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The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein is conformationally
flexible. Upon binding to the host cell receptor CD4, gp120 assumes a conformation that is recognized by the
second receptor, CCR5 and/or CXCR4, and by the CD4-induced (CD4i) antibodies. Guided by the X-ray crystal
structure of a gp120-CD4-CD4i antibody complex, we introduced changes into gp120 that were designed to
stabilize or disrupt this conformation. One mutant, 375 S/W, in which the tryptophan indole group is predicted
to occupy the Phe 43 cavity in the gp120 interior, apparently favors a gp120 conformation closer to that of the
CD4-bound state. The 375 S/W mutant was recognized as well as or better than wild-type gp120 by CD4 and
CD4i antibodies, and the large decrease in entropy observed when wild-type gp120 bound CD4 was reduced for
the 375 S/W mutant. The recognition of the 375 S/W mutant by CD4BS antibodies, which are directed against
the CD4-binding region of gp120, was markedly reduced compared with that of the wild-type gp120. Compared
with the wild-type virus, viruses with the 375 S/W envelope glycoproteins were resistant to neutralization by
IgG1b12, a CD4BS antibody, were slightly more sensitive to soluble CD4 neutralization and were neutralized
more efficiently by the 2G12 antibody. Another mutant, 423 I/P, in which the gp120 bridging sheet was
disrupted, did not bind CD4, CCR5, or CD4i antibodies, even though recognition by CD4BS antibodies was
efficient. These results indicate that CD4BS antibodies recognize conformations of gp120 different from that
recognized by CD4 and CD4i antibodies.

Over 35 million people are currently infected with human
immunodeficiency virus type 1 (HIV-1), the major cause of
AIDS (4, 24). The development of a preventive vaccine, which
optimally should elicit both virus-neutralizing antibodies and
cellular immune responses, is of high priority and urgency (25,
32).

Neutralizing antibodies must bind the HIV-1 envelope gly-
coproteins, which mediate the entry of the virus into the target
cell (97). The trimeric envelope glycoprotein complex is an-
chored in the host cell or viral membrane by the gp41 trans-
membrane glycoprotein, which is noncovalently attached to the
gp120 exterior envelope glycoprotein. Most of the surface-
exposed elements of the trimeric envelope glycoprotein com-
plex are contained on the gp120 exterior envelope glycoprotein
(52). Comparison of the gp120 glycoproteins from different
HIV-1 strains reveals regions of conservation interrupted by
long regions of variability (V1 to V5) (46, 80). Intramolecular

disulfide bonds in the gp120 glycoprotein result in the incor-
poration of the first four variable regions (V1 to V4) into large,
surface-exposed loops (43, 52). The conserved gp120 regions
fold into a core, which contains many of the gp120 elements
important for receptor binding (6, 65, 98).

CD4 and the chemokine receptors CCR5 and CXCR4 serve
as HIV-1 receptors (14, 17–19, 22, 31). The binding of the
HIV-1 gp120 glycoprotein to CD4 contributes to the attach-
ment of the virus to the target cell and also triggers conforma-
tional changes in gp120 that allow high-affinity binding to the
chemokine receptor (2, 76, 87, 89, 94). Much of our current
understanding of gp120-CD4 interaction is based on muta-
genic analyses (3, 7, 16, 40, 47, 60, 64), X-ray crystal structures
(38, 39, 73, 91, 93, 95), and thermodynamic studies (56). The
gp120 core consists of an inner domain, which is thought to
contact the gp41 ectodomain, an outer domain thought to face
outward on the assembled trimer, and a bridging sheet (38, 39,
95). In binding CD4, all three gp120 elements contact the most
amino-terminal of the four immunoglobulin-like domains of
CD4. Large areas of the gp120 and CD4 surface are occluded
by their interaction, and two cavities exist within the interface
of these proteins. A large, shallow cavity (approximately 300
Å3) is bounded equally by gp120 and CD4 and is filled with
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water molecules. Another cavity (approximately 150 Å3) is
deeper, extends into the interior of gp120, and is bounded by
well-conserved residues derived from all three gp120 core el-
ements. Phenylalanine 43 of CD4, which is critical for gp120
binding, also contacts this cavity and plugs the opening of what
otherwise would be a deep pocket on the gp120 surface. Mu-
tagenic analyses (16, 40, 60) suggest that most of the gp120-
CD4 contacts that contribute to the efficiency of the interaction
occur in a spatially localized “hot spot” near the Phe 43 cavity.

The induction of chemokine receptor binding by the gp120-
CD4 interaction has been suggested to involve conformational
changes in the gp120 variable loops and in the conserved core.
The V2 variable loop apparently masks the chemokine recep-
tor-binding site on gp120 and is moved out of the way by CD4
binding (96). In some cases, HIV-1 gp120 glycoproteins with
deletions or alterations in the V2 loop exhibit the ability to
bind chemokine receptor in the absence of CD4; viruses with
these altered envelope glycoproteins can infect CD4-negative
cells that express the appropriate chemokine receptor (34, 35).

The conserved core of HIV-1 gp120 is also conformationally
changed by CD4 binding, as evidenced by the unusually large
changes in gp120 entropy documented by isothermal titration
calorimetry. These studies (56) suggest that both full-length
gp120 and the gp120 core are flexible proteins that are con-
formationally fixed by CD4 binding. A structural interpretation
of these data is that, in the absence of CD4, gp120 exhibits
interdomain flexibility. Upon CD4 binding, many contacts be-
tween the gp120 inner and outer domains are created and the
bridging sheet is formed. The possibility of CD4-induced for-
mation of the bridging sheet is particularly important in light of
the contribution of this gp120 element to chemokine receptor
binding (71, 72).

The HIV-1 gp120 V3 loop is the major genetic determinant
of chemokine receptor choice (5, 12, 14, 15, 26, 58, 77, 79). The
V3 loop apparently cooperates with a highly conserved se-
quence in the �19 strand of gp120 to form a high-affinity
binding site for the chemokine receptors (71, 72). Chemokine
receptor binding is thought to trigger additional conforma-
tional changes in the HIV-1 envelope glycoproteins that lead
to the fusion of the viral membrane with the target cell mem-
brane (13, 45, 92).

The HIV-1 envelope glycoproteins elicit antibody responses
during the course of natural infection and have been exten-
sively employed as immunogens in vaccine studies (9–11, 44,
48, 63, 97). Many elicited antibodies do not recognize the
functional envelope glycoprotein trimers efficiently and thus
fail to neutralize virus infection (23, 49, 62, 75, 84). Neutraliz-
ing antibodies are directed against both variable and conserved
elements of the gp120 glycoprotein (52, 54). The conserved
gp120 neutralization epitopes are discontinuous elements de-
pendent on the native conformation of gp120 (50, 82, 95, 97).
These epitopes include those near the CD4 binding site
(CD4BS epitopes) (67, 86, 88), those induced by CD4 binding
(the CD4-induced [CD4i] epitopes) (87), and the carbohy-
drate-dependent 2G12 epitope (90).

The locations of these epitopes on the crystallized gp120
core have been mapped by mutagenesis (95). The CD4BS
antibodies can compete with CD4 for gp120 binding (54, 67).
The CD4i antibodies bind a conserved HIV-1 gp120 structure
that is induced by CD4 binding and has been implicated in

binding the CCR5 chemokine receptor (71, 72, 87). The
epitopes for CD4i antibodies are located near the bridging
sheet of the HIV-1 gp120 core (39, 95). The 2G12 antibody
binds the carbohydrate-rich gp120 outer domain (90, 95).

Because of the chronic nature of HIV-1 infection, the viral
envelope glycoproteins have evolved to minimize the potential
impact of neutralizing antibodies on virus infection. This adapta-
tion includes an inefficiency in the elicitation of desirable neutral-
izing antibodies and a resistance, particularly among primary
HIV-1 isolates, to neutralization by antibodies (53, 85). The con-
served receptor-binding regions of gp120, which must be at least
partly exposed on the virion surface, are potentially vulnerable to
antibody-mediated neutralization. Overlying variable loops and
adjacent N-linked carbohydrates can restrict the access of poten-
tially neutralizing antibodies to the gp120 receptor-binding sites
(51, 55, 57, 83). The conformational flexibility of gp120 may ren-
der the presentation of discontinuous receptor-binding regions to
the immune system inefficient and creates an entropic barrier that
must be overcome or bypassed by antibodies targeting receptor-
binding regions (P. D. Kwong , M. Doyle, D. Casper, C. Cicala, S.
Leavitt, S. Majeed, T. Steenbeke, M. Venturi, I. Chaiken, M.
Fung, H. Katinger, P. Parren, J. Robinson, L. Wang, D. Burton,
E. Freire, R. Wyatt, J. Sodroski, W. A. Hendrickson, and J.
Arthos, submitted for publication). The “shedding” of gp120 from
the HIV-1 envelope glycoprotein complex results in the elicitation
of high titers of antibodies to gp120 and gp41 epitopes not acces-
sible on the functional trimer (78, 95, 100, 101). Thus, many
nonneutralizing antibodies are elicited by these and other non-
functional forms of the envelope glycoproteins that act as “decoy
molecules.” An appreciation of the conformations available to the
HIV-1 gp120 glycoprotein in the context of a free monomer and
the functional envelope glycoprotein complex may suggest ways
to circumvent viral strategies for immune evasion.

MATERIALS AND METHODS

Modeling HIV-1 gp120 mutants. Conformations of the substituted amino acid
residues were modeled by using the X-ray structure of the ternary complex
consisting of the gp120 core from the YU2 primary HIV-1 strain, two-domain
CD4, and the antigen-binding fragment of the human antibody 17b (PDB ac-
cession code 1G9N). Models were visually analyzed with the TOM/FRODO
interactive graphics program (Alberta/Caltech version 3.0 [Mark Isreal, Arthur
Chirino, David Schuller, and T. Alwyn Jones]). Briefly, the side chain of the
amino acid was replaced, and the allowed classes of rotamer conformations, as
specified by Ponder and Richards (66), were checked to minimize steric clashes.
Generally, steric considerations permitted only one class of rotamer conforma-
tions. For each rotamer class, the chi1 and chi2 angles of the side chain were
varied within 5 standard deviations of the most probable observed rotamer
position to minimize steric clashes and enhance potential van der Waals or
hydrogen bond-stabilizing effects.

Cells. 293T cells were cultured in Dulbecco’s modified Eagle’s medium with
10% fetal bovine serum and penicillin-streptomycin. Peripheral blood mononu-
clear cells (PBMC) from humans were stimulated with phytohemagglutinin for 5
days and cultured in medium containing interleukin-2.

HIV-1 gp120 mutants. Site-directed mutagenesis was used to introduce amino
acid changes into the wt� protein, derived from the YU2 HIV-1 strain (71, 72).
The wt� protein contains deletions of gp120 residues 31 to 81 and 128 to 194,
which represent the N terminus and V1/V2 variable loops, respectively. Num-
bering of gp120 amino acid residues is based on the sequence of the prototypic
HXBc2 strain of HIV-1, according to current convention (37).

Transient expression of HIV-1 envelope glycoproteins. 293T cells grown to
70% confluence in 100-mm dishes were transfected with 2 �g of an envelope
protein-expressing plasmid and 1 �g of an HIV-1 Tat-expressing plasmid with
the Effectene transfection reagent (Qiagen). One day later, the medium was
removed, the cells were washed once with 10 ml of phosphate-buffered saline
(PBS), and labeling medium (4.5 ml of Dulbecco’s modified Eagle’s medium, 0.5
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ml of heat-inactivated, dialyzed fetal bovine serum, 50 �l of penicillin-strepto-
mycin solution (10 �g/ml), and 20 �l [�230 �Ci] each of [35S]cysteine and
[35S]methionine) was added. The cells were incubated at 37°C for another day.
The medium containing radiolabeled wt� or mutant gp120 protein was collected,
cleared by centrifugation, and stored at 4°C.

For experiments in which 293T cells were transfected with plasmids expressing
full-length HIV-1 envelope glycoproteins, radiolabeled cells were washed twice
with PBS and lysed with NP-40 lysis buffer. The lysates were vortexed for 1 min
and cleared by centrifugation in an Eppendorf centrifuge for 5 min. The super-
natants were used for immunoprecipitation.

Immunoprecipitation of envelope glycoproteins. For precipitation of radiola-
beled HIV-1 envelope glycoproteins, 400 �l of medium containing the labeled
proteins was mixed with 100 �l of 10% protein A-Sepharose (Pharmacia), 50 �l
of 4% bovine serum albumin, and either 1 or 2 �g of monoclonal antibody, sCD4
plus the T45 anti-CD4 antibody, or 4 �l of a mixture of sera from HIV-1-infected
individuals. PBS was added to bring the total volume to 1 ml. The samples were
rocked at 4°C overnight or at room temperature for 2 h. The Sepharose beads
were then washed twice with 1 ml of 0.5 M NaCl in PBS and once with 1 ml of
PBS. The beads were mixed with 2� gel loading buffer and boiled for 3 min.
Following removal of the beads by centrifugation, the supernatants were loaded
on a sodium dodecyl sulfate–10% polyacrylamide gel electrophoresis (SDS-
PAGE) gel. The gel was enhanced with Autoflour (National Diagnostic) for 45
min before being dried at 80°C for 2 h and exposed to X-ray film. The gel was
also used for PhosphorImager (Molecular Dynamics) analysis.

Virus infection assay. Recombinant HIV-1 containing the firefly luciferase
gene was produced by transfection of 293T cells with the pCMV Gag-Pol pack-
aging plasmid, the pHIV-luc vector, and the pSVIIIenv plasmid expressing the
wild-type or 375 S/W mutant YU2 HIV-1 envelope glycoprotein. Three days
after transfection, the cell supernatants were harvested, assayed for virus by
reverse transcriptase measurement, and frozen in aliquots. For infection of
Cf2Th/CD4/CCR5 cells, 1 � 104 to 3 � 104 reverse transcriptase units of virus
per well were incubated with the cells at 37°C overnight in 24-well plates. For
PBMC infections, 105 reverse transcriptase units of virus was used. The next day,
the medium of the Cf2Th/CD4/CCR5 cells was changed completely, and 1.5 ml
of fresh medium was added to the PBMC cultures. Cells were cultured for an
additional 2 days, after which the luciferase activity in the cell lysate was deter-
mined.

Virus neutralization assay. Recombinant HIV-1 infection of Cf2Th/CD4/
CCR5 cells, as described above, was used to examine the sensitivity of the viruses
to neutralization by sCD4 and antibodies. Viruses were incubated with sCD4 or
antibodies at different concentrations for 90 min at 37°C. The virus-ligand mix-
tures were then transferred to wells containing the target Cf2Th/CD4/CCR5
cells. After overnight incubation, 1.5 ml of fresh medium was added to each well,
and the cells were cultured for 2 more days. The cells were then lysed and
assayed for luciferase (Tuner 20; Promega).

Isothermal titration calorimetry. Isothermal titration calorimetry experiments
were conducted with a Microcal (Amherst, Mass.) VP-ITC microcalorimeter.
The proteins were dialyzed against 10 mM sodium phosphate (pH 7.4)–200 mM
sodium chloride–0.2 mM EDTA. Concentrations were determined from UV-
visible spectra with molar extinction coefficients at 280 nm of 60,200 M�1

(sCD4), 75,100 M�1 (wild-type YU2 gp120), and 80,600 M�1 (375 S/W YU2
gp120), which were calculated from amino acid sequences (61). Data were
analyzed with Microcal Origin software version 5.0 according to a single-binding-
site model. Data for the wild-type gp120 and the 375 S/W mutant were measured
on the same day with the same solution of sCD4 to optimize our ability to
compare the enthalpy changes associated with CD4 binding.

RESULTS

Modeling HIV-1 gp120 mutants. The high entropy of gp120
(56) in conjunction with structural studies (38, 39, 95) sug-
gested the possibility that, in the absence of CD4, the spatial
relationship of the gp120 inner and outer domains was flexible
and that the bridging sheet assumed a conformation different
than that observed in the CD4-bound state. Several programs
designed to predict the secondary structures of proteins indi-
cate a strong propensity of the �20 and �21 strands of the
bridging sheet of HIV-1 gp120 to form an �-helix (39). Fur-
thermore, many of the gp120 residues shown by mutagenic
analysis to be important for the binding of CD4BS antibodies

were not exposed on the surface of CD4-bound gp120 (95),
suggesting that these antibodies might recognize distinct con-
formations of gp120.

To investigate these possibilities, we sought to alter gp120 so
that the free molecule assumed a conformation that more
closely resembled the CD4-bound state. Stabilization of the
CD4-bound conformation was attempted both by filling the
water-filled cavities observed in the CD4:gp120 X-ray structure
and by stabilizing the interface between the inner and outer
gp120 domains (Fig. 1 and Table 1). Many previous studies
have documented the favorable effects of filling internal cavi-
ties on the stabilization of native protein conformation (1, 8,
20, 21, 27–30, 33, 36, 41, 42, 59, 68, 69, 81, 99). In the case of
the HIV-1 gp120 glycoprotein, cavity-filling substitutions were
chosen to increase side chain volume and to promote stabiliz-
ing hydrophobic interactions. A second strategy, attempting to
stabilize the CD4-bound conformation of gp120, involved
modification of the interface of the gp120 inner and outer
domains. Hydrophilic residues surrounded by hydrophobic res-
idues in this interface were altered in an attempt to increase
hydrophobic interactions while avoiding steric clashes and
maintaining opportunities for hydrogen bonding. For example,
arginine 273 reaches across the inner domain-outer domain
interface to make a hydrogen bond with carbonyl 233. Re-
placement of this arginine with tryptophan allowed mainte-
nance of a hydrogen bond with the Trp Nε while adding stack-
ing interactions with tyrosine 484 across the domain interface.

We also attempted to stabilize a gp120 conformation recog-
nized by CD4BS antibodies. These attempts were based on the
hypothesis that the �20 strand of gp120 in the CD4-bound
conformation assumes an �-helical conformation when com-
plexed to a CD4BS antibody. Stabilization of an �-helical con-
formation of the �20 region was attempted both by substitu-
tion of amino acids with increased helical propensity (e.g., 423
I/M � 425 N/K � 431 G/E) and by replacement of isoleucine
423 at the N terminus of the potential helix with a proline,
placing conformational strain on the �-strand. Other gp120
substitutions attempted to destabilize the CD4-bound confor-
mation and thus promote increased occupancy of other con-
formations. Residues away from the CD4 surface that per-
formed conformationally sensitive functions were chosen. For
example, tryptophan 112 stabilizes tryptophan 427, which is
crucial for CD4 binding and is located at the end of the �20
strand (38, 39). Tryptophan 112 was changed to alanine in an
attempt to destabilize the CD4-bound conformation.

Ligand binding of HIV-1 envelope glycoprotein mutants.
The changes described above were introduced into the wt�
protein, which is derived from the YU2 primary R5 strain of
HIV-1. The wt� protein lacks 52 N-terminal residues and the
V1/V2 variable loops of the mature gp120 glycoprotein (72).
The use of wt� eliminates possible indirect effects of amino
acid changes on the conformation of the V1/V2 variable loops,
which can mask binding sites for receptors and antibodies. The
wt� and mutant derivatives were transiently produced by
transfection of 293T cells, which were metabolically labeled
with [35S]cysteine-methionine. The labeled wt� glycoprotein
variants in the cell supernatants were precipitated by sCD4 in
combination with an anti-CD4 antibody and by CD4i and
CD4BS antibodies. The relative amounts of wt� and mutant
glycoproteins in the cell supernatants were determined by pre-
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cipitation with a mixture of sera from HIV-1-infected individ-
uals, which recognizes multiple epitopes on the HIV-1 enve-
lope glycoproteins. These ratios were used to normalize the
relative amounts of wt� and mutant glycoprotein precipitated
by the sCD4 and monoclonal antibodies.

The abilities of the mutant glycoproteins to bind sCD4 and
monoclonal antibodies relative to that of the wt� protein are
shown in Table 2. The most dramatic phenotypes were seen for
the mutants with aromatic amino acid substitutions at serine
375, which were designed to fill the Phe 43 cavity. These mu-
tants bound sCD4 at least as well as the wt� protein and also
were recognized efficiently by the CD4i antibody 17b. Recog-
nition of the 375 S/W mutant by four other CD4i antibodies
(48d, 23e, 49e, and 21c) (98a) was 75 to 100% of that seen for
the wild-type gp120 glycoprotein (data not shown). Notably,
recognition of the serine 375 mutants by the CD4BS antibodies
was generally lower than recognition of the wt� protein. Of the
three mutants in which serine 375 was altered, the tryptophan

substitution, which is predicted to fill the Phe 43 cavity most
efficiently, exhibited the most dramatic phenotype (Fig. 2).
None of the mutants containing interdomain substitutions ex-
hibited such a profound phenotype with respect to mainte-
nance of sCD4 binding and loss of recognition by CD4BS
antibodies.

Two mutants, 423 I/P and 423 I/M � 425 N/K � 431 G/E,
which were designed with the intention of altering the gp120
�20 strand, exhibited severe deficits in binding sCD4 and the
17b CD4i antibody (Table 2). However, recognition of these
mutants by the panel of CD4BS antibodies was efficient.

These results indicate that gp120 mutants exist that exhibit
distinct binding preferences for the CD4 and CD4i antibodies
on the one hand and CD4BS antibodies on the other.

Binding of gp120 mutants to the CCR5 chemokine receptor.
Theoretically, if the 375 S/W mutant exhibited a preference for
the CD4-bound conformation, it might be expected to bind
CCR5 better than the wild-type protein in the absence of CD4.

FIG. 1. Locations of changes introduced into the HIV-1 YU2 gp120 glycoprotein. (A) C� tracing of the HIV-1 YU2 gp120 core complexed with
two-domain CD4 (yellow) (38). The gp120 inner domain is red, the outer domain is gray, and the bridging sheet is green. The Phe 43 cavity is
colored blue. The side chain of phenylalanine 43 of CD4 is shown. (B) View of gp120 from the perspective of CD4, rotated 90° on the horizontal
axis from the view in panel A. The gp120 domains are colored as in panel A. The gp120 residues altered in this study are shown. (C) Enlarged
view of gp120, in the same orientation as that shown in panel B. The image at the left shows the Phe 43 interfacial cavity (blue). The image at the
right shows the molecular surface of the modeled 375 S/W mutant, with the substituted tryptophan side chain occupying the Phe 43 cavity.
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The influence of the 375 S/W change in the context of V1/V2
loop-deleted and full-length YU2 gp120 glycoproteins on
CCR5 binding in the absence and presence of sCD4 was stud-
ied (Fig. 3). The 375 S/W mutants consistently demonstrated a
slightly greater ability to bind CCR5 in the absence of sCD4
compared with their wild-type counterparts. These data are
consistent with the 375 S/W mutants exhibiting a moderate
preference for the CD4-bound state; it is clear, however, that
the conformation of 375 S/W is not fully equivalent to that of
gp120 bound to CD4. Although all of the proteins demon-
strated substantial increases in CCR5 binding in the presence
of sCD4, the binding of the 375 S/W mutants was slightly lower
than that of the wild-type proteins in this context.

Thermodynamic studies of 375 S/W gp120 binding to sCD4.
The binding of wild-type HIV-1 gp120 and sCD4 results in
unusually large, balanced changes in enthalpy (�Hobs) and
entropy (�S) (56). Because the CD4 glycoprotein has been
shown not to undergo substantial conformational changes
upon gp120 binding (38, 39, 73, 91), by deduction most of these
enthalpic and entropic changes derive from the gp120 glyco-
protein. A gp120 molecule that exhibits a preference for the

CD4-bound conformation would be expected to exhibit less of
an entropic change and, probably, less of an enthalpic change
upon binding CD4. To examine this, full-length wild-type and
375 S/W gp120 glycoproteins were produced in Drosophila
cells, purified, and used for isothermal titration calorimetry
with sCD4 (Fig. 4). The results in Table 3 indicate that the
enthalpic change observed when the 375 S/W mutant bound
sCD4 (�Hobs 	 �35.5 kcal/mol of sCD4) was substantially less
than that seen for the wild-type gp120 (�Hobs 	 �52.1 kcal/
mol of sCD4). The calculated entropies (�T�S) for the 375
S/W mutant and wild-type gp120 were 23.9 and 41.6 kcal/mol
of sCD4, respectively. The 375 S/W mutant exhibited an ap-
proximately sixfold increase in affinity for sCD4 compared with
the wild-type gp120. These results strongly support the idea
that the 375 S/W mutant exhibits a preference for a conforma-
tion closer to that of the CD4-bound gp120 glycoprotein.

375 S/W change in the context of functional envelope glyco-
proteins. The 375 serine-to-tryptophan change was introduced
into the full-length YU2 envelope glycoproteins, which were
expressed transiently along with the wild-type YU2 envelope
glycoproteins in 293T cells. The wild-type and 375 S/W enve-

TABLE 1. Modeling parametersa

gp120
position

Introduced
changeb

� volc

(Å3)

Modeled orientationd

Commentchi1, degrees
(rmsd)

chi2, degrees
(rmsd)

Observed %
(optimal angles)

112 W/A �97 Removes stabilizing interaction with Trp 427

255 V/W 58 110 (3.5) �89 (0.0) 20.7 (65°, �89°) 2.6-Å close contact with Trp 112 ring

257 T/A �26 Removes stabilizing H-bond with 370 carbonyl

273 R/W 15 �58 (2.3) �73 (1.9) 6.9 (�73°, �88°) Clashes with Gln 287, which can be easily resolved;
ring makes H-bond with 233 carbonyl and stacking
interactions with Tyr 484 across domain interface

375 S/W 90 98 (2.5) �84 (1.0) 20.7 (65°, �84°) 2.5-Å clash with Thr 257 side chain
S/F 62 110 (3.7) 91 (0.0) 21.3 (66°, 91°)
S/Y 68 110 (5.0) 89 (0.0) 15.0 (63°, 89°) Reducing chi1 results in clash with Thr 257

377 N/L 28 �165 (0.0) 133 (1.0) 4.8 (�165°, 168°) Good van der Waals contacts made with Phe 210 and
Leu 116, stabilizing domain interface

423 I/P �34 Backbone phi needs to change roughly 30° to
accommodate

423 I/M 0 Triple mutation enhances calculated helix-forming
425 N/K 39 propensity of �20 strand
431 G/E 61

447 S/I 51 75 (2.6) �131 (4.0) 16.1 (62°, 164°) van der Waals contacts with Ile 261 and 262 sugar

481 S/F 62 �173 (0.7) 79 (0.0) 25.0 (�179°, 79°) Clash with Gln 287, which can easily move; van der
Waals contacts with Ile 285 and aliphatic base of
287 across domain interface

a The modeling was carried out with the YU2 gp120 core:D1D2 CD4:17b Fab complex (PDB accession code 1G9N). Residue numbers correspond to those of the
prototype HXBc2 HIV-1 strain, as per current convention (37).

b The amino acids are given in single-letter code. The amino acid residue in the wild-type YU2 gp120 is written first, followed by the substituted amino acid residue.
c The change in volume associated with the amino acid substitution was calculated based on the volume enclosed by the van der Waals radii, using the atomic volumes

provided by F. M. Richards (70).
d Modeling was performed as described in Materials and Methods, using the experimentally determined side chain rotamer classes specified by Ponder and Richards

(66). Modeled rotamers are specified by the percentage of the observed side chains that fall into a particular rotamer class (observed percent) and the optimal chi1/chi2
angles which indicated the observed optimal rotamer orientation for that particular class. The chi1 and chi2 values listed in the table are those that resulted in minimal
steric clash while being close to a particular rotamer optimum. The root mean square deviation (rmsd) values represent the deviation of the modeled chi1/chi2 angles
from the observed optimum values.
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lope glycoprotein precursors were proteolytically processed
with comparable efficiency (Fig. 5A). Similar levels of the
gp120 glycoprotein were observed in the cell supernatants for
both the wild-type and 375 S/W glycoproteins. It appears that
the folding, transport, processing, and subunit association of
the wild-type and 375 S/W envelope glycoproteins are roughly
equivalent.

To determine whether the 375 S/W mutant envelope glyco-
proteins would support HIV-1 entry into cells, a plasmid ex-
pressing either wild-type or 375 S/W YU2 envelope glycopro-
teins was used to complement an env-defective HIV-1 provirus
encoding firefly luciferase. Recombinant virions produced in
293T cells were incubated with Cf2Th cells stably expressing
CD4 and CCR5, and the luciferase activity in the target cells

was measured. Figure 5B shows that the 375 S/W envelope
glycoproteins supported infection of the Cf2Th/CD4/CCR5
cells at a level only 10% of that of the wild-type YU2 glycop-
roteins. This was significantly higher than the background of
the assay, which was determined by using an HIV-1 envelope
glycoprotein containing a large deletion of most of gp120 or
with target cells lacking appropriate receptors. In these in-
stances, the luciferase activity in the target cells was less than
1% of that seen when the wild-type HIV-1 envelope glycopro-
teins were used (data not shown). The ability of the 375 S/W
mutant to complement HIV-1 entry into human PBMC was

TABLE 2. Ligand-binding characteristics of wild-type YU2 and mutant derivativesa

Envelope protein

Relative binding

sCD4 CD4i
antibody 17b

CD4BS antibodies

F105 15e IgG1b12 21h F91

Wild type 1.00 1.00 1.00 1.00 1.00 1.00 1.00
112 W/A 0.59 0.94 0.22 0.54 0.97 0.83 0.91
255 V/W 0.38 0.88 0.00 0.06 0.51 0.80 0.76
257 T/A 0.69 0.84 0.00 0.16 0.77 1.10 0.81
273 R/W 0.78 0.91 0.72 0.90 0.46 0.78 0.76
375 S/W 1.74 0.90 0.00 0.00 0.02 0.32 0.00
375 S/F 1.10 0.70 0.00 0.22 0.57 0.72 0.31
375 S/Y 1.13 1.08 0.00 0.68 0.90 0.91 0.45
377 N/L 0.95 1.02 1.12 0.98 1.01 0.81 0.85
423 I/P 0.09 0.05 1.01 0.85 1.27 0.83 0.86
423 I/M � 425 N/K � 431 G/E 0.00 0.00 1.25 0.56 1.18 1.25 0.65
447 S/I 0.00 0.75 0.00 0.76 0.58 0.84 0.38
481 S/F 0.69 0.80 0.46 0.84 0.73 0.73 0.73

a The indicated residue changes were introduced into the YU2 wt� protein. The radiolabeled proteins were expressed in 293T cells and precipitated by a polyclonal
mixture of sera from HIV-1-infected individuals, by a combination of sCD4 and the T45 anti-CD4 antibody, or by monoclonal antibodies. The precipitated proteins
were resolved by SDS-PAGE and autoradiography. The amounts of precipitated proteins were determined by PhosphorImager analysis (Molecular Dynamics). The
relative binding value shown was calculated as follows: (mutant protein/wt� protein)ligand � (wt� protein/mutant protein)serum mixture. The values represent the average
obtained from at least two independent experiments; relative binding in the experiments exhibited less than 25% variation from the values reported.

FIG. 2. Precipitation of wt� and 375 S/W proteins by monoclonal
antibodies. Equivalent amounts of metabolically labeled wt� and 375
S/W glycoproteins of the YU2 strain of HIV-1 were produced in 293T
cell supernatants. The proteins were precipitated by a polyclonal pool
of sera from HIV-1-infected individuals (Pt. Sera) or by the indicated
ligands. The 17b and 23e monoclonal antibodies are CD4i antibodies,
whereas the F105, 15e, IgG1b12, 21h, and F91 antibodies are CD4BS
antibodies. The precipitated proteins were resolved by SDS-PAGE
and autoradiography.

FIG. 3. CCR5 binding of HIV-1 YU2 gp120 mutants. The ability of
HIV-1 YU2 gp120 mutants to bind CCR5 was assessed in two separate
experiments. In experiment 1, equivalent amounts of the �V1/V2 or
�V1/V2 375 S/W mutants were incubated with either CCR5-negative
or CCR5-positive Cf2Th cells in the absence of sCD4. In experiment 2,
equivalent amounts of metabolically labeled YU2 gp120 variants were
incubated with Cf2ThsynCCR5 cells, which express human CCR5, in
the absence or presence of sCD4. The bound proteins were precipi-
tated by a mixture of sera from HIV-1-infected individuals and re-
solved by SDS-PAGE. The positions of molecular size markers (lane
M) are shown on the left (in kilodaltons).
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also low compared with that of the wild-type YU2 envelope
glycoproteins but was detectable (data not shown).

During the course of these studies, we discovered that a
second change (369 P/Q) inadvertently introduced into some
of the clones during the PCR mutagenesis facilitated the in-
fection of Cf2Th/CD4/CCR5 cells by envelope glycoproteins
with the 375 S/W change (Fig. 5B). None of the envelope
glycoproteins tested detectably supported the infection of
CD4-negative Cf2ThsynCCR5 cells. We conclude that the 375
S/W mutant can support HIV-1 infection but at a reduced
efficiency compared with the wild-type envelope glycoproteins.

Neutralization sensitivity of viruses with 375 S/W envelope
glycoproteins. The sensitivity of recombinant viruses with the
wild-type YU2 or 375 S/W envelope glycoproteins to neutral-
ization by sCD4 and monoclonal antibodies was examined.
Viruses with the 375 S/W envelope glycoproteins were slightly
more sensitive to neutralization by sCD4 than viruses with
wild-type YU2 envelope glycoproteins (Fig. 6), consistent with
the higher CD4 affinity of the 375 S/W mutant. By contrast,
viruses with the 375 S/W envelope glycoproteins were com-
pletely resistant to neutralization by a CD4BS antibody,
IgG1b12; viruses with the wild-type YU2 envelope glycopro-

teins were neutralized by IgG1b12 with a 50% inhibitory con-
centration of approximately 5 �g/ml. This result is consistent
with the data indicating reduced recognition of the 375 S/W
glycoprotein by IgG1b12 and other CD4BS antibodies.

The CD4i antibodies, 17b and 48d, did not neutralize viruses
with the wild-type or 375S/W envelope glycoproteins at anti-
body concentrations of up to 20 �g/ml (data not shown).

The 2G12 antibody, which recognizes a carbohydrate-depen-
dent epitope on the gp120 outer domain (90), exhibited min-
imal ability to neutralize the viruses with wild-type YU2 enve-
lope glycoproteins. The viruses with 375 S/W glycoproteins
were more sensitive to neutralization by the 2G12 antibody. To
investigate the basis for this observation, we examined 2G12
recognition of the wild-type YU2 and 375 S/W soluble and
shed gp120, as well as the gp160 envelope glycoprotein pre-
cursor in cell lysates. In all three contexts, the 2G12 antibody
precipitated the 375 S/W mutants more efficiently than the
wild-type glycoproteins. Apparently, the 375 S/W change can
subtly influence the glycosylation of the envelope glycoproteins
and increase recognition by the 2G12 antibody.

The 2F5 antibody, which recognizes a gp41 epitope, did not
efficiently neutralize viruses with either wild-type or 375 S/W

FIG. 4. Isothermal titration calorimetry data for the interaction of sCD4 with gp120 glycoproteins. The data on the left were generated with
sCD4 and wild-type YU2 gp120, and the data on the right were generated with 375 S/W YU2 gp120. The top panel in each case shows the data
generated following the sequential injection of 7 �l of 75 �M sCD4 into the calorimeter cell containing 5 �M gp120. Integration of the binding
peaks yielded the heat generated per mole of sCD4 injected, as shown in the bottom panels. Best-fit curves for a single-site-binding model are
shown with the data points. The conditions for the assay were 10 mM sodium phosphate, 200 mM sodium chloride, 0.2 mM EDTA, pH 7.4, and
37°C.

TABLE 3. Thermodynamic parameters of the gp120-sCD4 interaction at 37°Ca

Proteins kd (nM) �G (kcal/mol of sCD4) �Hobs (kcal/mol of sCD4) �T�S (kcal/mol of sCD4)

Wild-type YU2 gp120 � sCD4 38 
 2 �10.52 
 0.03 �52.1 
 0.2 41.6 
 0.2
375 S/W gp120 � sCD4 6.4 
 0.9 �11.62 
 0.08 �35.5 
 0.2 23.9 
 0.2

a Isothermal titration calorimetry was performed with sCD4 and either the wild-type HIV-1 YU2 gp120 or the 375 S/W YU2 gp120 mutant, as described in Materials
and Methods. The results, shown in Fig. 4, allowed determination of the kd values and the observed binding enthalpy changes (�Hobs). The free energy changes (�G)
and entropy changes (�T�S) were calculated based on the �G and �Hobs values. The molar ratios of sCD4 to gp120 were 1.037 
 0.003 for the wild-type YU2 gp120
and 0.694 
 0.002 for the 375 S/W mutant.
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envelope glycoproteins. The poor neutralization of these vi-
ruses by the 2F5 antibody probably results from polymorphism
of the linear gp41 epitope in the YU2 HIV-1 strain.

DISCUSSION

Here we identified two groups of HIV-1 gp120 mutants and
used the ligand-binding phenotypes of these mutants to reach
the conclusion that the gp120 glycoprotein can assume at least
two distinct conformations. This conclusion necessitates that
we distinguish among global misfolding, changes in conforma-
tional state, and local alterations of epitopes as consequences
of the amino acid changes studied. One group of mutants,
exemplified by the 375 S/W glycoprotein, bound CD4 and
CD4i antibodies well; however, these mutants were ineffi-
ciently recognized by CD4BS antibodies. The second group,
exemplified by the 423 I/P mutant, bound CD4BS antibodies
but not CD4 or CD4i antibodies. The ability of each of these
mutants to bind one of these sets of conformation-dependent
ligands rules out global misfolding of the altered glycoproteins.

Several pieces of evidence support the explanation that an
alteration in gp120 conformational state accounts for the ob-
served phenotype of the 375 S/W mutant. The indole ring of
the substituted tryptophan residue in this mutant is expected to

fill the Phe 43 cavity and to increase the propensity of gp120 to
assume a conformation close to that of the CD4-bound state.
The microcalorimetry studies confirmed that both the enthal-
pic and entropic changes associated with the binding of 375
S/W gp120 and sCD4 are significantly decreased compared
with those seen for wild-type gp120 and sCD4. The entropic
gains associated with the 375 S/W change more than compen-
sate for the unfavorable enthalpic changes, resulting in a six-
fold increase in CD4-binding affinity. Multiple ligands, partic-
ularly those interacting with the receptor-binding surfaces of
gp120, induce large compensating changes in enthalpy and
entropy upon binding gp120 (Kwong et al., submitted). Thus, it
is virtually certain that the source of these changes is the gp120
glycoprotein.

Free gp120 is thought to exhibit interdomain flexibility and
thus to sample many conformations. Ligands like CD4 that
bind across the gp120 domains decrease the entropy of gp120
and promote the formation of energetically favorable interdo-
main bonds. The tryptophan substitution at residue 375 results
in similar changes, strongly suggesting that this substitution
favors the sampling by free gp120 of conformations closer to
the CD4-bound state. The small but reproducible increase in
CCR5 binding of the 375 S/W mutant in the absence of sCD4
is consistent with this model.

Compared to the wild-type gp120 glycoprotein, the 375 S/W
mutant was precipitated inefficiently by the CD4BS antibodies.
The preferred conformation of the 375 S/W mutant is appar-
ently not suitable for binding the CD4BS antibodies. This
interpretation is supported by the limited solvent accessibility
in the CD4-bound state of many of the gp120 residues impli-
cated by mutagenesis in the binding of the CD4BS antibodies
(39, 95). A direct effect of the tryptophan substitution on the
CD4BS epitopes is not possible if gp120 maintains a CD4-
bound conformation, because residue 375 is not solvent acces-
sible in this case (39). Thus, whether the effect of the trypto-
phan substitution at serine 375 on the binding of CD4BS
antibodies is mediated by conformational alteration or epitope
disruption, gp120 must assume different conformations when
binding CD4 and CD4BS antibodies.

The argument that CD4 and CD4BS antibodies recognize
distinct gp120 conformations is further supported by the phe-
notypes of the 423 I/P and 423 I/M � 425 N/K � 431 G/E
mutants. The substitutions in these mutants were designed to
alter the architecture of the �20 and �21 gp120 strands, two
critical components of the bridging sheet and CD4-binding
region (38, 39). As expected, these mutants were markedly
defective in binding CD4. That the effect of the 423 I/P change
on CD4 binding is secondary to conformational disruption is
supported by the observations that isoleucine 423 does not
contact CD4 (38, 39) and that a 423 I/S change does not affect
CD4 binding (72).

Binding of the 423 I/P and 423 I/M � 425 N/K � 431 G/E
mutants to the 17b CD4i antibody was also poor, as expected
from the contribution of the bridging sheet to contacts with this
antibody (38, 39). In the available X-ray crystal structures,
isoleucine 423 directly contacts the 17b Fab fragment, and
another change in this gp120 residue, 423 I/S, has previously
been shown to eliminate 17b binding (72). The 423 I/S change
also eliminates the binding of another CD4i antibody, 48d, and
neither 17b nor 48d binding can be restored by incubation of the

FIG. 5. Complete YU2 envelope glycoproteins with the 375 S/W
change. (A) The full-length YU2 HIV-1 envelope glycoproteins, either
wild-type (wt) or 375 S/W, were expressed in 293T cells and radiola-
beled. Cell lysates and supernatants were precipitated by a mixture of
sera from HIV-1-infected individuals, and precipitated proteins were
resolved by SDS-PAGE. (B) An env-defective HIV-1 provirus express-
ing firefly luciferase was complemented with plasmids expressing wild-
type YU2 envelope glycoproteins or mutant envelope glycoprotein 375
S/W or 375 S/W � 369 P/Q. Recombinant viruses were incubated with
Cf2Th canine thymocytes expressing human CD4 and CCR5 (left
panel) or human CCR5 only (right panel). Luciferase activity in the
target cells was measured and normalized to that found in Cf2Th
CCR5� CD4� cells exposed to viruses with the wild-type YU2 enve-
lope glycoproteins.
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mutant gp120 glycoprotein with sCD4 (72). These observations
suggest that the negative effects of the 423 I/P change on 17b and
48d binding probably result from alteration of a side chain that is
critical for antibody contact. By contrast, the negative effects of
the 423 I/P change on the binding of another subset of CD4i
antibodies appear to be mediated through conformational disrup-
tion. Three newly described CD4i antibodies (23e, 21c, and 49e)
failed to recognize the 423 I/P mutant but, in contrast to the
results seen for the 17b and 48d antibodies, precipitated the
mutant following incubation with high concentrations of sCD4
(data not shown). Moreover, the 23e, 49e, and 21c antibodies
efficiently recognized the 423 I/S mutant even in the absence of
sCD4 (98a).

Despite the major disruption of the epitopes for both CD4
and CD4i antibodies, the recognition of the 423 I/P and 423
I/M � 425 N/K � 431 G/E mutants by the CD4BS antibodies
was efficient and, in the case of the IgG1b12 antibody, even
increased relative to that of the wild-type protein. The epitope

of the IgG1b12 antibody has been modeled by gp120 mutagen-
esis and structural analysis of the free antibody (74). These
studies have suggested extensive IgG1b12 contacts with the
outer domain of gp120, a model consistent with our results. We
recently observed that IgG1b12 binding does not lead to large
reductions in gp120 entropy, in contrast to the binding of most
CD4BS antibodies (Kwong et al., submitted). An IgG1b12
epitope centered on the outer gp120 domain and not reliant on
contacts across gp120 domains would explain this observation.
The available data suggest that, although the epitopes of var-
ious CD4BS epitopes differ, they are all relatively insensitive to
changes that disrupt the conformational integrity of the bridg-
ing sheet. In this respect, CD4BS epitopes differ from the
binding sites for CD4, CD4i antibodies, and CCR5, which are
thought to bind similar or identical conformations of gp120.

The 375 S/W envelope glycoproteins were able to support
HIV-1 infection, albeit at a reduced level compared with that
of the wild-type envelope glycoproteins. This result suggests

FIG. 6. Neutralization of viruses with wild-type and 375 S/W envelope glycoproteins. Recombinant viruses expressing firefly luciferase and
containing either the wild-type (wt) YU2 (E) or 375 S/W (F) envelope glycoproteins were incubated with the indicated concentrations of antibody
or sCD4 for 1 h at 37°C. The viruses were then added to Cf2Th cells expressing CD4 and CCR5. Forty-eight hours later, the cells were lysed, and
luciferase activity was measured. Values were normalized to those observed for the viruses with wild-type YU2 envelope glycoproteins in the
absence of added antibody. The results shown are from a single experiment that was repeated with comparable results.

9896 XIANG ET AL. J. VIROL.



that the Phe 43 cavity is not absolutely required for envelope
glycoprotein function. Examination of primate immunodefi-
ciency virus sequences reveals that, although most HIV-1
strains have a serine residue at position 375, group O HIV-1
strains generally have a histidine and chimpanzee strains a
methionine at this position. A tryptophan residue is found at
this position in most HIV-2 and simian immunodeficiency virus
(SIV) isolates. One of the Phe 43 cavity-lining residues, tryp-
tophan 112 in HIV-1, is a phenylalanine in HIV-2/SIV gp120
glycoproteins, perhaps allowing tryptophan 375 to be accom-
modated. The highly conserved nature of the other gp120
residues contacting the Phe 43 cavity (38, 39) suggests that
gp120 architecture in this region is similar among the primate
immunodeficiency viruses. Thus, tryptophan 375 in the HIV-2
and SIV gp120 molecules probably represents a cavity-filling
residue and might contribute to some of the properties of these
viruses that differ from those of HIV-1. For example, SIV
strains often exhibit some degree of CD4 independence.
HIV-2 and SIV rarely, if ever, elicit CD4BS antibodies, a
property that might be explained by preferred gp120 confor-
mations approximating the CD4-bound state and not recog-
nized by CD4BS antibodies.

The 375 S/W change influences the sensitivity of the virus to
neutralization. Compared with the wild-type virus, viruses with
375 S/W envelope glycoproteins exhibited a significant increase
in sensitivity to the 2G12 antibody, a slight increase in sensi-
tivity to sCD4, and a marked resistance to the CD4BS antibody
IgG1b12. These neutralization phenotypes can be explained by
the observed alterations in the affinity of monomeric 375 S/W
gp120 preparations for 2G12, sCD4, and IgG1b12. The ob-
served alterations in neutralization sensitivity imply that dif-
ferent conformations can be assumed by the gp120 molecule in
the context of the wild-type HIV-1 envelope glycoprotein tri-
mer, at least in the presence of particular ligands. More studies
will be required to assess the degree of gp120 conformational
flexibility on the free envelope glycoprotein trimer.

The conformational flexibility of the HIV-1 envelope glyco-
proteins is important to the function of these molecules in
mediating virus entry and in evading the humoral immune
response. Therefore, understanding the range of conforma-
tions available to these glycoproteins is important for an ap-
preciation of their role in HIV-1 replication and for guiding
attempts at intervention. The feasibility of targeting the con-
served receptor-binding regions of HIV-1 gp120 with drugs or
antibodies will no doubt be influenced by the conformational
variation of these structures. Limiting the conformational het-
erogeneity of the gp120 core, as we have begun to do with the
375 S/W change, might increase the efficiency with which an-
tibodies directed against receptor-binding surfaces are gener-
ated. Although the 375 S/W mutant does not fully mimic the
CD4-bound state, the phenotypes observed and the ap-
proaches used herein will be useful in guiding efforts to modify
the HIV-1 envelope glycoprotein further to achieve that end.
Stabilization of other conformational states of the gp120 gly-
coprotein, such as that recognized by CD4BS antibodies,
would also be a desirable goal.
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