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Abstract: Remotely sensed imagery provides a useful tool for land managers to assess the 

extent and severity of post-wildfire salvage logging disturbance. This investigation uses 

high resolution QuickBird and National Agricultural Imagery Program (NAIP) imagery to 

map soil exposure after ground-based salvage operations. Three wildfires with varying 

post-fire salvage activities and variable ground truth data were used to evaluate the utility 

of remotely sensed imagery for disturbance classification. The Red Eagle Fire in 

northwestern Montana had intensive ground truthing with GPS-equipment logging 

equipment to map their travel paths, the Tripod Fire in north central Washington had 

ground truthed disturbance transects, and the School Fire in southeastern Washington had 

no salvage-specific ground truthing but pre-and post-salvage images were available. 

Spectral mixture analysis (SMA) and principle component analysis (PCA) were used to 

evaluate the imagery. Our results showed that soil exposure (disturbance) was measureable 

when pre-and post-salvage QuickBird images were compared at one site. At two of the 

sites, only post-salvage imagery was available, and the soil exposure correlated well to 

salvage logging equipment disturbance at one site. When ground disturbance transects 

were compared to NAIP imagery two years after the salvage operation, it was difficult to 

identify disturbance due to vegetation regrowth. These results indicate that soil exposure 
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(ground disturbance) by salvage operation can be detected with remotely sensed imagery 

especially if the images are taken less than two years after the salvage operation. 

Keywords: QuickBird; NAIP; School Fire; Red Eagle Fire; Tripod Fire; spectral mixture 

analysis 

 

1. Introduction 

Salvage harvest is a means of recovering value from burned timber before it decays and loses value. 

After wildfires, salvage logging may be initiated to offset the cost of fire suppression activities by 

recovering a portion of the monetary value of the timber. Economics and land ownership are factors 

land managers often consider before post-fire logging [1]. Privately owned land may be salvaged 

immediately after the fire based on the owners discretion; however, a significant percentage of forested 

land in the western United States is federal or state public land. There are numerous legal steps 

(Environmental Impact Statements (EIS), potential lawsuits) that must be completed or resolved before 

harvest activities can commence. These procedures may delay salvage operations months or even years 

depending on the environmental factors at risk and the potential opposition to the harvest activity [1]. 

A key part of an environmental assessment is the prediction of disturbance to soil, vegetation, 

terrestrial and aquatic systems based on local factors, previous harvest outcomes, and related 

information. When determining the scale and intensity of the timber harvest, ecological considerations 

include the effect of the logging operation on soils, aquatic and terrestrial habitat, and vegetation 

succession [2–6]. The effects of wildfire on soil and aquatic systems are well documented [7–9] as are 

the effects of stand-alone logging operations on individual ecosystem components such as birds, 

insects and plants [10]. However, there are few studies that have considered the cumulative disturbance 

of post-fire logging [6,11,12].  

Large, severe wildfires generally remove a significant percentage of the organic forest floor layers 

leaving the forest soils susceptible to erosion and runoff via wind and water [8,13]. The risk of elevated 

sediment yields are generally the greatest in the first several years after the fire [14] until the natural 

vegetation has an opportunity to reestablish. During this immediate post-fire period, there is a high 

probability of accelerated erosion and runoff events because of the removal of the protective organic 

forest floor layers and the potential alteration of soil structure and infiltration capabilities [7,9,15,16]. 

Logging operations can have similar effects on the forest floor as a high severity wildfire [17,18]. 

Logging equipment disturbs the forest soils, removes organic material, and compact the soil which can 

reduce infiltration [6,12]. The degree of disturbance depends on the intensity of the harvest (trees 

removed per unit area), the type of logging (ground-based or helicopter), and the type of logging 

equipment used [19,20]. Rubber tire skidders have a reduced surface area to distributed load compared 

to track skidders, and often create significant ruts in the harvest trail system. Because it is preferable to 

operate skidders to cover as much ground as possible in the forward direction, rubber tire skidders 

often leave characteristic turn-around rutting. Compared to rubber tire skidders, track skidders 

distribute the load over a greater surface area thus reduce rutting. When track skidders are used for 

side-hill skidding (parallel to the contour) however, ruts may develop as with rubber tire skidders. As 
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the track skidders are slower in transit than the rubber tire skidders, it is often just as efficient to run 

the skidder backwards instead of turning around to get another load of logs. Depending on ground 

slope, both skidder types may turn around at felled trees which distribute the skidder turn-around 

rutting to multiple locations. 

Soil disturbance from logging may be compounded when a wildfire precedes the harvest [2]. The 

effect of time between fire and harvest is an undetermined factor; preliminary results from the 2005 

School Fire in Washington suggest that salvage logging in the first or second post-fire year ‘resets’ the 

disturbance level back to the year of the fire [21]. However, the effects of salvage logging in later 

years (up to 6 years post-fire) are more ambiguous and dependent on the degree of soil and vegetation 

recovery since the fire. Anecdotal evidence suggests that salvage logging seems to create a 2 to 3 year 

delay in vegetation recovery compared to similarly burned but unlogged sites. 

Remote sensing is an appealing tool to quantify soil disturbance from salvage logging because of 

the potential for relatively cheap and accurate “snapshots” of pre-fire, post-fire, and post-harvest 

conditions. In order to consistently resolve features of interest with remotely sensed imagery, the target 

patch should be at least 4 times the size of the pixel [22]. Other studies suggest that the smallest 

mappable vegetation (or soil) patch is 40 m
2
, which would require, conservatively, imagery of 3-m 

resolution to resolve. This means the exposed soil patches would need to be 6–7 m across to reliably 

map. These are fairly large patches, and are much more likely to be found soon after a major 

disturbance (i.e., wildfire or logging). 

High spatial resolution imagery such as collected by the QuickBird satellite (Digital Globe Inc., 

Longmont, CO, USA) and by the U.S. Department of Agriculture, National Agricultural Imagery 

Program (NAIP) can provide a clear picture of ground conditions after the fire that is similar in quality 

and scale to a traditional aerial photograph [23] but with the advantages of greater spectral information 

and digital format, which allows for more advanced and automated image processing techniques. 

QuickBird imagery has been used to help guide post-fire treatments, determine immediate post-fire 

tree mortality, and refine soil burn severity maps [24,25]. These high-spatial-resolution images are 

likely to be most useful when identifying spectrally distinct objects: vegetation patches, roads, large 

patches of soil or ash, or bodies of water, and allow users to assess the color and char condition (green, 

brown, or black) of remaining vegetation and soil. These characteristics make it well-suited for 

mapping disturbances from fire and salvage logging. 

NAIP imagery is acquired by the federal government through independent contractors and is 

generally collected via aircraft mounted sensors, but in the future may also be from satellite sensors. 

Imagery is acquired during the agricultural growing seasons in the continental U.S. and is available to 

government agencies and the public at no cost. 

Another key consideration when using remotely sensed imagery to detect change is the spatial and 

temporal accuracy of the pre- and post-disturbance images. Accurate change detection between  

multi-date images is possible only if images are properly geo-registered because it is the areas within 

the image(s) that display little correlation that indicate the greatest change. This is often difficult 

because of different sensor radiometric calibration characteristics and changes in atmospheric and 

illumination conditions that exist between the two images that can confound efforts to isolate changes 

of interest in the scene, such as changes in soil and vegetation moisture content or changes in land 

(ground) cover. 
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Successful mapping of exposed mineral soil using spectral mixture analysis (SMA) of hyperspectral 

imagery has been done following the 2002 Hayman wildfire in Colorado [26] and the 2003 Simi and 

Old Fires in California [27]. SMA is based on the assumption that the observed reflectance signal from 

a given image pixel is a function of the relative proportions of surface component materials found in 

the pixel, and to a lesser extent its immediate neighboring pixels [28–31]. Spectra of these component 

materials in pure form are termed ‘endmembers’ that can be defined from image pixels considered to 

be spectrally pure or from spectroradiometer measures of the pure material collected in the laboratory 

or field. Algorithmically, SMA estimates sub-pixel cover fractions of the component endmembers that 

when summed together would produce the pixel spectrum observed in the image. The sum of these 

cover fractions is usually assumed to be linear and constrained to equal one [28,29,32]. The number of 

SMA output bands equals the number of endmembers supplied to the algorithm, which should be one 

less than the number of input bands because a degree of freedom is lost in estimating cover fractions of 

the component materials. SMA requires the input bands be in reflectance units, so it is important that 

the multispectral image be calibrated to reflectance, especially if multi-date images are to be compared 

in the analysis. 

Identifying forest clearing activity, regeneration following a forest fire, and intensive logging 

(managing) of forested areas with multi-temporal Landsat images and principal components (PC) 

analysis (PCA) has been successfully done by others [33]. PCA is a linear transformation of the 

original pixel coordinates in n-dimensional space, where n in the case of a multi-spectral image equals 

the number of channels. Untransformed image channels are highly correlated. The PC transformation 

shifts the covariance matrix of the dataset such that correlation is removed [34]. The number of PC 

output bands equals the number of input bands, with no loss of information. PCA very usefully 

collapses variance common to all channels, typically >2/3 of the total variance, into the first principal 

component (PC1). Higher-order PCs (i.e., PC2, PC3…PCn) thus comprise asymptotically smaller 

proportions of the total variance, revealing successively subtler features that are often not apparent in 

the input bands. We used PC analysis because our goal was to identify a general image processing 

technique for mapping salvage disturbance from high resolution imagery regardless of the source. 

Since PC analysis is an entirely data dependent method, its application requires no assumptions about 

sensor radiometric characteristics or calibration. PCA outputs are unitless numbers that cannot be 

compared between different types of datasets, but it may be possible to compare PCA images of the 

same type based on the same exact scene to make useful inferences regarding change. 

In summary, SMA was our preferred method for mapping exposed mineral soil cover because it 

estimates it directly. However, properly calibrated QuickBird imagery was not always available, so 

PCA was selected as an alternative method for mapping exposed mineral soil patterns from NAIP 

imagery. Our objective was to quantify exposed soil as a surrogate for soil disturbance due to salvage 

harvest, using SMA or PCA applied to high-resolution QuickBird or NAIP. The three post-fire salvage 

logging operations selected across the Interior Northwest region span several gradients and variables: 

low to high intensity harvest, low to high severity wildfire, multiple land ownerships, different 

equipment types, fire-to-harvest intervals of several months to several years, and salvage to imagery 

intervals of several to many months. 
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2. Study Areas and Data Sets 

Three study areas were selected for ground and remote soil disturbance analysis where salvage 

logging and ground-based skidder activity had occurred after wildfires: the 2005 School Fire in 

southeast Washington, the 2006 Red Eagle Fire in northwestern Montana, and the 2006 Tripod Fire in 

north-central Washington (Figure 1). Vegetation and soil characteristics and logging techniques and 

timing varied at the three study areas (Tables 1 and 2). 

Figure 1. School Fire, Red Eagle Fire, and Tripod Fire study areas with salvage harvest 

units (areas) highlighted. 
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Table 1. Soil and physical characteristics of the study areas. The soil series, taxonomic class, parent material, bulk density and dominant 

overstory and understory vegetation are provided. 

Wildfire 

(Elevation, m) 

Soil Series 

(Taxonomic Class) 
Texture

a
 Parent Material 

 
Bulk Density 

(g∙cm
−3

) Overstory Species Understory Species 

 0–5 cm 5–10 cm 

School 

(1500) 

Klicker  

(loamy-skeletal, isotic, frigid 

Vitrandic Argixerolls)  

ashy 

silt loam 
Basalt 

High 

slope 

 

Low 

slope 

0.93 

 

 

0.69 

1.01 

 

 

0.78 

Douglas-fir 

(Pseudotsuga menziesii) 

Grand fir (Abies 

grandis) 

Bluebunch wheatgrass 

(Psuedorogneria spicata) 

Pinegrass (Calamagrostis 

rubescens) 

Geyers sedge (Carex geyeri) 

Red Eagle 

(1797) 

Tenex 

(loamy-skeletal, mixed, 

superactive Spodic 

Dystrocryepts) 

sandy loam Argillite 

 

0.73 1.13 

Lodgepole pine(Pinus 

contorta) 

Douglas-fir 

(Pseudotsuga menziesii) 

Grouse whortleberry 

(Vaccinium scoparium) 

Twinflower (Linnaea borealis) 

Tripod 

(1500) 

Wapal, Brevco (sandy-

skeletal, isotic, frigid 

Vitrandic Haploxerepts) 

(loamy-skeletal, isotic, frigid 

Vitrandic Haploxerepts) 

very stony ashy 

coarse sandy 

loam 

Mixed volcanic ash 

over glacial 

outwash 

 

1.31 1.0 

Douglas-fir 

(Pseudotsuga menziesii) 

Ponderosa pine (Pinus 

ponderosa) 

Pinegrass (Calamagrostis 

rubescens) 

Crested wheatgrass 

(Agropyron cristatum) 

a
U.S. Department of Agriculture Soil Classification System. 

Table 2. Salvage harvest date and method, field, and remote sampling information by wildfire. 

Wildfire/ 

Land Ownership 

Fire 

start 

Burn 

Severity 

Salvage 

Harvest 

Date(s) 

Field 

Sampling 

Date(s) 

Equipment Used 

Imagery [year] 

Image Analysis 
Pre-salvage Post-salvage 

School/ Umatilla National 
Forest 

August 

2005 

Low 

Moderate 

High 

Fall 2006 

Spring, 

Summer 2007 

Summer 2006-

2009 

Track feller buncher, 

forwarder 

NAIP, QB 

[2006] 

NAIP, QB 

[2009] 

PCA – pre- and post-

harvest; SMA – pre- and 

post-harvest 

Red Eagle/ 
Blackfeet Tribe 

July 

2006 
High 

Spring, 

summer 2007 
Summer 2007 

Track feller buncher, rubber 

tire skidder, track skidder 
— NAIP [2009] PCA – post-harvest 

Tripod/ Wenatchee-

Okanogan National 

Forest 

July 

2006 
High 

Fall, winter 

2008 
Summer 2010 

Track feller buncher, track 

skidder 
— NAIP [2009] PCA – post-harvest 
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2.1. School Fire 

The School Fire was located in southeastern Washington (Figure 1) in mixed forest consisting of 

grand fir (Abies lasiocarpa), Douglas fir (Pseudotsuga menziesii), and ponderosa pine (Pinus 

ponderosa). The study areas within the fire were dominated by volcanic (Mount Mazma) ashy surface 

soils with a mean bulk density between 0.7 and 0.9 g∙cm
−3

 (Table 1). The 27-year record from the 

nearest weather station (Touchet Snotel) indicates an annual average precipitation of 1,382 mm, the 

majority of which falls as snow in the winter months. This climate supports a grand fir and Douglas fir 

late seral forest (Table 1). Soil burn severities ranged from low to high and salvage units were located 

across the range of burn severities. Salvage logging began late in the first post-fire year and continued 

through the fifth post-fire year. 

Field data on the School Fire included 79 randomly selected permanent plots established in 2006, 

stratified by burn severity and planned salvage logging. Where possible, sampling was replicated 

across the range of pre- and post-fire conditions with more plots in areas burned with moderate and 

low severity because vegetation response is more variable there [35]. Sample plots were at least 50-m 

from roads as measured perpendicular to the slope direction, and the center of each plot location was 

averaged using a Trimble GeoExplorer-series GPS Unit. Burn severity was initially assessed using a 

Burned Area Response Classification (BARC) map produced by the Remote Sensing Applications 

Center (RSAC, USDA Forest Service, Salt Lake City, UT, USA). Pre- and post-fire Landsat 5 (TM) 

images were utilized to calculate the delta Normalized Burn Ratio (dNBR) for burn severity 

comparisons. Burn severity classes inferred from satellite imagery calculations were ground validated 

using CBI (Composite Burn Index) during the first two years of sampling [36]. The BARC maps 

correctly identified 80% of burn severity designations for 79 plots, as confirmed by the CBI conducted 

one year post-burn. 

Half of the plots in each burn severity category (low, moderate, and high) were placed in locations 

where post-fire salvage logging was planned. Fifty-six of the plots were salvaged-logged during the 

winter of 2006–2007 (71% of all salvaged plots). Of the remaining salvaged plots, 12 plots (14%) were 

salvaged between the 2005–2006 growing seasons, 7 plots (9%) between 2007–2008, and 4 plots (5%) 

between the 2008 and 2009. Litigation and weather conditions influenced whether plots were salvaged 

or not and the timing of the salvage. Extending salvage logging over a four-year timeframe made it 

difficult to infer definitive changes in vegetation response as a result of salvage, across the range of 

burn severities. 

During field sampling, which was conducted on all plots during June and July of 2006 and 2009, 

site-specific information was collected to relate the ground conditions to the remotely sensed imagery. 

Each plot consisted of five subplots, one at center and the others located perpendicular to each other 

along two axes that ran along and against the aspect of the hillslope. A 1-m
2
 frame was used to 

ocularly estimate percent ground cover for soil, rock, litter, woody debris, and plant functional types 

(graminiod, forb, shrub, seedling, and moss/lichen) within each subplot. A photo was taken as an 

added record of ground cover and vegetation conditions. 
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2.2. Red Eagle Fire 

The 14,000+ ha Red Eagle Fire burned in July and August 2006, straddling the boundary between 

Glacier National Park and the Blackfeet Indian Reservation in the northern Rocky Mountains (Figure 1). 

The soils were predominately sandy loam derived from argillite with a mean surface bulk density of 

0.73 g∙cm
−3

 (Table 1). A 31-year record from the nearest weather station (Many Glacier) indicates an 

annual average precipitation of 1,203 mm, the majority of which falls as snow during the winter 

months. The burn was intense and resulted in high to moderate soil burn severity over much of the fire. 

A significant portion of the surface organic layer was completely consumed, and the dense mixed 

conifer stands of Douglas fir, subalpine fir (Abies lasiocarpa), Englemann spruce (Picea englemannii), 

and lodgepole pine (Pinus contorta) were largely consumed by crown fire (see: 

http://www.nrmsc.usgs.gov/science/fire/CBI/r-gnp/redeagle_2.89). The salvage sites were predominately 

lodgepole pine (Table 1). The Blackfeet Tribe moved rapidly to salvage dead and dying trees, and 

tribal lands were logged in the first post-fire year (2007) between April and August, with some of the 

logs yarded over snow. The study area was a single hillslope with high soil burn severity and with a 

gradient of at least 30%. Percent cover of bare soil, rock, wood, litter and vegetation was estimated 

using 1-m
2
 point frames at marked locations. 

Unique to the Red Eagle Fire, GPS tracking data were available from the harvest equipment. In 

order to quantify the disturbance from the logging equipment and compare the degree of disturbance 

depending on equipment type—both rubber tire and track skidders were used on the site. GPS tracking 

devices were installed on the logging equipment to measure the number of passes over a particular 

section of ground. The data were cleaned post-harvest to remove errant vertices and overlaps on truck 

(haul) roads. Integrity was maintained as to the data omissions/commissions for origin, equipment 

identification, and spatial correctness based on field notes filed and original file dates. The cleaned 

GPS data were exported to GIS shapefile format which included a count of visible round-trip passes. If 

the trip was one-way, the count of passes was increased to a full pass (i.e., a one-way trip was rounded 

up to a full pass) since the number of passes might have been at least one more than recorded due to 

the resolution of the GPS data. Truck roads within the greater sale area were excluded from this dataset 

used to validate classification results from the remotely sensed imagery. 

2.3. Tripod Fire 

The 70,000+ ha Tripod Fire burned in north-central Washington (Figure 1), in a dry mixed conifer 

forest in the summer of 2006. Soils are coarse sandy loams derived from mixed volcanic ash over 

glacial outwash with a mean surface bulk density of 1.3 g∙cm
−3

 (Table 1). Average annual precipitation is 

300 mm, and vegetation is predominately Douglas fir and ponderosa pine (Table 1). Burn severity 

across the fire ranged from low to high, but the area of interest for this study was a high burn severity 

hillslope that was planned for salvage in 2007 but not actually salvage logged until the fall and winter 

of 2008 (Table 2). Post-logging field sampling was done in 2010 to differentiate ground conditions 

between skidded trails and undisturbed ground on a single logged hillslope. Three 100-m parallel 

transects that ran perpendicular to the skid trails on the hillslope were evaluated starting at each 

endpoint and classified the ground conditions every time segments changed from ‘disturbed’ to 

‘undisturbed’. These data were used to validate classification results from the remotely sensed imagery. 
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2.4. Salvage Logging Operations 

Logging equipment and operations differed among sites (Table 2), but feller bunchers were used on 

all sites to cut and stack burned trees. Forwarders or skidders and de-limbers were used to move the 

logs from the hillslopes to the staging areas, remove the limbs, and cut the logs to length. The finished 

logs were piled in a central roadside collection point (landing). The forwarder, using a mechanical 

claw loader to pick up and place the logs into an open crib, generally moved to and loaded several 

piles of logs before returning to the landing to unload. The ground contact for the forwarder was 

rubber tires, and the tractor and crib were supported by four axles. The skidders (two axles) used a 

grapple hook that clamps onto the ends of up to eight whole trees at once dragging (skidding) them 

over the ground to the landing. Compared to the forwarder, the skidder caused more ground 

disturbance as the logs were dragged along the ground surface and more round trips to the landing 

were needed; however, the forwarder weighed more than skidders and may have caused more soil 

compaction. 

At the School Fire, logs were cut and piled with track feller bunchers, and a rubber tire forwarder 

was then used to move the logs to a staging area or landing. The end-dates for the different phases of 

salvage logging operations at the School Fire were 31 October 2006, 20 February 2007, and 27 July 

2007. These dates were, respectively, 4, 8, and 13 months after the initial 2006 image acquisition and 

2–3 years before the 2009 image acquisition. 

At the Red Eagle and Tripod Fires, logging was completed by using feller bunches to cut and pile 

the logs, and skidders to transport them to landings. On feller buncher trails, logs were cut and piled, 

and carried in bunches (2–4 logs generally) down or across slope to a staging area where either rubber 

tire skidders or track skidders yarded the logs to a landing. On the skid trails, logs were dragged in 

bunches of 3 to 8 logs to landings, necessitating many more logging equipment passes and greater soil 

disturbance and compaction. Study areas on the Red Eagle and Tripod Fires were salvaged in 2007 and 

2008, respectively (Table 2). 

2.5. Remotely Sensed Imagery 

Two types of remotely sensed imagery were collected for this study: QuickBird satellite imagery 

and NAIP aerial imagery (Table 3). The QuickBird satellite collects four multi-spectral bands and one 

panchromatic band. The spatial resolution of QuickBird imagery (2.4-m multi-spectral; 0.65-m 

panchromatic) allows for fine-scale spatial discrimination of ground components in the post-fire 

environment. QuickBird imagery was acquired for the School Fire on 25 June 2006 (1-yr post-fire, 

pre-salvage) and 31 July 2009 (4-yr post-fire, majority post-salvage). The imagery was delivered as 

multiple geotiff files that were combined into a single radiometrically corrected and orthorectified 

image mosaic. Image accuracy was specified at 23-m at nadir (Digital Globe, Longmont, CO, USA). 

NAIP imagery has 1-m or 2-m ground resolution, three visible bands and sometimes a fourth near-

infrared band; however the fourth band was not available at either site (Table 3). NAIP was acquired at 

a 1-m resolution with a horizontal accuracy within 6 m of photo-identifiable ground control points. 

The NAIP imagery timing is dependent on state funding but often occurs on a 3-year cycle, and the 

Red Eagle and Tripod study areas only had post-fire (also post-salvage) imagery collected in the summer 

of 2009 (Table 2). 
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Table 3. Comparison of remotely sensed image characteristics. 

Imagery Platform 
Spectral Bands Used 

[Other Bands Available] 

Resolution 

(nominal) 

Acquisition 

Dates 
Calibration Capabilities 

QuickBird-2 

Satellite, 

multi-

image 

mosaic 

Blue, Green, Red, NIR 

[Panchromatic] 

Panchromatic: 

0.65m 

Multi-

spectral: 2.5m 

25 June 2006 

31 July 2009 

Radiometric balancing for 

multiple scene mosaics and 

conversion to top-of-

atmosphere spectral 

reflectance; 

Orthorectified 

NAIP 

(Montana, 

Washington) 

Aerial, 

multi-

image 

mosaic 

Blue, Green, Red 

[NIR] 
1m 

10 June–15 

August 2006* 

Orthorectified 

 

*Specific acquisition dates not available. 

3. Methods 

3.1. Spectral Mixture Analysis (SMA) 

SMA was used to estimate percent exposed mineral soil from 2006 and 2009 QuickBird imagery of 

the School Fire. Spectral endmembers for image processing were selected from the most homogenous 

patches (purest pixels) of green and charred vegetation and soil located in the 2006 QuickBird 

imagery. By examining the spectral signature of the purest pixels and given our knowledge of the fire 

area from field sampling, we were able to identify image-derived endmember spectra for spectral 

mixture modeling. Once endmember spectra were selected, spectral unmixing of individual pixels was 

used to estimate subpixel fractional cover of the materials on the ground [28,29,32]. Because SMA is 

performed on a per pixel basis (compared to the scene-wide PCA transform), clipping to the area of 

interest was not necessary. The outputs of SMA are grayscale fractional cover images that are scaled 

from 0 to 1 (or 0 to 100%) representing relative cover fractions of each input endmember. Any 

increase in estimated soil exposure between 2006 and 2009 was attributed to disturbance from salvage 

logging operations. 

3.2. Principal Components Analysis (PCA) 

Principal Component Analysis (PCA) transforms correlated multidimensional data by reducing 

redundancy or correlation between channels. PCA takes into consideration the spectral response of the 

entire scene; hence all image data from all fires were clipped to the harvest areas to better isolate the 

variance due to effects from the harvest operation. This was a simple task at the Red Eagle and Tripod 

Fires, as the area of interest was a single hillslope at each fire. However, at the School Fire where 

harvest sites were dispersed, the QuickBird image was clipped to 99 individual harvest units 

distributed throughout the burned area (Figure 1). Separate PCAs were performed on the exact unit 

polygons extracted from both the 2006 and 2009 NAIP to allow comparability. Because 2006 and 

2009 image dates corresponded to pre- and post-salvage at the School Fire, we compared the PC1 

outputs to infer ground cover change. At all three study areas, PC1 contained the overwhelming 

majority of the variance in the scene (~98%). Therefore, PC1 was evaluated as a relative indicator of 
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soil disturbance within the scene. We assumed that higher PC values were indicative of higher levels 

of disturbance due to the harvest operation, and that relatively lower values indicated minimal or no 

disturbance. 

The 2009 NAIP 3-band imagery was clipped to the digitized GPS trails with a 15-m buffer at the 

Red Eagle Fire. The raster data were then transformed using the ArcGIS principal component analysis 

tool (ESRI 2011; ArcGIS Desktop: release 9.3.1, Environmental System Research Institute, Redland, 

CA, USA). The first principal component band (PC1) contained 98% of the variance in the 

transformed data set and was used for all further analysis. PC1 was classified as low, moderate, or high 

disturbance using Jenks natural breaks. The PC1 data was then intersected with the harvest trail data 

for analysis along with the equipment, pass count, and length of the harvest trail segment. 

At the Tripod Fire, the 2009 NAIP 3-band aerial imagery was clipped to a single salvage unit on a 

uniform hillslope. To test whether the disturbance breaks from the Red Eagle analysis were applicable 

on another fire; we first applied them to classify the PC1 values at Tripod and compared these classes 

(low, moderate, high disturbance) to the field data. In the likelihood that the disturbance breaks were 

site-specific, low, moderate, and high disturbance classes were defined using Jenks natural breaks from 

this data set alone (independent of the Red Eagle data). These classifications were compared to the 

field data. At the School Fire, the imagery was clipped to the individual harvest units which were 

located across the burned area. Only harvest units with no cloud cover and full image coverage were 

included in the analysis (n = 53). Because post-salvage ground-based disturbance data were not 

available for the School Fire, and because the salvage units were spatially distributed across the 

landscape (high variance between sites), the PC1 values were not classified but were treated as 

continuous variables. 

3.3. Statistics 

At the School Fire, correlations were first assessed between the measured soil ground cover at the 

field plots (n = 79) and the soil fractional cover image estimated from SMA of the 2006 and 2009 

QuickBird imagery. Correlations were also assessed between the measured soil ground cover and the 

2006 and 2009 NAIP PC1 values. In order to evaluate the distinction between soil exposure on cut and 

uncut units, and any change in soil exposed depending on burn severity class, correlations were 

assessed by grouping the data into cut/uncut and burn severity classes. Multiple linear regressions with 

SMA soil exposure in 2006 and 2009 as the dependent variables were performed to test the 

significance of harvest status, burn severity, harvest intensity, and days between harvest and image 

acquisition as covariates. At the Red Eagle Fire, correlations were assessed between the number of 

equipment passes (by skidder type) and the PC1 values using the Pearson and Spearman correlation 

statistics (SAS proc CORR) (SAS Institute Inc. 2008). All correlations were considered significant if  

p < 0.05. To test for significant differences between the magnitudes of disturbance from each type of 

equipment, a ratio of the PC1 values to number of equipment passes was calculated for both the rubber 

tire and track skidders. The difference between rubber tire versus track skidder disturbance as 

indicated by the PC1/number of passes ratio was tested for significance with the Wilcoxon rank sum 

test [37]. Used as a non-parametric alternative to the student’s t-test, the Wilcoxon rank sum test is 

based on the order in which the observations from the two samples fall. At the Tripod Fire, field 

transect segments recorded in the field as ‘disturbed’ or ‘undisturbed’ were grouped into these two 
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classes; the PC1 values intersecting the transects were assigned these same labels and then statistically 

compared for a significant difference using a student’s t-test ( = 0.05).  

4. Results 

4.1 Exposed Soil Change at the School Fire 

4.1.1. SMA Validation 

The additional field data available at the School Fire allowed for more accurate validation of the 

SMA results. Across 79 field plots in 2006 there was approximately 17% green vegetation (23% on 

low severity sites, 13% on high), 26% non-photosynthetic or senesced vegetation (NPV) (56% low, 

5% high), 57% soil exposed (21% low, 82% high) and 20-25% of the ground was occluded by canopy 

cover. The SMA estimated 26% green vegetation, 45% NPV and 29% soil exposed. Correlation 

coefficients (Pearson) for the ground cover classes were: green vegetation (r = 0.60, p < 0.0001), NPV 

(r = 0.41, p = 0.0002), and soil (r = 0.16, p = 0.15). The SMA estimates of green vegetation and NPV 

both compared accurately to the field data, however, soil exposure was not as well estimated by SMA. 

This was not an unexpected result, as remotely sensed imagery often images vegetation more 

accurately than soil because vegetation obstructs the soil from an overhead view [38]. 

Fifty-three cut salvage units spanning low-moderate-and high burn severity were analyzed for their 

change in exposed soil before and after the salvage logging operation. Forty-six uncut units were used 

for recovery comparison during the same time period. In 2006 which was post-fire and pre-salvage, there 

was an average of 43% exposed soil on all units regardless if they were eventually cut or not (Table 4). 

Table 4. Mean soil exposure and disturbance by salvage cut/uncut and burn severity class 

from remotely sensed imagery of the School Fire. n is number of units in each class. The 

Spectral Mixture Analysis (SMA) results from the QuickBird imagery are mean soil 

exposure (x100%). The QuickBird and NAIP Principal Component Analysis (PCA) values 

are continuous PC1 values for comparison. 

Harvest  

Status 

Burn  

Severity 
N 

QuickBird SMA QuickBird PCA NAIP PCA 

2006 2009 2006 2009 2006 2009 

Cut All 53 0.45 0.73 405 515 212 160 

 Cut Low 22 0.48 0.73 433 499 209 157 

 Cut Moderate 19 0.45 0.71 403 511 217 152 

 Cut High 12 0.40 0.76 354 550 212 179 

Uncut All 34 0.40 0.50 391 492 205 130 

Uncut Low 17 0.38 0.34 411 441 192 114 

Uncut Moderate 8 0.40 0.59 381 527 212 143 

Uncut High 9 0.41 0.71 362 559 222 147 

In 2009, there was an average of 73% exposed soil on the cut units, and only 50% on the uncut 

units. The remaining high soil exposure on the uncut units is likely due to uncertainties associated with 

multi-date image analysis (which should be evenly distributed across the scene) rather than an actual 

increase in exposed soil. However, the much greater increase in soil exposure on the cut units 
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compared to the uncut units can only be explained by actual differential change in the scene, for 

example pre-salvage and post-salvage (Figure 2). 

Figure 2. (a) Pre- and (b) post-salvage QuickBird image from the School Fire showing the 

change in soil exposure. Harvest units are delineated by a black line. Salvage skid trails are 

visible in (b) where trees existed in the 2009 image (white linear features). 

 

(a) 

 

(b) 
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4.1.2. PCA Validation 

Comparison of PC1 values from separate PCAs of the 2006 and 2009 QuickBird imagery showed 

an increase in soil disturbance similar to the increase in soil exposure found using SMA at the School 

Fire. Similar PC1 values were found on the cut and uncut units in 2006 (405 and 391, respectively) and 

greater values were found in 2009 on the cut (515) and uncut units (492) (Table 4). The increase on 

both the uncut and cut units between 2006 and 2009 is analogous to the results found with the SMA. 

The increase in predicted disturbance (greater PC1 values) is not due to any physical disturbance on 

the uncut units, but more likely due to the later date of image acquisition and the drier soil and 

vegetation conditions. There were significant correlations between the SMA results and the PC1 values 

in both 2006 (Pearson ρ = 0.68) and 2009 (ρ = 0.47), suggesting that the PC1 values are indicative of 

exposed soil in the imagery, but as with the Quickbird image-derived SMA values, the PC1 values did 

not significantly correlate to field measures of soil exposure. 

In contrast, the PC1 values from the PCAs of 2006 and 2009 NAIP did not appear to follow the 

same trends as those from the QuickBird imagery (Table 4). In 2006, similar PC1 values were found 

on the cut and uncut units (212 and 205, respectively), however much smaller PC1 values were found 

in 2009 on both the cut (160) and uncut (130) units. The decrease in PC1 values on both the cut and 

uncut units was similar in proportion, providing no evidence of slower vegetation recovery due to soil 

disturbance on cut units. This was somewhat unexpected given the 2-3 year time span following 

salvage harvest disturbance, which should allow for vegetation recovery. 

4.1.3. Modeling Soil Exposure and Disturbance 

Linear regressions with SMA soil exposure as the dependent variable and harvest status (cut or 

uncut) and burn severity class as the independent variables showed that units that were eventually cut 

had slightly more exposed soil in 2006 than units that were not cut (Table 5). Cut units had ~20% more 

exposed soil in 2009 than uncut units (Table 5). SMA soil exposure was not significantly different by 

burn severity class in 2006; all sites had slightly more than 40% soil exposure (Table 5). In 2009, low 

burn severity sites had significantly less soil exposed (54%) than either the moderate or high units 

(65% and 74%, respectively). However, burn severity was not a significant covariate in the regression 

and was dropped from the model. These results also illustrate the over-prediction of soil in the 2009 

imagery. There was likely no increase in soil exposure on the low severity units or on the uncut units; 

however, both were modeled with a 10–15% increase. 

PC values from both the QuickBird and NAIP were also modeled. There was no change in 

disturbance (PC1 values) between the cut and uncut units in 2006 or 2009 in the QuickBird imagery 

(Table 5). There were significantly higher PC1 values on the low burn severity sites in 2006 than on 

the moderate or high burn severity sites; however in 2009, the lowest PC1 values were found on the 

low burn severity sites although the differences were not significant (Table 5). The PC1 values from 

the NAIP did not show a significant difference between the cut and uncut units in 2006, and did in 

2009. By burn severity class, the low severity units had the lowest PC1 values in both 2006 and 2009 

(Table 5). Similar to the SMA data, there were few significant differences by burn severity class, with 

the most common difference being between the low and high severity classes. 
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Table 5. School Fire SMA and PCA regression model results and tests of significance. The 

model form was: soil exposed or PC1 disturbance = cut | burn severity. Same letters (a,b) 

in a row indicate no significant difference at α = 0.05. 

Image Analysis and Year 
Status Burn Severity 

Cut Uncut Low Moderate High 

SMA soil 2006 0.44a 0.40b 0.43a 0.42a 0.41a 

SMA soil 2009 0.74a 0.55b 0.54b 0.65a 0.74a 

QB PC 2006 397a 385a 422a 392b 358b 

QB PC 2009 520a 513a 475b 519ab 555b 

NAIP PC 2006 213a 208a 199b 214a 217a 

NAIP PC 2009 163a 134b 134b 148ab 163a 

Harvest intensity (m
3
∙ha

−1
 removed from unit) was also found to be a significant predictor of SMA 

soil exposed (Table 6). Adding harvest intensity to the equation increased the soil exposure predicted on 

the cut units and decreased the soil exposure predicted on the uncut units (Tables 5 and 6). There was 

more than double the soil exposure predicted on the cut units (84%) compared to the uncut units (40%) 

in 2009. The regression model with PC1 values from the QuickBird imagery did not indicate a 

significant decrease in disturbance between cut and uncut units (416 and 377, respectively), while PC1 

values from the NAIP did (cut −123, uncut −87) (Table 6). Days between harvest and image acquisition 

were also tested as explanatory variables but were found to be non-significant in predicting soil exposure. 

Table 6. School Fire SMA and PCA regression model results and tests of significance. The 

model form was: soil exposed or PC1 disturbance = cut * harvest intensity. Same letters in 

a row (a,b) indicate no significant difference at α = 0.05. 

Image Analysis and Year 
Status 

Cut Uncut 

SMA soil 2009 0.84a 0.40b 

QB PC 2009 416a 377a 

NAIP PC 2009 123a 87b 

4.2. Soil Disturbance at the Red Eagle and Tripod Fires 

At the Red Eagle and Tripod Fires only post-harvest NAIP was analyzed, making our results 

simpler and briefer than at the School Fire. Jenks natural breaks at the Red Eagle Fire distributed the 

PC1 values into three disturbance classes: low 86–233, moderate 234–283, and high 284–385. 

At the Red Eagle Fire, we found significant correlations between the PC1 values and the number of 

equipment passes per pixel, which varied from 1 to 36. The track skidder had stronger correlations 

with the PC1 (i.e., disturbance) values (Spearman ρ = 0.33, p < 0.0001) than the rubber tire skidder 

(Spearman ρ = 0.08, p = 0.016), and the rubber tire created more disturbance than the track skidder 

(Figure 3). For all of the map pixels intersected by skidder trails (Figure 4), we also divided the PC1 

values by the number of equipment passes to provide a simple ratio (PC1/pass) with which to compare 

disturbance impact between the rubber tire skidder pixels versus track skidder pixels. A non-parametric 

Wilcoxon rank sum test [37] between the means of these two non-normal distributions showed that the 
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rubber tire skidder disturbance ratio (mean = 172/pass, s.d. = 118/pass, n = 855) was significantly 

higher (p < 0.0001) than the track skidder disturbance ratio (mean = 97/pass, s.d. = 79, n = 730). 

Figure 3. Red Eagle Fire: disturbance comparison between the rubber tire and track 

skidders. The boxes represent the upper and lower quartiles and the midline represents the 

median. The minimum and maximum data values are shown by the caps on the whiskers. 

 

Figure 4. Red Eagle Fire: disturbance classification. The area in green indicates low 

disturbance (29%), yellow indicates moderate disturbance (44%), and red indicates high 

disturbance (27%). The area is clipped to a 15-m buffer around the harvest trails (as 

mapped by GPS tracking devices) and these are shown in black. 
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At the Tripod Fire, where the field transects overlaid the PC transformed imagery, the range of PC1 

values was 105 to 234; PC1 pixels classified as disturbed ranged from 105 to 229 (mean = 177, s.d. = 25, 

n = 222) and pixels classified as undisturbed ranged from 140 to 234 (mean = 190, s.d.=25, n = 144). A 

Student’s t-test revealed the difference to be non-significant (p > 0.05). It is worthwhile to note the 

dissimilarity of PC1 values between the Tripod Fire (105–234) and the Red Eagle Fire (86–385). 

5. Discussion 

SMA on the School Fire was moderately successful for detection of ground cover change. The 

correlations between imaged green vegetation and non-photosynthetic vegetation and the ground data 

were significant. However, the correlations between the imaged and field-measured soil were not 

significant which we attribute to occlusion of the soil by the tree overstory canopy. Moreover, the 31 

July post-salvage QuickBird image compared to the 25 June pre-salvage QuickBird image entails a 

vegetation phenology offset that likely confounded the estimate of soil cover change based on SMA 

results. More senesced ground vegetation in late July than in June would expose more underlying soil, 

and the spectral signature of senesced vegetation is easily confused with that of soil [29], particularly if 

using broadband imagery such as QuickBird. Despite this complication, imaged values can be useful 

for comparing relative proportions and not just absolute percentages on the ground. In this study, 

nearly 30% more soil was imaged on the cut units between 2006 and 2009, compared to only 10% 

more soil imaged on uncut units during the same period (Table 5, Figure 2). Because there was 

significantly more soil imaged on the cut units, we can conclude that this is a product of the 

disturbance from salvage logging, which corroborates a similar finding from a prior study [39]. 

The PCAs applied to the School Fire QuickBird images produced comparable results to the SMAs. 

We believe this is because the PCAs were based on exactly the same data extracted from the salvage 

units distributed across the landscape (i.e., 99 separate PCA runs), which was admittedly an awkward 

step to undertake but proved worthwhile. Furthermore, it was important that the QuickBird images 

were consistently atmospherically corrected and calibrated to ensure comparability of reflectance 

values between the 2006 and 2009 image dates. The NAIP may not have been similarly corrected, nor 

were they calibrated, and so we must discount the conflicting results obtained by comparing the NAIP-

based PCAs at the School Fire. 

Single-scene PCA of NAIP on the Red Eagle Fire worked well because the area of interest was 

confined to a single hillslope and the variance was easily attributed to the salvage logging disturbance. 

The available ground-truth data from the GPS and equipment tracks were very valuable to confirm that 

the PC1 values were related to the disturbance, and to classify the disturbance by number of passes and 

by equipment type. This type of analysis is likely to be most successful under similar conditions of 

high severity disturbance and a localized area of interest with few confounding sources of disturbance. 

However, a single multi-temporal PCA including both images could be tested as it has been found to 

be successful under similar circumstances [40]. 

The PCA of NAIP collected two years after salvage harvest after the Tripod Fire was ineffective for 

differentiating significant soil disturbance effects. However, the ground truth data collected at the 

Tripod Fire were also less powerful than were at the Red Eagle Fire; this was likely another 

contributing factor to our poor correlations at the Tripod Fire. The differing range of PC1 values found 

at the Tripod Fire compared to those at the Red Eagle Fire also confirmed our belief that the PC values 
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are highly site-specific. Disturbance classifications or comparisons between sites are not possible with 

PCA alone—field data are essential. 

Although our study had mixed ability to test the utility of high-resolution, multispectral imagery for 

mapping soil effects of salvage logging, we felt that these methods show promise for large scale 

mapping of disturbance related to salvage operations. Ideally, the imagery would be acquired just 

before and soon after the salvage operations, and the field data would be collected within days of the 

image acquisition. However, such is rarely the case with field studies, and the logistics of a ground-

truthing campaign often span weeks or months. Potential explanations for inconsistencies between 

ground and image data include: 

 Slope steepness and aspect, which interact with the view angle from the sensor and the sun 

elevation and azimuth angle in complex but quantifiable ways. 

 Site-specific ‘albedo’ issues such as soil color and senesced vegetation. 

 Spatial heterogeneity of the salvage sites—both from spatial variability in post-fire disturbance, 

spatial variability in salvage logging, and spatial variability in slash being placed after the 

skidder trails were no longer used—can lead to discrepancies between what was measured on the 

ground and inferred from the image. Also the influence of previous roads/trails. 

 Plot geolocation errors and image georectification errors, which both contribute to errors in 

models relating field and remotely sensed data. The effect of mosaicing of several images 

(NAIP) of undocumented dates together likely produce edge-errors. 

6. Conclusions 

Both spectral mixture analysis and principal component analysis of post-harvest imagery were 

useful to highlight spatial patterns in soil exposure or disturbance due to the post-fire salvage logging. 

Change detection using pre- and post-harvest QuickBird imagery was most successful when the time 

lapse between salvage and image acquisition was short enough that revegetation did not significantly 

change the scene. Principal component analysis of single-scene post-salvage imagery was most 

successful when detailed ground truth data were available. Because principal component analysis is a 

data-dependent method, we do not recommend trying to compare separate principal component 

analysis results between images for change detection even if from the same sensor and collected over 

the same scene. The appropriate analysis method should be chosen based on the available imagery and 

ground data. We recommend QuickBird imagery over National Agricultural Imagery Program imagery 

because of the available calibration qualities of the QuickBird sensor. Atmospheric and radiometric 

image calibration are especially important for identifying change detection between scenes, and based 

on our results, change detection was the best method for identifying  salvage logging disturbance. If 

QuickBird or other atmospherically and radiometrically calibrated imagery is unavailable, National 

Agricultural Imagery Program or similar imagery and principal component analysis may be a 

sufficient substitute, provided that any inferences are confined to the single image and sufficiently 

substantiated with ground truth data. Our results encourage further investigation and use of high-

resolution imagery for research applications and post-fire management. 
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