graph with n vertices and e edges embedded

on a surface S with f faces. Then by the well known

Euler’s Formula we have n− e + f = χS , where χS is the

Euler characteristic of the surface S. The number of faces

in a graph is log-space computable from a combinatorial

embedding (for a proof, see [15]), so χS is also computable

in log-space. The genus gS of the surface S is given by

the equation χS = 2 − 2gS for orientable surfaces and

χS = 2− gS for non-orientable surfaces.

Let C be a simple closed curve on S given by a cycle in

the underlying undirected graph of G. C is called surface
separating if the removal of C disconnects G. A surface sep-

arating curve C is called contractible if removal of the nodes

in C disconnects G where at least one of the connected

components is homeomorphic to a disc. Given a cycle C it

is possible to detect the type of C in log-space (for example

by using the log-space algorithm for undirected reachability

to find the connected components, then calculating the Euler

characteristic for each component).

We assume that the given graph is acyclic. Lemma 1.9

in the appendix gives a technique for converting a source-

bounded reachability algorithm on graphs promised to be

acyclic into a cycle-detection algorithm without asymptoti-

cally increasing the space requirement.

A. Forest Decomposition, Edge Classification, and Topolog-
ical Equivalence

A simple structural decomposition, called a forest decom-
position, of a directed acyclic graph forms the basis of our

algorithm. This forest decomposition has been utilized in

previous works [9], [10].

Let G be a directed acyclic graph and let u, v be two

vertices. Our goal is to decide whether there is a directed

path from u to v. Let u, s1, . . . , sm be the sources of G.

If u is not a source, make it a source by removing all

the incoming edges. This does not affect uv-reachability,

increases the number of sources by at most one, and only

reduces the genus of the embedding.

Let A be a deterministic log-space algorithm that on input

of a non-source vertex x, outputs an incoming edge yx (for

example, selecting the lexicographically-first vertex y so that

yx is an edge in G). This algorithm defines a set of edges

FA = {yx : x ∈ V (G) \ {u, v, s1, . . . , sm}, y = A(x)},
called a forest decomposition of G.

Since G is acyclic, the reverse walk x1, x2, . . . , where

x1 = x and xi+1 = A(xi), must terminate at a source sj ,

u, or v, so the edges in FA form a forest subgraph. For

the purposes of the forest decomposition, v is treated as a

source since no incoming edge is selected. If a vertex x is

in the tree with source v, then all non-tree edges entering

x are deleted. This does not affect uv-reachability, since G
is acyclic and does not increase the number of sources or

the genus of the surface. Each connected component in FA

is a tree rooted at a source vertex, called a source tree. The

forest forms a typical ancestor and descendant relationship

within each tree. For the remainder of this work, we fix

an acyclic graph G ∈ G(m, g) embedded on a surface S
(defined by the combinatorial embedding) and F = FA a

log-space computable forest decomposition.

Let x and y be two vertices in some source tree T of

F . The tree curve at xy is the curve on S formed by the

unique undirected path in T from x to y. If xy is an edge,

then the closed curve formed by xy and the tree curve at

xy is called the closed tree curve at xy. Edges in G that are

not included in F can be partitioned into two classes, local
and global. We use this classification to create subgraphs of

G which are locally embedded on a disk.

Given an S-embedded graph G and a forest decomposi-

tion F , an edge xy in E(G) \F is classified as local1 if (a)

x and y are on the same tree in F , (b) the closed tree curve

at xy is contractible (i.e. the curve cuts S into a disk and

another surface), and (c) No sources lie on the interior of the

surface which is homeomorphic to a disk. If S is the sphere,

then the curve cuts S into two disks and xy is local if one

of the disks contains no source in the interior. Otherwise,

xy is global.

1This definition of local differs from the use in [9] and [10].

328

Let T be a connected component in the forest decompo-

sition F along with the local edges between vertices in T .

The region of T , denoted R[T] is the portion of the surface

S given by the faces enclosed by the tree and local edges in

T . The faces that compose R[T] are together homeomorphic

to a disk, since R[T] can contract to the source vertex by

contracting the disks given by the local edges into the tree,

and then contracting the tree into the source vertex. This disk

is oriented using the combinatorial embedding at the source

by the right-hand rule. Reachability in such subgraphs T
can be decided using the SMPD algorithm [9], in log-space.

Note that the restriction of a 2-cell embedding implies all

global edges are incident to vertices on the outer curve of the

diskR[T]. Our figures depict source trees as circles, with the

source placed in the center, with tree edges spanning radially

away from the source2. We can also assign a clockwise or

counter-clockwise direction to all local edges in a source

tree region R[T]. For a local edge xy, the closed tree curve

at xy is cyclicly oriented by the direction of xy. The edge

xy is considered clockwise (counter-clockwise) if this cyclic

orientation is clockwise (counter-clockwise) with respect to

the orientation of R[T].
The following notion of topological equivalence plays a

central role in our algorithms. It was originally presented in

[10] for planar graphs, but we extend it to arbitrary surfaces.

Let G be a graph embedded on a surface S. Let F
be a forest decomposition of G. We say two (undirected)

global edges xy and wz are topologically equivalent if the

following two conditions are satisfied: (a) They span the

same source trees in F (assume x and w are on the same

tree), (b) The closed curve in the underlying undirected

graph formed by (1) the edge xy, (2) the tree curve from

y to z, (3) the edge zw, and (4) the tree curve from w
to x bounds a connected portion of S, denoted D(xy, wz),
that is homeomorphic to a disk and no source lies within

D(xy, wz).
In fact, topological equivalence is an equivalence relation.

Let E be an equivalence class of global edges containing an

edge e, where e spans two different source trees. Consider

the subgraph of G given by the vertices in the source trees

containing the endpoints of e, along with all local edges in

those trees and the edges in E. This subgraph is embedded in

a disk on S (for a proof, see Corollary 4.3 in the appendix).

We shall make explicit use of this locally-planar embedding.

For an equivalence class of global edges spanning vertices

in the same tree, a similar subgraph and embedding is

formed by considering the ends of the equivalence class to

be different copies of that source tree.

The lexicographically-least edge e in a topological equiv-

alence class of global edges is log-space computable. By

counting how many global edges which are lexicographically

2This visualization of source trees was crucial to the development of this
work, and is due to [9].

smaller than e and are the lexicographically-least in their

equivalence classes, the equivalence class containing e is

assigned an index i. The class Ei is the ith equivalence

class in this ordering. We shall use this notation to label the

equivalence classes.

Let Ei be an equivalence class of global edges. Define

the region enclosed by Ei as R[Ei] =
⋃

e1,e2∈Ei
D(e1, e2).

The region R[Ei] has some properties which are quickly

identified. There are two edges ea, eb ∈ Ei so that R[Ei] =
D(ea, eb). These outer edges define the sides of R[Ei]. The

boundary of R[Ei] is given by these two edges and their

ancestor paths in F on all four endpoints. All vertices in

a source tree T are contained in the region R[T]. Let TA

and TB be the two source trees containing the tail and head,

respectively, of the representative edge in Ei. The vertices

within the boundary of R[Ei] are within R[TA] and R[TB].
The vertices in R[Ei] are partitioned into two ends, A and

B, where the vertices are placed in an end determined by

containment in R[TA] ∩ R[Ei] and R[TB] ∩ R[Ei] when

the trees TA and TB are different or by the two connected

components of R[TA] ∩ R[Ei] when the trees are equal.

Note that the endpoints of edges in Ei lie on the boundary

of the regions R[TA] and R[TB]. There is an ordering ea =
e1, e2, . . . , ek = eb of Ei so that the endpoints of the ej

on the A-end appear in a clockwise order in that tree. Two

regions R[Ei] and R[Ej] on different classes Ei and Ej

intersect only on the boundary paths. The vertices on the

boundary are not considered inside the region, since they

may be in multiple regions.

Since global edges appear on the boundary of R[T] for

a given source tree T , there is a natural clockwise ordering

on these edges, with respect to the orientation of T . Further,

we can order the incident equivalence classes (with possibly

a single repetition, in the case of global edges with both

endpoints in T) by the clockwise order the ends R[Ei] ∩
R[T] appear on the boundary of R[T].

The resource bounds we prove directly depends on the

number of equivalence classes. The following lemma bounds

the number of equivalence classes.

Lemma 26. Let G be a graph embedded on a surface S
with Euler characteristic χS with a forest decomposition F
with m sources. There are at most 3(m + |χS |) topological
equivalence classes of global edges. If gS is the genus of S,
|χS | = O(gS) and there are O(m+gS) equivalence classes
of global edges.

At this point, we take a very different approach than [10].

The algorithm described in [10] focused on reachability

within the regions R[T] on the source trees T . Here, we

focus on reachability within and between equivalence classes

Ei. We create a constant number of vertices derived from

each equivalence class. This constant is given by the number

of distinct ways a path can enter the region R[Ei], use edges

in Ei, then leave the region R[Ei]. We call these patterns.

329

III. PATTERNS IN EQUIVALENCE CLASSES

If a directed path P from u to v exists in G, then P leaves

the tree rooted at u and travels through the other source

trees and global edge equivalence classes before taking a

global edge to v. The crucial observation to this work is the

following: If we focus on certain “nice” paths, then there are

a finite number of ways such paths can enter and exit the

region of an equivalence class. Thus for each equivalence

class Ei, there are a finite number of “patterns” we need

to consider. In this section we formalize these notions. First

we define what we mean by a “nice” path.

Let G be a DAG and F be a forest decomposition of G.

Let P = x1, . . . , xk be a directed path in G. P is said to

be irreducible if whenever a vertex xi appears before xj in

P and xj is a descendant of xi in some tree of F , then

P follows the edges in F from xi to xj . Note that if a

path exists between two vertices, an irreducible path also

exists, by swapping violating subpaths with the appropriate

tree paths. For an irreducible path between u and v, the

portions of this path within each source tree must follow a

clockwise or counter-clockwise direction on each local edge

(see Lemma 17 in the appendix for an exact statement).

We associate right and left with the rotational directions

clockwise and counter-clockwise, respectively.

Consider an equivalence class Ei between source trees TA

and TB , a rotational direction d (clockwise or counterclock-

wise), and a vertex x in TA outside the region R[Ei]. We

say that the vertex x fully reaches Ei in the direction d if

there is an irreducible d-directional local path from x to an

endpoint of each edge in Ei. If x does not fully reach Ei in

direction d, but there is a local path from x to an endpoint of

some edge of Ei, then we say x partially reaches Ei in this

direction. If such a path is irreducible, then the path follows

a clockwise or counter-clockwise direction within TA and

we say x fully (or partially) reaches Ei using a clockwise
(or counter-clockwise) rotation.

Lemma 27. Let x be a vertex in a source tree TA. For
each rotational direction d (clockwise or counter-clockwise),
there is an ordering Ei0 , Ei1 , . . . , Ei�

of the edge classes
reachable via irreducible d-directional paths so that x fully
reaches each Eij

in direction d for j ∈ {1, . . . , � − 1}, x
either fully or partially reaches Ei0 and Ei�

in direction d,
and if x is not in the interior of R[Ei0], x fully reaches Ei0 .

Each irreducible path P between two vertices x and y
induces a list of edge classes Ei1 , . . . , Ei�

for some � where

the global edges of P visit each class Eij
in order of

increasing j, and Eij �= Eij+1 for each j ∈ {1, . . . , �− 1}.
This list is the induced class list for the path P . Once the

induced class list is known, the path P must take local

paths between edges in Eij
and edges in Eij+1 . Since

P is irreducible, these local paths have a clockwise or

counterclockwise direction, determined by the orientation of

the path (which may agree or disagree with the orientation

of the current tree). While this local path traverses from

Eij
to Eij+1 , it must cross the boundary of R[Eij

] and

the boundary of R[Eij+1] at an ancestor path of a boundary

edge. There are only two possible ends (A or B) where these

local paths can start and end, only two possible rotational

directions (R and L for right and left), and two possible

orientations (+ or − with respect to the current tree). Note

that if P crosses a boundary path to enter R[Eij
], crossing

that boundary again would either create a cycle or would

violate irreducibility. Hence, an irreducible path must cross

two boundaries of R[Eij].
Specifically, the entrance direction, the exit end, and the

exit direction combine into a pattern which has the most

important information about the behavior of P within Ei.

Definition 28 (The Pattern Set). Let Ei be an equivalence

class of global edges. An irreducible path P that involves

an edge of the class Ei induces a pattern on Ei defined

by 〈abc〉 with a, c ∈ {L,R}, b ∈ {S,X} where a is the

clockwise (R) or counter-clockwise (L) direction the path

takes as it enters R[Ei], c is the direction the path takes as

it leaves R[Ei], and if b = S, the path enters and leaves

R[Ei] on the same end and if b = X, the path enters and

leaves R[Ei] on opposite ends. Define the pattern set, P =
{〈RSR〉, 〈LSL〉, 〈RXR〉, 〈RXL〉, 〈LXR〉, 〈LXL〉}.

The patterns 〈LSR〉 and 〈RSL〉 are omitted since they

are not realizable by an irreducible path. The four patterns

〈RSR〉, 〈LSL〉, 〈RXL〉, and 〈LXR〉 are called full patterns.

Patterns 〈RXR〉 and 〈LXL〉 are called nesting patterns.

These names refer to specific properties — properties which

are investigated in following sections — that are revealed

when paths attempt to induce these patterns. The main

difference between the full and the nesting patterns is that

nesting patterns have the entrance and exit on the same side

of the region, while full patterns involve both sides of the

region. A path through the region from one side to the other

(thus inducing a full pattern) will force all edges in the class

to be reachable. See Table I for figures of these patterns.

Let Ei be an edge class and R[Ei] be the enclosed region.

Let t be an end of R[Ei] (either A or B) and fix an

orientation on that end and a pattern p that involves Ei.

Then the entrance (exit) of the pattern at the t-end is the

ancestor path on the boundary of R[Ei] on the t-end that a

path must cross before (respectively, after) using the edges in

Ei that induce the pattern p with the given orientation. (See

Figure 4 in the appendix for a visual representation of the

entrance and exit of a pattern.) We can now define pattern
descriptions which are the vertices of the pattern graph that

we will define in the next section.

Definition 29 (Pattern Descriptions). Let k be the number

of topological equivalence classes of edges of G. A pattern
description is a tuple x = (i, t, o, p) where i ∈ {1, . . . , k},

330

A

B

eout
x ein

x

A

B

ein
x eout

x

A

B

eout
x ein

x

A

B

ein
x eout

x

A

B

ein
x =eout

x

A

B

ein
x =eout

x

〈RSR〉 〈LSL〉 〈RXL〉 〈LXR〉 〈RXR〉 〈LXL〉
Full Patterns Nesting Patterns

Table I
DIFFERENT PATTERNS USING AN EDGE CLASS Ei , ENTERING FROM THE A-END OF R[Ei].

t ∈ {A, B}, o ∈ {+1,−1}, and p ∈ P . Here i represents

the equivalence class Ei, t represents the end of R[Ei]
that contains the entrance, o ∈ {+1,−1} specifies if the

orientation of the path is in agreement with (or opposite

to, respectively) the local orientation of the tree on the t-
side of Ei, and p ∈ P represents the pattern used in Ei.

The set {1, . . . , k}× {A, B}× {+1,−1}×P of all pattern

descriptions is denoted by VP.

For example, the description (i, B,+1, 〈RXL〉) is an

element in VP corresponding to a 〈RXL〉 pattern, using

at least one edge of the class Ei starting at the B-side

and leaving the A-side, oriented to agree with the B-side.

Lemma 26 implies the number of descriptions is O(m+gS)
where m is the number of sources and g the genus of

the surface. A pattern description can be represented with

�log k	+ 5 = O(log(m + gS)) bits3.

We now investigate some properties of paths that induce

these pattern descriptions. We focus on a path which uses

local edges and global edges in a single equivalence class

and induces a single pattern on that class. These single-

pattern paths will be concatenated to make larger paths once

the structure of the shorter paths is understood.

An important property of these patterns is that if the

pattern is of full type or the equivalence class is fully

reachable, we can assume without loss of generality that the

path used two special edges, which we call the canonical
edge pair.

Definition 30 (Canonical Edge Pair). Let x = (i, t, o, p) be

a pattern description centered at the edge class Ei. There

are two edges (incoming and outgoing) in Ei, called the

canonical edge pair for x. The outgoing edge, eout
x , is the

edge e ∈ Ei with head on the exit end that is farthest from

the exit side so that there exists a local path from Head(e)
to the exit of R[Ei]. The incoming edge, ein

x , is the edge

e ∈ Ei with the tail on the entrance end that is closest to

the entrance side so that either e = eout
x or Tail(eout

x) is

3This bland fact is in fact very important for the later use of Savitch’s
Theorem.

reachable from Head(e) using local paths and edges in Ei.

Full patterns are named so because a path which induces

a full pattern intersects the ancestor path of at least one

endpoint of every edge in the class. Hence, every edge is

reachable. This leads to the property that if an irreducible

path induces such a pattern, then the path might as well use

the canonical edges in the corresponding equivalence class.

Lemma 31. Let x be a pattern description of full type
centered at an edge class Ei. Let y, z ∈ V (G) be vertices not
inside R[Ei], where y is in the source tree on the entrance
end of x and z is in the source tree on the exit end of x.
Then there is a path from y to z in G using only local paths
and edges of the class Ei that induces the pattern x if and
only if Tail(ein

x) is reachable from y using a local path in the
entrance direction of x and z is reachable from Head(eout

x)
using a local path in the exit direction of x.

Lemma 32. Let x be a pattern description of full type. The
canonical edge pair (ein

x , eout
x) is log-space computable.

Nesting patterns are named so because irreducible paths

which induce such patterns use exactly one edge of this

class, and we may assume that the edge used is the one

farthest from the entrance that is reachable (and that a local

path exists from its head to the exit). The following lemmas

describe properties of nesting patterns.

Lemma 33. If an irreducible path using local paths and
edges in a global edge class Ei induces a nesting pattern,
then the path uses exactly one edge in the class Ei.

Lemma 34. Let x be a pattern description of nesting type
centered at a global edge class Ei. Then, ein

x = eout
x , and

eout
x is log-space computable.

While it would be useful to have a property similar to

Lemma 31 for nesting patterns, there may exist a vertex w
from which there are paths that induce a nesting pattern

without reaching the canonical incoming edge. We can

define a new edge in the class that is similarly canonical,

except with respect to the vertex w.

331

Let x = (i, t, o, p) be a pattern description of nesting type

and w be a vertex not in the interior of R[Ei]. The most-
interior edge of x reachable from w, denoted e

int(w)
x , is the

edge e in the class Ei that is farthest from the entrance side

of R[Ei] so that (a) there is a local path from w to Tail(e)
in the entrance direction, and (b) there is a local path from

Head(e) to the exit boundary of R[Ei].

Lemma 37. Let x be a pattern description of nesting type
and w a vertex not in the interior ofR[Ei]. The most-interior
edge, e

int(w)
x , is log-space computable. For any vertex z not

in R[Ei], there is a path from w to z that induces the
pattern x if and only if there is an irreducible local path
from Head

(
e
int(w)
x

)
to z in the exit direction of x. If w

fully reaches Ei, then eint w
x = eout

x .

IV. THE PATTERN GRAPH

We now describe a graph on O(m + gS) vertices that

preserves uv-reachability.

Definition 38 (The Pattern Graph). Given G and F as above,

the pattern graph, denoted P(G, F) = (V ′P, E′P) is a directed

graph defined as follows. The vertex set V ′P = {u′, v′} ∪
VP = {u′, v′} ∪ ({1, . . . , k} × {A, B} × {+1,−1} × P).
For two pattern descriptions x,y ∈ VP, an edge x → y is

in E′P if and only if there exists a (possibly empty) list of

nesting pattern descriptions z1, . . . , z� (called an adjacency
certificate), so that the following two conditions hold:

1) There is an irreducible path from Head(eout
x) to

Tail(ein
y) which induces the sequence z1, . . . , z� of

nesting pattern descriptions.

2) For each j ∈ {1, . . . , �}, Tail(ein
zj

) is not reachable

from Head(eout
x) using irreducible paths that induce

the pattern descriptions z1, . . . , zj−1.

In addition, for a description x = (i, t, o, p) there is an

edge u′ → x in E′P if and only if x has the t-end in the tree

Tu. Also, for a pattern description x = (i, t, o, p) there is an

edge x→ v′ in E′P, if and only if the class Ei is incident to

v, t is the other end of the class, and p ∈ {〈RXL〉, 〈LXR〉}.
Theorem 39. There is a path from u to v in G if and only
if there is a path from u′ to v′ in P(G, F).

Proof: (⇒) Let P be an irreducible path from u to v in

G. P induces a sequence of pattern descriptions x1, . . . ,x�.

Note that x1 is centered at an edge class that is incident

to Tu and the entrance end is on Tu. Note also that x� is

centered at an edge class where the edges have head v. Thus,

in P(G, F), u′ → x1 and x� → v′ are edges.

For full pattern descriptions xi, Lemma 31 implies that

we may assume the first edge in the global edge class of xi

used by P is ein
xi

and the last such edge is eout
xi

.

Fix i ∈ {1, . . . , �− 1} and let xj be the next full pattern

induced after xi. If j = i + 1, then the path P takes a local

path between the edges that induce the patterns xi and xi+1.

By Lemma 31, ein
xj

is reachable from eout
xi

by a local path

and an adjacency exists from xi to xi+1 in P(G, F), using

an empty list of nesting patterns as the adjacency certificate.

Otherwise, j > i + 1 and there are j − i nested patterns

between xi and xj . Rename the nesting patterns between xi

and xj as z1, . . . , zj−i where zi′ = xi+i′ . If z1, . . . , zj−i

compose an adjacency certificate for xi → xj , then this

edge exists in P(G, F). Otherwise, there exists such a k
that violates the adjacency condition between xi and xj ,

then let i′ be the smallest such index. There is an edge in

P(G, F) from xi to the nesting pattern description zi′ , since

Tail(ein
zi′) is reachable from Head(eout

xi
) by a path using the

nesting patterns z1, . . . , zi′−1 as the adjacency certificate. By

Lemma 37, Tail(ein
xj

) is reachable from Head(eout
zi′) using an

irreducible path which induces the patterns zi′+1, . . . , zj−i.

By iteration, there is a path from zi′ to xj in P(G, F), and

hence a path from xi to xj in P(G, F). Connecting all of

the edges between the full patterns in x1, . . . ,x� gives a

path from u′ to v′ in P(G, F).
(⇐) Given a path P = u′,x1,x2, . . . ,x�, v

′ in P(G, F),
let xj = (ij , tj , oj , pj) for each j ∈ {1, . . . , �}. Since

u′ → x1 in P (G), Ei1 is a class incident to Tu and all

edges are reachable from u. Specifically, there is a tree path

P0 from u to eout
x1

. Similarly, since x� → v′ in P(G, F),
Eik

is a class incident to Tv and all edges have v as a

head. For each j ∈ {1, . . . , � − 1}, Lemmas 31 and 37

imply there is an irreducible path Pi in G from the head

of eout
xj

to the tail of ein
xj+1

that is either a local path or

induces a list of nesting pattern descriptions which form

an adjacency certificate. Also, by Definition 30, there exist

(possibly empty) paths Qj from ein
xj

to eout
xj

using local paths

and edges of the class Eij
. These paths concatenate to a

path uP0e
out
x1

P1e
in
x2

Q2e
out
x2

P2e
in
x3

. . . eout
x�−1

P�−1e
in
x�

v from u
to v in G.

Lemma 40. The pattern graph P(G, F) is log-space com-
putable.

Proof: Given a pattern description x, we describe a

log-space algorithm for enumerating the pattern descriptions

reachable by an edge in P(G, F). It is simple to find the

pattern descriptions x,y so that u → x and y → v.

A necessary subroutine takes a global edge e and enu-

merates all pattern descriptions reachable from Head(e)
using local paths in the exit direction of x. By Lemma 27,

there is an ordered list of topological equivalence classes

Ei0 , Ei1 , . . . , Ei�
reachable by local paths from the head

of e. Ei0 is the class containing e, so e is in R[Ei0]. All

other classes Eij
(for j ≥ 1, except possibly j = �) are

fully reachable. Hence, each pattern description y centered

at a class Eij with j ∈ {1, . . . , � − 1} (where the entrance

direction of y, orientation, and end all match the exit

direction of x) has ein
y reachable from Head(e) using a local

path. Each pattern description y with entering direction the

same as the exit direction of x and centered at Ei�
can be

332

checked if ein
y is reachable from e. The only pattern that

could be used without having ein
y reachable is a nesting

pattern.

To enumerate all neighbors of x in P(G, F), perform

the above subroutine on eout
x , adding edges from x to each

reachable pattern description y. If the nesting pattern z on

Ei�
is not fully reachable (i.e. there is no local path from

e to ein
z in the proper direction) then compute the most-

interior edge e
int(Head(e))
z . Repeat the subroutine on this

edge, continuing until the class Ei�
is fully reachable (or

the list is empty). In the jth iteration, let wj−1 = Head(e)
and zj = z.

It is clear this algorithm takes log-space. It enumerates

all neighbors of x in P(G, F), since a neighbor y requires

a list of nesting classes z1, . . . , z� so that there is an

irreducible path from x to y inducing these classes. Each

class zj has the edge ein
zj

not reachable from x using the

patterns z1, . . . , zj−1. This means that the pattern zj is

centered at the class Ei�
computed by the iteration of the

subroutine on the edge e
int(wj−1)
zj−1 . Moreover, y appears as a

reachable class from the most-interior edge computed at z�,

so y is enumerated. Finally, any pattern enumerated by this

procedure can reconstruct the list of z1, . . . , z� by using the

nesting patterns used in the subroutine iterations.

The main theorem is found by combining Lemma 26,

Theorem 39, and Lemma 40, using G′ = P (G, F) where

the forest decomposition F is given by the lexicographically

least incoming edge.

ACKNOWLEDGEMENTS

We thank Jeff Erickson for sharing his knowledge on

topological embeddings of graphs. We also thank Jonathan

F. Buss for discussions on simultaneous time-space bounds

for reachability at the 2010 Conference on Computational

Complexity. Thanks to the anonymous referees whose com-

ments improved this paper.

REFERENCES

[1] O. Reingold, “Undirected connectivity in log-space,” Journal
of the ACM, vol. 55, no. 4, 2008.

[2] O. Reingold, L. Trevisan, and S. Vadhan, “Pseudorandom
walks on regular digraphs and the RL vs. L problem,” in
STOC ’06: Proceedings of the thirty-eighth annual ACM
Symposium on Theory of Computing. New York, NY, USA:
ACM, 2006, pp. 457–466.

[3] A. Wigderson, “The complexity of graph connectivity,” Math-
ematical Foundations of Computer Science 1992, pp. 112–
132, 1992.

[4] E. Allender, “Reachability problems: An update,” Computa-
tion and Logic in the Real World, pp. 25–27, 2007.

[5] W. J. Savitch, “Relationships between nondeterministic and
deterministic tape complexities,” Journal of Computer and
System Sciences, vol. 4, no. 2, pp. 177–192, 1970.

[6] M. Saks and S. Zhou, “BPHSPACE(S) ⊆ DSPACE(S3/2),”
Journal of Computer and System Sciences, vol. 58, no. 2, pp.
376–403, 1999.

[7] A. Jakoby, M. Liśkiewicz, and R. Reischuk, “Space efficient
algorithms for directed series-parallel graphs,” Journal of
Algorithms, vol. 60, no. 2, pp. 85–114, 2006.

[8] A. Jakoby and T. Tantau, “Logspace algorithms for com-
puting shortest and longest paths in series-parallel graphs,”
in FSTTCS 2007: Foundations of Software Technology and
Theoretical Computer Science, 2007, pp. 216–227.

[9] E. Allender, D. A. M. Barrington, T. Chakraborty, S. Datta,
and S. Roy, “Planar and grid graph reachability problems,”
Theory of Computing Systems, vol. 45, no. 4, pp. 675–723,
2009.

[10] D. Stolee, C. Bourke, and N. V. Vinodchandran, “A log-space
algorithm for reachability in planar acyclic digraphs with few
sources,” 25th Annual IEEE Conference on Computational
Complexity, pp. 131–138, 2010.

[11] N. Nisan, “RL ⊆ SC,” in In Proceedings of the Twenty Fourth
Annual ACM Symposium on Theory of Computing, 1995, pp.
619–623.

[12] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber, “A
sublinear space, polynomial time algorithm for directed s-t
connectivity,” in Structure in Complexity Theory Conference,
1992., Proceedings of the Seventh Annual, 1992, pp. 27–33.

[13] C. Thomassen, “The graph genus problem is NP-complete,”
Journal of Algorithms, vol. 10, no. 4, pp. 568–576, 1989.

[14] J. Chen, S. Kanchi, and A. Kanevsky, “A note on approxi-
mating graph genus,” Information processing letters, vol. 61,
no. 6, pp. 317–322, 1997.

[15] J. Kynčl and T. Vyskočil, “Logspace reduction of directed
reachability for bounded genus graphs to the planar case,”
ACM Transactions on Computation Theory, vol. 1, no. 3, pp.
1–11, 2010.

333

