
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Faculty Publications from the Department of
Electrical Engineering Electrical Engineering, Department of

1-1-2011

On the Interplay Between Channel Sensing and
Estimation in Cognitive Radio Systems
M. Cenk Gursoy
University of Nebraska - Lincoln, gursoy@engr.unl.edu

Sinan Gezici Sinan Gezici
Bilkent University, gezici@ee.bilkent.edu.tr

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub
Part of the Electrical and Computer Engineering Commons

This Article is brought to you for free and open access by the Electrical Engineering, Department of at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical Engineering by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Cenk Gursoy, M. and Sinan Gezici, Sinan Gezici, "On the Interplay Between Channel Sensing and Estimation in Cognitive Radio
Systems" (2011). Faculty Publications from the Department of Electrical Engineering. Paper 203.
http://digitalcommons.unl.edu/electricalengineeringfacpub/203

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineeringfacpub/203?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages


On the Interplay Between Channel Sensing and
Estimation in Cognitive Radio Systems

Mustafa Cenk Gursoy
Department of Electrical Engineering

University of Nebraska-Lincoln, Lincoln, NE 68588
Email: gursoy@engr.unl.edu

Sinan Gezici
Department of Electrical and Electronics Engineering

Bilkent University, Bilkent, Ankara 06800, Turkey
Email: gezici@ee.bilkent.edu.tr

Abstract—Cognitive radio transmissions in the presence of chan-
nel uncertainty are considered. In practical scenarios, cognitive
secondary users need to perform both channel sensing in order to
identify whether the channel is being occupied by the primary users
or not, and also channel estimation in order to learn the channel
fading coefficients. Generally, errors occur in both channel sensing
and estimation, and this leads to a coupling between the two. More
specifically, imperfect sensing affects both the structure and the
performance of channel estimation schemes. With this motivation,
the interactions between channel sensing and estimation are studied
in this paper. In particular, different channel estimation schemes
including minimum mean-square error (MMSE), linear MMSE, and
mismatched MMSE estimations are analyzed, and their dependence
on sensing decisions and their performances are investigated.

Index Terms—Cognitive radio, channel sensing, channel estima-
tion, minimum mean-square error estimation.

I. INTRODUCTION

In cognitive radio networks, channel/spectrum sensing is one
of the key tasks to be performed in order to limit the interference
inflicted on the primary users. Due to the significance of this
consideration, different spectrum sensing methods and dynamic
spectrum access strategies have been extensively studied over the
last couple of years (see e.g., [1]–[4]). Among frequently-used
practical spectrum sensing methods such as matched filtering,
energy detection, and cyclostationary detection, energy detection
is commonly preferred if prior information about the structure
of the primary users’ signals is not available at the cognitive
secondary users [4]. It is important to note that, as common to all
schemes, errors in the form of false-alarms and miss-detections
occur in sensing, and such errors can lead to degradation in the
performance.

Another important concern in wireless systems is the estima-
tion of the time-varying channel conditions which occur due to
mobility and/or changing environment. In such cases, practical
wireless systems generally employ training methods to estimate
the channel fading coefficients, albeit imperfectly. On the other
hand, despite their practical significance, channel estimation
methods and communication in the presence of imperfectly-
known channel conditions have not been the focus of majority of
the studies on cognitive radio systems. In [5], Gao et al. addressed
channel training and estimation in a multiple-antenna cognitive
radio setting. In their model, cognitive users initially listen to the
primary users’ transmission in order to learn the structure of the
covariance matrices of the received signals and perform receive
and transmit beamforming in their own transmissions. Following

this phase, the cognitive users enter into a training phase in
which pilot signals are sent and the linear minimum mean-
square-error (LMMSE) estimation is performed. In a related
study, an approach is proposed to perform spectrum sensing and
data transmission simultaneously in order to maximize both the
sensing time and the throughput of the cognitive system [6].

In this paper, we consider a practical setting in which cognitive
secondary users operate under channel uncertainty, and we study
the interactions between channel sensing and estimation. Initially,
the secondary users sense the channel and make decisions on
whether the channel is being occupied by the primary users
or not. Subsequently, they perform channel estimation in or-
der to learn the conditions in their own channels. The crucial
assumption is that both channel sensing and estimation are
performed with possible errors. Under this assumption, we show
that imperfect channel sensing can have significant impact on the
channel estimation, and both the structure of the estimators and
the resulting average estimation errors have dependence on the
sensing performance.

II. CHANNEL SENSING

Initially, we assume that the secondary cognitive users sense
the channel in order to identify whether the channel is being used
by the primary users. Energy-detection methods are considered
to be well-suited for channel sensing if the transmission policies
of primary users are not known. In this case, we can formulate
the channel sensing as a hypothesis testing problem between the
noise ni and the signal si in noise. If N symbol periods are
allocated for channel sensing, the hypothesis testing problem can
mathematically be expressed as follows:

H0 : zi = ni , i = 1, 2, . . . , N ,

H1 : zi = si + ni , i = 1, 2, . . . , N .
(1)

Above, si denotes the sum of the primary users’ faded signals
received by the cognitive user and is complex-valued. We as-
sume that si has a circularly-symmetric distribution with zero-
mean and variance σ2

s . In addition, we assume that the signal
samples {si} are independent and identically distributed (i.i.d.).
Furthermore, {ni} is a sequence of independent and identi-
cally distributed (i.i.d.), additive zero-mean, circularly symmetric,
complex Gaussian noise samples with zero mean and variance
E{|ni|2} = σ2

n for all i. Under these assumptions, the optimal
Neyman-Pearson detector for the above hypothesis problem is
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given by Z = 1
N

∑N
i=1 |zi|2 ≷H1

H0
λ where λ is the detection

threshold.
Assuming that N is sufficiently large, we can approximate

Z = 1
N

∑N
i=1 |zi|2 as a Gaussian random variable by invoking

the Central Limit Theorem. It can easily be verified that the mean
and variance of Y are given, respectively, by [7]

E{Z} =
{

σ2
n , under H0

σ2
s + σ2

n , under H1
, and

Var{Z} =

{
σ4

n/N , under H0(
E{|s|4} + 2σ4

n − (σ2
s − σ2

n)2
)
/N , under H1

.

With these characterizations and the Gaussianity assumption, the
detection and false-alarm probabilities can be expressed in terms
of Q-functions [7]:

Pd = Pr{Z > λ |H1} = Pr{Ĥ1 |H1} (2)

= Q

⎛
⎝ λ − σ2

s − σ2
n√

1
N (E{|s|4} + 2σ4

n − (σ2
s − σ2

n)2)

⎞
⎠ and (3)

Pf = Pr{Z > λ |H0} = Pr{Ĥ1 |H0} = Q

⎛
⎝ λ − σ2

n√
1
N σ4

n

⎞
⎠ . (4)

Above, Ĥ1 is used to denote the event in which the cognitive
users sense the channel as busy, i.e., declare H1 as the true
hypothesis. Note that the true underlying hypothesis can be either
H0 or H1. For instance, if H0 is actually the true hypothesis,
Pr{Ĥ1 |H0} denotes the false alarm probability. Similarly, we
denote by Ĥ0 the event in which H0 is declared as the true
hypothesis by the cognitive users. Hence, {Ĥ0, Ĥ1} can equiva-
lently be regarded as the possible channel sensing decisions.

In the above setting, si is assumed to have an arbitrary,
circularly-symmetric distribution with zero mean and finite vari-
ance σ2

s . In the paper, besides treating the general scenarios,
we also consider the special case in which si has a Gaussian
distribution. In such a case, we have E{|s|4} = 2σ4

s in (3). The
Gaussian model for si can be justified in cases in which the
number of active primary users is large and hence si is the sum
of a large number of faded signals or in cases in which Rayleigh
fading is experienced and the primary users employ phase or
frequency modulation.

III. CHANNEL ESTIMATION IN THE PRESENCE OF SENSING

ERRORS

Following the channel sensing phase, cognitive secondary
users initiate the training phase in which the channel fading
coefficient between the secondary transmitter and secondary
receiver is estimated. We assume that the cognitive radio channel
is subject to slow frequency-flat fading. To facilitate channel
estimation, the secondary transmitter sends a pilot symbol. The
pilot symbol power is assumed to depend on the sensing result.
If the channel is detected as busy (i.e., sensing decision is Ĥ1),
the power of the pilot symbol is set to Pt1. On the other hand,
the pilot power is Pt0 when no activity is detected and hence
the sensing decision is Ĥ0. The selection of two different power

levels is again performed for the protection of the primary users.
We assume that training in the presence of primary user activity is
performed with smaller power and hence Pt1 < Pt0. This limits
the interference caused to the primary users. For instance, if no
training and data transmission is performed when the channel is
sensed as busy, then we can select Pt1 = 0.

In this phase, we assume that the transmitter sends a single
pilot symbol and the receiver observes its noisy version y from
which an estimate of the channel fading coefficient will be
derived. Note that we have four possible scenarios and channel
input-output relationships depending on the true channel states
and the channel sensing decisions:

1) Scenario 1: Channel is busy, and is detected as busy,
representing the joint event (H1, Ĥ1).

y = h
√

Pt1 + n + s . (5)

2) Scenario 2: Channel is busy, but is detected as idle,
representing the joint event (H1, Ĥ0).

y = h
√

Pt0 + n + s . (6)

3) Scenario 3: Channel is idle, but is detected as busy,
representing the joint event (H0, Ĥ1).

y = h
√

Pt1 + n . (7)

4) Scenario 4: Channel is idle, and is detected as idle,
representing the joint event (H0, Ĥ0).

y = h
√

Pt0 + n . (8)

In the above channel input-output relationships, h denotes
the fading coefficient in the channel between the secondary
transmitter and receiver, and it is assumed to be a zero-mean
circularly-symmetric complex random variable with variance σ2

h.
As in the previous section, n denotes the zero-mean complex
Gaussian noise with variance σ2

n, and s is the sum of the faded
primary users’ signals arriving at the cognitive receiver.

Note that when the channel is busy, the additive disturbance is
noise plus the primary users’ received sum signal, i.e., n + s, as
seen in (5) and (6), while only additive noise is present when the
channel is not occupied by the primary users. Since errors are
possible in channel sensing, the true state of the channel (busy or
idle) and consequently the statistics of the additive disturbance
are not perfectly known by the cognitive receiver. Hence, channel
estimation needs to be performed in the presence of such sensing
errors and ambiguities. Next, we analyze different estimation
schemes.

A. MMSE Estimation

For a given channel sensing threshold λ, the MMSE estimate
of the channel fading coefficient is obtained by solving

min
ĥ

E{|h − ĥ|2} (9)

where ĥ is any estimate that is a function of the observation
y. Assume that the secondary receiver incorporates the channel
sensing decision into channel estimation. Hence, the receiver
obtains ĥ0 under Ĥ0 and ĥ1 under Ĥ1. Then, we can express
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the MMSE estimation problem as follows:

min
ĥ0,ĥ1

Pr{Ĥ0}E{|h − ĥ0|2 | Ĥ0} + Pr{Ĥ1}E{|h − ĥ1|2 | Ĥ1}

= Pr{Ĥ0}min
ĥ0

E{|h − ĥ0|2 | Ĥ0} + Pr{Ĥ1}min
ĥ1

E{|h − ĥ1|2 | Ĥ1}

from which we see that the optimal MMSE estimates are given
by

ĥmmse,0 = E{h | y, Ĥ0} and ĥmmse,1 = E{h | y, Ĥ1} .
(10)

The estimate ĥmmse,0 can further be expressed as

ĥmmse,0 = E{h | y, Ĥ0} (11)

= Pr{H0|Ĥ0, y}E{h | y,H0, Ĥ0}
+ Pr{H1|Ĥ0, y}E{h | y,H1, Ĥ0}. (12)

Using Bayes’ rule, we can write

Pr{H0|Ĥ0, y} =

Pr{H0}Pr{Ĥ0|H0}f(y|H0, Ĥ0)

Pr{H0}Pr{Ĥ0|H0}f(y|H0, Ĥ0) + Pr{H1}Pr{Ĥ0|H1}f(y|H1, Ĥ0)

=
Pr{H0}(1 − Pf )f(y|H0, Ĥ0)

Pr{H0}(1 − Pf )f(y|H0, Ĥ0) + Pr{H1}(1 − Pd)f(y|H1, Ĥ0)
(13)

where f(y|H0, Ĥ0) and f(y|H1, Ĥ0) denote the conditional
distributions of the received signal y given the true state of
primary user activity and the sensing decision of the cognitive
users, and Pf and Pd denote the false alarm and detection prob-
abilities, respectively. Moreover, Pr{H0} and Pr{H1} are the
prior probabilities of channel being idle and busy, respectively.
Note also that

Pr{H1|Ĥ0, y} = 1 − Pr{H0|Ĥ0, y}. (14)

Similarly, we can express the estimate ĥmmse,1 as

ĥmmse,1 = E{h | y, Ĥ1} (15)

= Pr{H0|Ĥ1, y}E{h | y,H0, Ĥ1}
+ Pr{H1|Ĥ1, y}E{h | y,H1, Ĥ1} (16)

where

Pr{H0|Ĥ1, y} = (17)

Pr{H0}Pr{Ĥ1|H0}f(y|H0, Ĥ1)

Pr{H0}Pr{Ĥ1|H0}f(y|H0, Ĥ1) + Pr{H1}Pr{Ĥ1|H1}f(y|H1, Ĥ1)

=
Pr{H0}Pf f(y|H0, Ĥ0)

Pr{H0}Pf f(y|H0, Ĥ1) + Pr{H1}Pd f(y|H1, Ĥ1)
(18)

and

Pr{H1|Ĥ1, y} = 1 − Pr{H0|Ĥ1, y}. (19)

Remark 1: As seen above, channel sensing errors have an
impact on the MMSE estimates through the false alarm and miss-
detection probabilities, Pf and (1−Pd). In particular, we note that
the conditional probabilities Pr{Hi|Ĥj , y} for i, j ∈ {0, 1} are
rather complicated involving the conditional probability density
functions f(y|Hi, Ĥj). When channel sensing is perfect and

consequently Pd = 1 and Pf = 0, then we have

Pr{Hi|Ĥj , y} =
{

1 if i = j
0 if i �= j

, (20)

leading to significant simplifications in the estimate expressions.
1) MMSE Estimation in the Gaussian Model: Above, we have

considered a general scenario in which the primary users’ total
received signal s and the fading coefficient h have arbitrary
distributions with zero-mean and finite variances. In this subsec-
tion, we address a special case where s and h are independent,
circularly-symmetric Gaussian random variables. Note that y is
now Gaussian distributed as well, and we can express the MMSE
estimates as follows:

ĥmmse,0 = Pr{H0|Ĥ0, y}
√

Pt0σ
2
h

Pt0σ2
h + σ2

n

y

+ Pr{H1|Ĥ0, y}
√

Pt0σ
2
h

Pt0σ2
h + σ2

n + σ2
s

y, and (21)

ĥmmse,1 = Pr{H0|Ĥ1, y}
√

Pt1σ
2
h

Pt1σ2
h + σ2

n

y

+ Pr{H1|Ĥ1, y}
√

Pt1σ
2
h

Pt1σ2
h + σ2

n + σ2
s

y . (22)

These MMSE estimates are determined by using the fact that the
conditional expectations for Gaussian random variables are given
by

E{h|y,Hi, Ĥj} =
E{hy∗|Hi, Ĥj}
E{|y|2|Hi, Ĥj}

y . (23)

Note that once the joint event (Hi, Ĥj) is given, we can
determine the scenario and the corresponding the input-output
relationship from the ones given in (5)–(8), and easily evaluate
the expectations on the right-hand side of (23).

Additionally, in a Gaussian setting, the conditional probability
density function of y, which we have in the conditional proba-
bility expressions in (13) and (18), becomes

f(y|Hi, Ĥj) =
1

π(Ptj σ2
h + σ2

i )
e
− |y|2

Ptj σ2
h
+σ2

i for i, j ∈ {0, 1}
(24)

where σ2
i =

{
σ2

n , if i = 0
σ2

n + σ2
s , if i = 1 .

B. Linear MMSE Estimation

We experience two difficulties in the analysis of MMSE
estimation. First, it is difficult to come up with closed-form
expressions for the estimates for arbitrary distributions of s and h.
Secondly, even in the Gaussian setting in which the estimates can
be obtained in closed-form, computing the mean-square errors
seems intractable due to the presence of conditional distributions
of y in both the numerator and the denominator of (13) and (18).
We can determine the mean-square errors through simulations.

These issues can be alleviated by considering suboptimal
strategies. In this subsection, we study linear MMSE estimation.
Note that given the observation y, the linear MMSE estimate
under sensing decision Ĥ0 (i.e., when the channel is sensed as
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idle) is

ĥlmmse,0 =
E{hy∗|Ĥ0}
E{|y|2|Ĥ0}

y =
√

Pt0σ
2
h

E{|y|2|Ĥ0}
y (25)

=
√

Pt0σ
2
h

Pr{H0|Ĥ0}E{|y|2|H0, Ĥ0} + Pr{H1|Ĥ0}E{|y|2|H1, Ĥ0}
y

=
√

Pt0σ
2
h

Pr{H0|Ĥ0}(Pt0σ2
h + σ2

n) + Pr{H1|Ĥ0}(Pt0σ2
h + σ2

n + σ2
s)

y

(26)

= a0y (27)

where a0 is the constant representing the fraction in (26).
Similarly, the linear MMSE estimate when the channel is detected
as busy is

ĥlmmse,1 =
E{hy∗|Ĥ1}
E{|y|2|Ĥ1}

y =
√

Pt1σ
2
h

E{|y|2|Ĥ1}
y (28)

=
√

Pt1σ
2
h

Pr{H0|Ĥ1}E{|y|2|H0, Ĥ1} + Pr{H1|Ĥ1}E{|y|2|H1, Ĥ1}
y

=
√

Pt1σ
2
h

Pr{H0|Ĥ1}(Pt1σ2
h + σ2

n) + Pr{H1|Ĥ1}(Pt1σ2
h + σ2

n + σ2
s)

y

= a1y (29)

Remark 2: The linear MMSE expressions in (27) and (29)
depend on s and h only through their variances σ2

s and σ2
h, and

hence apply to different distributions with the same first (zero-
mean) and second-order statistics.

Remark 3: It is also interesting to note that even in the Gaus-
sian setting, linear MMSE estimates and the MMSE estimates
given in (21) and (22) are not equal due to sensing errors and the
resulting uncertainty in the additive disturbance (see Section IV).
If sensing is perfect (i.e., Pd = 1 and Pf = 0), these estimates
become the same as expected.

The mean-square error (MSE) of linear MMSE estimation can
be computed from

MSE = Pr{Ĥ0}E{|h − ĥlmmse,0|2|Ĥ0}
+ Pr{Ĥ1}E{|h − ĥlmmse,1|2 | Ĥ1} (30)

= Pr{H0}Pr{Ĥ0|H0}E{|h − ĥlmmse,0|2|H0, Ĥ0}
+ Pr{H1}Pr{Ĥ0|H1}E{|h − ĥlmmse,0|2|H1, Ĥ0}
+ Pr{H0}Pr{Ĥ1|H0}E{|h − ĥlmmse,1|2 |H0, Ĥ1}
+ Pr{H1}Pr{Ĥ1|H1}E{|h − ĥlmmse,1|2 |H1, Ĥ1}

(31)

= Pr{H0}(1 − Pf )E{|h − ĥlmmse,0|2|H0, Ĥ0}
+ Pr{H1}(1 − Pd)E{|h − ĥlmmse,0|2|H1, Ĥ0}
+ Pr{H0}PfE{|h − ĥlmmse,1|2 |H0, Ĥ1}
+ Pr{H1}PdE{|h − ĥlmmse,1|2 |H1, Ĥ1}. (32)

In the MSE expression above, we can easily obtain the condi-
tional error variances as

E{|h − ĥlmmse,j |2 | Hi, Ĥj} = σ2
ĥlmmse,j |Hi,Ĥj

+ (1 − 2aj

√
Ptj)σ2

h (33)

where the conditional variance of the linear MMSE estimate is

σ2
ĥlmmse,j |Hi,Ĥj

= E{|ĥlmmse,j |2 | Hi, Ĥj} (34)

=
{

a2
j (Ptjσ

2
h + σ2

n) , if i = 0
a2

j (Ptjσ
2
h + σ2

n + σ2
s) , if i = 1 , (35)

and aj for j ∈ {0, 1} is the scaling constant in the linear MMSE
estimates (27) and (29).

C. Mismatched MMSE Estimation

In this scheme, the receiver estimates the fading coefficients
assuming a Gaussian setting and regarding the channel sensing
result as perfect with no errors. Under these assumptions, the
channel estimates under Ĥ0 and Ĥ1 are, respectively,

ĥm−mmse,0 =
√

Pt0σ
2
h

Pt0σ2
h + σ2

n

y = b0y and (36)

ĥm−mmse,1 =
√

Pt1σ
2
h

Pt1σ2
h + σ2

n + σ2
s

y = b1y . (37)

Note that the estimates above are the MMSE estimates in the
case in which the primary users’ total faded signal s and the
fading coefficient h are Gaussian distributed, and channel sensing
is performed with no errors (i.e., Pd = 1 and Pf = 0). In the
absence of these assumptions, there is a mismatch in the model
and these estimates are clearly suboptimal. Due to these, we call
these estimates as mismatched MMSE (m-MMSE) estimates.

The MSE for m-MMSE estimates can be found using the same
formulation as in (32) with

E{|h − ĥm−mmse,j |2 | Hi, Ĥj} = σ2
ĥlmmse,j |Hi,Ĥj

+ (1 − 2bj

√
Ptj)σ2

h

and

σ2
ĥm−mmse,j |Hi,Ĥj

= E{|ĥm−mmse,j |2 | Hi, Ĥj} (38)

=
{

b2
j (Ptjσ

2
h + σ2

n) , if i = 0
b2
j (Ptjσ

2
h + σ2

n + σ2
s) , if i = 1

for j ∈ {0, 1}.

IV. SIMULATION RESULTS

In this section, simulation results are presented in order to
compare various channel estimation algorithms in the presence
of channel sensing errors. It is assumed that primary users are
present in the environment with a probability of 0.25; that is,
Pr{H1} = 0.25 and Pr{H0} = 0.75. In the absence of primary
users, the cognitive user sets the power of its pilot symbol to
Pt0 = 1, whereas it reduces this power by 10 dB in the presence
of primary users; i.e., Pt1 = 0.1. Also, the fading coefficient h in
(5)-(8) is modeled as a circularly symmetric, complex Gaussian
random variable with zero mean and E{|h|2} = σ2

h = 1.
Similarly, the sum of the faded primary users’ signals s in (5) and
(6) is a circularly symmetric, complex Gaussian random variable
with zero mean and σ2

s = 1.
In Fig. 1, the mean-square errors (MSEs) of the MMSE

estimator, the linear MMSE estimator, and the mismatched
MMSE estimator are plotted versus the noise variance, σ2

n.
The sensing unit is modeled to have a detection probability of
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Fig. 1. MSE vs. average noise power for the MMSE estimator, the linear MMSE
estimator, and the mismatched MMSE estimator.
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Fig. 2. MSE vs. detection probability for the MMSE estimator, the linear MMSE
estimator, and the mismatched MMSE estimator.

Pd = 0.6 and a false-alarm probability of Pf = 0.2. It is
observed that the MMSE estimator achieves the lowest MSEs
whereas the mismatched MMSE has the worst performance, as
expected. In addition, as the noise variance increases, the MSEs
increase and the performance of the estimators get close to each
other. Another important observation is that although Gaussian
fading coefficients and signals are considered, the linear MMSE
estimator is different from the MMSE estimator (it is well-known
that the MMSE estimator reduces to the linear MMSE estimator
when the observations are Gaussian distributed). This is mainly
due to the fact that the observations come from four different
scenarios as in (5)-(8) depending on the true hypothesis and
the channel sensing decision; hence, the observations are in fact
Gaussian mixture random variables.

In order to investigate the performance of the estimators for
various detection probabilities, a scenario with a fixed false-alarm
probability (Pf = 0.2) and a fixed noise variance (σ2

n = 0.2) is
considered, and Fig. 2 is obtained.1 As in the previous case, the
MMSE estimator has the best performance and the mismatched
MMSE estimator has the highest MSEs. Also, the MSEs increase
as the detection probability increases. This seemingly counterin-
tuitive result is due to the fact that whenever primary users are
detected, the cognitive user needs to reduce the power of its pilot
symbol by 10 dB (Pt1 = 0.1 is used instead of Pt0 = 1); hence,
the channel estimation errors increase. In other words, lower
MSEs can be obtained as the detection probability is reduced.

1It should be noted that the MSEs are plotted in Fig. 2 for detection
probabilities above 0.4547 since lower detection probabilities cannot be obtained
for Pf = 0.2 and σ2

n = 0.2 according to (3) and (4).
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Fig. 3. MSE vs. false-alarm probability for the MMSE estimator, the linear
MMSE estimator, and the mismatched MMSE estimator.

However, it should be noted that the detection probability cannot
be smaller than a certain threshold in order to constrain the
amount of interference from the cognitive user to the primary
users.

Finally, in Fig. 3, the MSEs of the MMSE estimator, the
linear MMSE estimator, and the mismatched MMSE estimator
are plotted versus the false-alarm probability for a detection
probability of Pd = 0.6 and a noise variance of σ2

n = 0.2. It
is observed that the MSEs increase as the false-alarm probability
increases. This is mainly because the power of the pilot symbol
is reduced (Pt1 = 0.1 is employed) in the presence of a false
alarm; that is, when the channel sensing unit decides that the
primary users are present in the system when in fact they are
not. Also, as expected, the MMSE estimator achieves the best
performance for false-alarm probabilities.

V. CONCLUDING REMARKS

Channel estimation has been studied for cognitive radio sys-
tems in the presence of channel sensing errors, and the interplay
between channel sensing and estimation has been investigated.
An MMSE estimator that takes scenarios corresponding to pos-
sible channel sensing decisions and true channel states into
account has been proposed. In addition, a simplified approach
that employs linear MMSE estimator has been considered.
The performance of these estimators have been evaluated and
compared to the mismatched MMSE estimator, which assumes
that the channel sensing decisions are perfect. The performance
improvements have been observed in terms of reduced MSEs.
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