
Location Cheating: A Security Challenge to
Location-based Social Network Services

Wenbo He
Electrical Engineering Department

University of Nebraska-Lincoln
Email: wenbohe@engr.unl.edu

Xue Liu
School of Computer Science

McGill University
Email: xueliu@cs.mcgill.ca

Mai Ren
Computer Science and Engineering

University of Nebraska-Lincoln
Email: mren@cse.unl.edu

Abstract—Location-based mobile social network services such
as foursquare and Gowalla have grown exponentially over the
past several years. These location-based services utilize the
geographical position to enrich user experiences in a variety of
contexts, including location-based searching and location-based
mobile advertising. To attract more users, the location-based
mobile social network services provide real-world rewards to the
user, when a user checks in at a certain venue or location. This
gives incentives for users to cheat on their locations. In this paper,
we investigate the threat of location cheating attacks, find the
root cause of the vulnerability, and outline the possible defending
mechanisms. We use foursquare as an example to introduce a
novel location cheating attack, which can easily pass the current
location verification mechanism (e.g., cheater code of foursquare).
We also crawl the foursquare website. By analyzing the crawled
data, we show that automated large scale cheating is possible.
Through this paper, we aim to call attention to location cheating
in mobile social network services and provide insights into the
defending mechanisms.

I. INTRODUCTION

A recent surge of location-based services (LBS) led
by foursquare[1], Gowalla[2], GyPSii[3], Loopt[4], and
Brightkite[5] has attracted a great deal of attention. Take
foursquare as an example, it has become one of the top
recommended applications for all smartphone platforms. Till
August 2010, foursquare had attracted 1.89 million users since
its launch in March 2009, and it draws in more than 10,000
new members daily. Meanwhile, hundreds of other similar
services have been set up to follow this growing trend.

To encourage the use of location-based social network ser-
vices, the service providers offer virtual or real-world rewards
to a user if he or she checks in at a certain venue (i.e., places
like coffee shops, restaurants, shopping malls). Foursquare
provides real-world rewards (i.e., a free cup of coffee from
Starbucks), which gives users incentives to cheat on their
location information so that they can check in at a venue far
away from where they really are.

1. We have obtained consent from foursquare to reveal the findings
described in this paper.

2. The authors contributed equally to this work and are listed in alphabetical
order.

In this paper, we use foursquare as an example to investigate
the vulnerability in location-based social network services. The
goal is to raise awareness of location cheating and suggest
possible solutions to drive the success of the business model
among service providers, registered venues, and users.

We first introduce a novel and practical attack on location
cheating, where a user may claim he or she is at a certain
location which is thousands of miles away from his/her actual
location, thereby deceiving the service provider on location
information. Though foursquare has adopted the cheater code
to stop location cheating, we show that an attack can easily
pass the cheater code. This benefits the attackers in the
real world and can be more severe when combined with
the analysis on venue (or location) profiles. In order to
study foursquare’s vulnerability to location cheating, we also
crawled the foursquare website and used the crawling results
to find suspicious cheaters on foursquare.

We found that the root cause of the vulnerability to location
cheating is the lack of proper location verification mechanisms.
If a user explores the open source operating systems for smart
phones (e.g., Android) to modify global-positioning-system-
(GPS)-related application programming interfaces (APIs), the
user is able to cheat on his/her location using falsified GPS
information. Even if defending mechanisms like cheater code
are deployed, the loosely regulated anticheating rules still leave
space for location cheaters.

Our investigation suggests that defense against location
cheating requires improvement to location verification ability.
We outline the possible solutions to defense against location
cheating. We suggest service providers take the following
measures to prevent location cheating: (1) explore effective
location verification technologies, and (2) limit profile crawl-
ing and analysis to mitigate the threat of location cheating. We
believe that this investigation on location cheating will have a
great impact on mobile social network services, and it will be
an active research topic with strong practical value.

The rest of this paper is organized as follows. In Section
II, we briefly describe the background of LBS and its asso-
ciated business model, cheating scenarios and cheater code.
In Section III, we introduce a basic location cheating attack,

2011 31st International Conference on Distributed Computing Systems

1063-6927/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCS.2011.42

740

demonstrate how to automate the cheating, and optimize the
benefits to the attacker through crawling and profile analysis.
In Section IV, we show the results from our experiments
on location cheating and examine the seriousness of current
cheating threats. In Section V, we discuss possible solutions
to prevent location cheating. In Section VI, we provide our
conclusions and discuss future work.

II. BACKGROUND

In this section, we provide background and describe cur-
rent practices used by location-based mobile social network
services.

A. Business Model

Location-based social networking services allow users to
share their location-related information. Users can add com-
ments about a restaurant, find out what’s happening, let their
friends know where they are, and meet friends nearby for a cup
of coffee. To report the geolocation to a service provider (e.g.,
foursquare[1]), a user needs to “check in” to the location/venue
where the user is located. The service provider may broadcast
the user’s location information to his/her friends or even the
public. The check-in is done by hand, which means a user
is able to determine when he/she wants to check in, thereby
controlling their location privacy. Services like this are not
new, but they all have lacked incentives for people to use
them, until foursquare introduced a new business model.

Foursquare uses a progressive reward mechanism to provide
four types of reward incentives to its users. From the easiest
to the hardest to get, they are: points, badges, mayorships,
and real-world rewards. The first three are virtual rewards: (1)
points are provided for all valid check-ins (e.g., the first time
checking into a venue, checking into the same venue multiple
times); (2) badges are awarded for specific achievements, such
as “30 check-ins in a month” or “checked into 10 different
venues”; and (3) mayorship of a venue is granted to the
user who checked into that venue the most days in the past
60 days. Only the number of days with check-ins to this
venue is counted, without consideration of how many check-
ins occurred per day or the total number of check-ins. Unlike
points and badges which depend solely on a user’s activities,
the title of “Mayor” is given on a competition basis. There
is only one mayor at each venue. This created a vulnerability
in that if an attacker got the mayorship of this venue and
kept checking into it every day, no other users could get the
mayorship from the attacker.

The real-world rewards, like a free cup of coffee, were
provided by businesses (e.g., restaurants or bars) who set up
a partnership with foursquare. We crawled the information for
all venues (discussed in more details later) and found that
more than 90% percent of the rewards were only for mayors.
This setup provides benefits to both foursquare and its partner
businesses. On the other hand, the user’s desire for discounts
and the competition for the mayorship will likely bring more

users (customers) to the partner businesses, increasing their
profits. While the business model benefits multiple parties in
the game, it makes foursquare a lucrative target to attack by
location cheating.

B. Possible Location Cheating Scenarios

In the context of location-based social network services, a
user may cheat on his/her location for various reasons. A user
may want to get rewards from venues or impress others by
claiming a false location. A business owner may use location
cheating to check into a competing business, and badmouth
that business by leaving bad comments.

Similar to most location-based social network services,
foursquare initially relied on users’ self-regulation to maintain
the authenticity of the check-ins. Hence, the check-ins to any
place a user can find in the foursquare client application
(either using the suggested list of nearby venues, searching
for a venue by name, or browsing and locating the venue
on the map) were valid. Software is available on the market
that can automatically check people into their desired venues,
e.g., “Autosquare” for Android. The basic cheating method
worked in the early days of foursquare. It is rather simple
but obviously does not work now after the introduction of
the location verification mechanism, which requires location
information to complete the check-in process. However, the
location cheaters can modify the location information and send
a false location to the server.

The objective of the attacks is to automatically check
into as many businesses as possible and as frequently as
possible to maximize benefits through location cheating. A
more sophisticated attack is automated cheating. To make
automated cheating easier, the cheaters may use venue profile
analysis to identify victims, which can be the venues who
provide discounts or users who aim to get mayorship in
specific venues. Hence, an attacker is able to select the venues
where the “Mayor” title is less competitive and the rewards
are more desirable or use a minimum number of check-ins to
prevent another user from getting a mayorship.

C. Cheater Code

Foursquare has adopted the cheater code to defend against
the location cheating attacks. One of its functions is to verify
the location of a device by using the GPS function of that
device. If a user claims that he/she is currently in a location far
away from the location reported by the GPS of his/her phone,
the check-in will be considered invalid and won’t yield any
rewards.

Apart from utilizing GPS for location verification, the
cheater code also incorporates multiple rules which run on
foursquare servers to determine if a user cheats on location.
The details of the cheater code are concealed from users. But
we managed to detect a few rules, through experiments, that
are important to maneuvering location cheating to pass the
scrutiny of the cheater code. A few of the criteria used in

741

determining location cheating in the cheater code are listed as
follows.

Frequent check-ins: We found a user cannot check into
the same venue again within one hour. This rule prevents a
user from checking in frequently to get as many points as
possible and keep his/her name on top of the recent check-in
list, making it more likely for people to contact the user for
comments about the venue.

Super human speed: If a user continuously checks into
locations that are located far away from each other, foursquare
will indicate that the user is moving at “super human speed”
and refuse to give any reward for his/her check-ins. This rule
limits location cheating by a single user to a small geographic
area.

Rapid-fire check-ins: If a user checks into multiple venues
located within a 180 meter by 180 meter square area (which is
well within a short walking distance such as in a mall) within
a 1 minute interval, foursquare issues a warning about “rapid-
fire check-ins” on the fourth check-in. This rule stops a user
from checking into multiple venues in a small area and within
a short time period.

These rules essentially limit the number of check-ins a user
can perform per day, thus reducing the potential for automated
cheating. Clearly identifying these rules helps attackers to
design the best way to work around them.

III. LOCATION CHEATING ATTACK

In this section, we outline three levels of attack: cheating
via GPS, automated cheating, and use of venue profile analysis
to assist cheating. They severely interrupt the operation of
LBSs when combined together. We first introduce four lo-
cation cheating methods which can pass the validation from
foursquare and other similar location-based social network ser-
vices at least once. After that, we crawl data from foursquare’s
website and evade foursquare’s cheater code to automate the
cheating process. Finally, by analyzing the crawled data, we
focus on a cheating attack on high-valued targets such as those
who provide real-world rewards.

A. Location Cheating Against GPS Verification

Location-based services like foursquare use their client
applications installed on their users’ smartphones to get GPS
location readings. Since this happens completely on the client
side, it is relatively easy to hack. We analyzed foursquare’s
client application source code and confirmed that it gets the
GPS location data from the phone’s GPS-related APIs. Fig-
ure 1 shows the concept of such location cheating. Normally,
the GPS module in a mobile phone will return the current
location information to the LBS application, but an attacker
blocks this and feeds fake location information to the LBS
application so that it makes its server believe that this phone
is really in the fake location. The cheating check-in will then
be approved.

Fig. 1. Illustration of location cheating

There are several ways for an attacker to pass the GPS
verification by providing foursquare’s client application with
fake GPS coordinates:

1) Via GPS APIs:
This method modifies the GPS-related APIs in a smart-
phone’s operating system to let it return fake GPS data.
This is easy because of the prevalence of open source
smartphone operating systems like Android. These APIs
can be modified to get GPS locations from sources other
than the phone’s GPS module, for example, from a
server that returns fake GPS coordinates or simply from
a local file. This method is limited to open source op-
erating systems; but since LBSs like foursquare provide
their client applications on major smartphone platforms
(Android, iPhone, Blackberry), this is a universal cheat-
ing method. A hack into Android is representative to
cover cross-platformed LBSs.

2) Via GPS module:
Directly hacking into a smartphone’s GPS module is
another way of cheating on location. There are two
ways to do this: one via hardware and the other is
via software. The former modifies the physical GPS
hardware inside the phone, making it capable of faking
data, so that the cheating is transparent to the mobile
phone’s operating system. The latter simulates a GPS
device. For example, an attacker can write a program on
a computer that simulates the behavior of a Bluetooth
GPS receiver and let the phone connect to this simulated
Bluetooth GPS receiver, enabling the simulated GPS
to return fake coordinates. In fact, there are already a
number of such tools on the market (e.g., Skylab GPS
Simulator [6], Zyl Soft [7], GPS Generator Pro [8]), that
were originally developed to help debug GPS-related
software or gadgets.

742

3) Via server provided APIs:
Foursquare provides a set of application APIs that allow
developers to create new applications for them, like an
application for uploading geotagged photos. These APIs
can be employed by a location cheater to check into a
place. The drawback is that not all LBS service providers
provide such public server APIs. But this method is more
convenient to issue a large-scale cheating attack.

4) Via device emulator:
Smartphone manufacturers (like Apple, Google, and
Microsoft) provide device emulators to developers for
easier debugging and testing. A device emulator is a
full featured virtual machine of that device. One of the
basic features of these device emulators is that they
are configurable, including their simulated GPS module.
Take the Android device emulator, for example. We
can send it a specific command to set a location to
the simulated GPS module. The GPS module of this
emulator will return the coordinates we set to whichever
application that needs GPS info. We conducted our
experiments with this method, because this one is the
easiest and most reliable when compared to the first
two methods. Almost all potential attackers with a basic
knowledge of mobile developing can master this method
with no difficulty.

We chose an Android emulator to conduct our experiments.
We’ve registered a user on foursquare for testing purposes
and conducted all of our experiments in Albuquerque, New
Mexico, and Lincoln, Nebraska. Our goal was to check into
venues outside of the two states, so that we knew the cheating
method was working. We used the tool “Dalvik Debug Moni-
tor”, which is part of Android SDK to connect to the emulator
and set GPS coordinates in it. We found the coordinates of the
target venues by looking up Google Earth, which shows the
exact coordinates of where the mouse is pointing on its map.

The entire cheating process can be described as: hack
the emulator; install and run foursquare application; find the
coordinates of the target venue in Google Earth; use “Dalvik
Debug Monitor” to set the coordinates in the emulator; find
the target venue in the list of nearby venues in the foursquare
application; and check into the target venue.

The results of our experiments showed that the check-ins
to distant venues were all accepted, and we received rewards
successfully. We got points for each of the check-ins, and we
got badges like a normal user as well, i.e., after checking into
ten different venues, we got the badge, “Adventurer: You’ve
checked into ten different venues!”. We also tried to get a
mayorship, we chose the venue “Fisherman’s Wharf Sign”
in San Francisco, which is a well-known tourist spot, as the
target venue; and we kept checking into it once a day for four
consequence days. After nine days, we found our test user
became the mayor of the venue. This experiment shows that
the device emulator method works and can receive rewards.

B. Crawling Data From Foursquare Website

Getting the big picture of foursquare users and venues
greatly helps in location cheating attacks, although the crawl-
ing itself is not an attack. There are two types of information
that we crawled: users’ profiles and venues’ profiles. In this
section, we describe the crawling procedure, in which we only
accessed foursquare’s public webpages. Wondracek, Holz,
Kirda and Kruegel [9] introduced a similar crawling and
attacking approach. We will also use the crawling results to
show evidence of location cheating attacks on foursquare and
identify the suspicious location cheaters in the next section.

To increase performance, we developed a multi-thread
crawler to download and process a large amount of webpages
(over 7 million). This architecture has been proven to be
highly effective, for example, Cho, J. and Garcia-Molina used
a parallel crawler to increase performance [10], and Chau,
Pandit, Wang, Faloutsos focused on crawling social networks
with parallel crawling [11].

We wrote the crawler in C# and used MySQL as the
database. We ran the crawler on three Windows PCs at the
same time, each with a 2.0 GHz Intel Core 2 Duo processor
and 1GB RAM. The fourth computer with the same hardware
specification, but running Ubuntu 8.10 server operating system
and functions served as a database server. In our design, we
set 14 to 16 threads on each of the three crawling machines
to crawl 100,000 users per hour for user profile crawling, and
set 5 to 6 threads on each machine to crawl around 50,000
venues per hour for venue profile crawling.

In total, we crawled more than 1.89 million users and
5.6 million venues, which agrees with foursquare’s reported
number of users. This means we can update all user profiles
in less than two days or update all venue profiles in about
five days. The crawling performance is an important design
concern, because by repeatedly crawling data and comparing
the differences between each set of crawling results, we can
further investigate the behaviors of its users and extract more
information. For example, the venue’s recent visitor list does
not have a time stamp to indicate when a user visited this
venue; but if we crawl the venues daily, then we will be able
to determine how frequently a user checks into a venue. We
can further analyze the user behavior to show if the user is
suspicious for location cheating.

Each user on foursquare has a profile that contains personal
information. A user’s profile provides information such as
name, current location, check-in numbers, reward information,
and list of friends. We cannot access the mayorships and
check-in history directly (i.e., they are hidden from the public),
since these two types of information may expose his/her
location privacy. However, we can infer a user’s mayorship
information and partial check-in activities from venue profiles,
which contain lists of recent visitors, and links to mayors.
In addition, a venue profile also provides its name, address,
location, number of users who checked in, unique visitors, and

743

tips.
To crawl these profiles, we need to know the URLs of these

profile pages. We discovered that foursquare uses continuously
numbered IDs to identify their users and venues. By changing
the ID in the URL, we can crawl almost all of the user and
venue profiles. We believe this is a serious security weakness
and should be patched soon.

Two types of URLs can be used to access user profiles.
The first one is with an internal user ID in URL, like
“http://foursquare.com/user/-1852791”. To access another user
with ID 23456, we just replace the “1852791” in the URL with
“23456”, and we can visit the public profile page with the
new URL. We believe that all the users are accessible just by
increasing or decreasing the user ID in the URL. We imple-
mented a web crawler to do so, and we discovered around
1.89 million users in August 2010. Another type of URL
contains the username, like “http://foursquare.com/user/test”,
where “test” is the username of a user. Not all users have a
username-based URL as their profile page. Out of 1.89 million
users, only 26.1% have a username, so we used the URL
with ID in our crawling tool. For venue profiles, foursquare
only uses numbered IDs in the URL of the profile pages, like
“http://foursquare.com/venue/1235677”.

After we had the URL of a profile page, we sent HTTP Get
to this URL and got the HTML source code from the server’s
response. To extract data from the HTML source code, we
let the crawler perform a set of regular expression matches.
After extracting the data, we stored user and venue information
in a database. Figure 2 shows the structure of the database;
the arrows indicate the relationships between the tables. We
stored user and venue profiles in tables UserInfo and VenueInfo
respectively; and we also created a table called RecentCheckin
to record the relations between venues and users. We put
each venue’s recent visitors in this table; and by counting
the number of records for a user, we recorded the number of
recent check-ins of this user and stored it in RecentCheckins of
UserInfo. Similarly, by analyzing the MayorID of each venue,
we calculated how many mayorships each user had and put
the result in TotalMayors of UserInfo.

C. Automated Cheating

To achieve significant benefits from location cheating, at-
tackers need to be able to control a large number of users
and make them check in automatically. This requires the
location cheaters to (1) find location coordinates of victim
venues by computer program, and (2) automatically select a
list of venues to check into pass the cheater code. We met
the first requirement by crawling, and we could easily use
SQL commands to get the location coordinates of the selected
venues from the database.

Figure 3 shows the coordinates of all Starbucks branches
in the US, where x axes and y axes are real coordinates. The
location coordinates form the shape of United States territory,

Fig. 2. A crawling architecture and the database to store crawled information
from foursquare

−160 −140 −120 −100 −80 −60 −40
15

20

25

30

35

40

45

50

55

60

65

Longitude

La
tit

ud
e

Fig. 3. Locations of Starbucks branches crawled from foursquare website

because Starbucks’ branches are distributed all over the US.
We draw this map by SQL command:

SELECT Longitude, Latitude FROM VenueInfo WHERE
Name LIKE “%Starbucks%”.

Second, to pass the anticheating verification, the key is to
avoid triggering any of the rules in the cheater code, since it
detects cheater on a per user basis, we focus on the strategy
of a single user. An attacker needs to organize coordinates
from the first step into a schedule, which states the sequence
of venues to check into and the time interval a check-in has to
wait after the previous check-in; and the schedule must follow

744

−106.63 −106.62 −106.61 −106.6 −106.59 −106.58 −106.57 −106.56

35.055

35.06

35.065

35.07

35.075

35.08

35.085

Longitude

La
tit

ud
e

Fig. 4. An illustration of location cheating check-ins along a virtual path in
the city.

all rules from the cheater code. The attacker could create a
tool to do this automatically.

To determine the sequence of venues in which to check in,
an attacker can create a virtual user, compute a virtual path
to visit the target venues using Google Map’s APIs, and build
the check-in schedule along the virtual path. We also need
to determine the time interval 𝑇 between check-ins, which is
determined by distance between the check-ins in the schedule.
Based on our experiments, we can check into venues less than
1 mile apart with a 5-minute interval without being detected
as a cheater. So for distance 𝐷, less than 1 mile, we should
set 𝑇 to 5 minutes; if 𝐷 > 1 mile, we let 𝑇 = 𝐷 ∗ 5 minutes.

In our proof of concepts experiment, we created a semi-
automatic location cheating tool. With the tool, an attacker
can use any venue as the starting point. The attacker can then
set the next cheating location by setting the moving direction
and distance, for example, “move 500 yards to the west”, the
tool will search for the venue that is the closest to the target
location and then automatically set the coordinate of the found
venue to the emulator or generate a list for fully automated
check-in later. The tool also automatically limits the process
to avoid triggering any anticheating rules in the cheater code
as we presented before.

Figure 4 shows the path of a virtual tour, the diamond
points are the locations of venues the tool actually selected
and checked into, and the cross-points and lines to them
show the intended moving directions and target locations.
The starting point in this tour is at the lower left point of
Figure 4. We started by moving north and then kept turning
right. The desired moving distance for each step was 0.005
degrees, either longitude or latitude, equivalent to about 550
meters in latitude direction or about 450 meters in longitude
direction around this location. We set the interval between
check-ins to 5 minutes since the moving distance is less than
1 mile. We continued checking into 25 venues without being
detected as a cheater, and we received reward points and

badges accordingly.
As we can see in Figure 4, for most of the time, the actual

venues we checked into are not very far from the desired
location, this is due to the high density of venues in the city.
To move across large distances, we should increase the moving
distance of each step, which will reduce the probability that
we drift too much from the desired direction, like the second
to last move in Figure 4.

D. Cheating with Venue Profile Analysis

Since the brute-force check-ins increase the chance that a
cheater is caught, the location cheaters may gain intelligence
from the venue analysis after the crawling. For example, an
attacker may select the victim venues that provide special
offers to their mayors and don’t have a mayor yet (or are
less competitive for mayorship) as targets. It is relatively easy
to become the mayor of these venues. At the time this work
is being prepared, around 1000 venues fall into this category.

Through profile analysis, we found a user in foursquare is
the mayor of 865 venues but with a total check-in number of
just 1265. It is interesting to observe that most of the 865
venues have no other visitors during the past 60 days, so
only one check-in is enough to get the mayorship. We also
discovered some special offers that do not require mayorship
which are much easier to get, it’s hard to find such information
without crawling the venue profiles.

The attack can also target other users. For example, to stop
a user from getting any mayorship, the attacker will analyze
the venue profiles and find the venues that the victim user
has been to or is the mayor. Then the attacker will apply an
automated cheating attack on those venues in order to attack
the mayorships of the victim.

IV. EVALUATION OF LOCATION CHEATING ON

FOURSQUARE

We have demonstrated that location cheating attack on
foursquare. Next, we will show a big picture of location
cheating through our crawling and analysis. In this section,
we examine the signs of location cheating on foursquare. We
found three identifying factors that related to location cheating.
They are: (1) above normal level of activity, (2) below normal
level of rewards, and (3) suspicious check-in patterns.

A. High Check-in Frequency in Recent Visitor List

If a user checks in too frequently and at too many venues,
it is suspicious, because it is unlikely the user will visit too
many places in a short amount of time.

We crawled the record of 20 million check-ins, and each
of them represents a user visiting a venue once. That means,
on average, each user on foursquare has checked into at least
ten venues, and a venue has had at least four visitors. The
actual number should be higher since only recent check-ins
were shown on the website and were crawled.

745

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

80

90

Number of total check−ins of a user

A
ve

ra
ge

 n
um

be
r

of
 b

ad
ge

s
re

ce
iv

ed

Fig. 5. Number of badges vs. number of check-ins: The average number of badges granted to users who have a certain number of total check-ins.

0 500 1000 1500 2000
0

500

1000

1500

Number of total check−ins of a user

A
ve

ra
ge

 n
um

be
r

of
 r

ec
en

t c
he

ck
−

in
s

Fig. 6. Recent check-ins vs. total check-ins: the average recent check-ins of
the users who have a certain number of total check-ins.

Figure 6 shows a relationship between the number of total
check-ins and the recent check-ins. A recent check-in of a
user means that the user is in a venue’s recent visitor list,
but we cannot directly know when this check-in happened.
If this user is the only visitor of this venue, then he will be
staying in the recent visitor list even if this check-in happened
a year ago. In fact, there are 1,291,125 venues that have only
one check-in; and 2,014,305 venues have had only one visitor
ever. Though it is not a hard proof, the high ratio of recent
check-ins to total check-ins of a user indicates that it is likely
a user plays tricks to stay in the recent visits list, which is
a sign of cheating. Here, we only included users with 2000
or less total check-ins since they cover 99.98% users. We get
the number of recent check-ins vs. the number of total check-
ins of each user, and then we compute the average number of
recent check-ins for users who have a given number of total
check-ins (see Figure 6). We can see that some users with
more than 1,000 check-ins have a unusually high percentage of
recent check-ins, which suggests that those users are possibly
cheaters, since it is not very likely for users to always check

into a large number of different venues in a short time period.
From Figure 6, we can see that, on average, we get around

100 recent check-ins of a user, if the user did more than 500
check-ins total. There are 25,074 users that have a total check-
in number falling in between 500 and 2000. It’s not difficult
to determine where they have been or are likely to go from
this data.

B. Low Reward Rate

If a user has a large amount of check-ins but little rewards
like badges, the user may have been detected as a cheater by
foursquare so those check-ins were invalidated toward rewards,
although they still increase the total check-in numbers of those
users under foursquare’s current policy. Figure 5 shows the
relation between rewards (badges) and the number of check-
ins. We first get the number of badges vs. the number of
total check-ins of each user, and then we compute the average
number of badges for users who have a given number of total
check-ins. As shown in Figure 5, for users with 1000 or less
check-ins, the relation between the number of check-ins and
badges is stable. It illustrates that a user will be likely to
get more badges after doing more check-ins. It is reasonable
because the rewards are usually granted to those who have
checked in over a certain number of times to a venue. For
the users with a larger number of check-ins, we can see that
the curve in Figure 5 oscillates dramatically. Actually, many
users with more than 1000 check-ins only have less than 10
badges. We think the best explanation for this is that they
are location cheaters and got caught by foursquare and, thus,
their check-ins yielded no rewards. For almost all users with
more than 9000 check-ins, the reward level is low. The average
check-ins per day for these users is over 16 times since the
foursquare service was launched in March 2009, which is a
strong evidence that these users are cheaters.

We notice that among 1.89 million users, 36.3% have never
checked into any venues, 20.4% have one to file check-ins,
which means more than half of the users have only checked in
less than six times. On the other hand, 0.2% of the users have

746

−150 −140 −130 −120 −110 −100 −90 −80 −70
30

35

40

45

50

55

60

65

Longitude

La
tit

ud
e

Fig. 7. Check-in locations of a suspected cheater

checked in at least 1,000 times; and 11 users have checked in
at least 5,000 times. These 11 users who have made no less
than 5,000 check-ins can be divided into two distinct groups
by the number of mayorships they have. The first group has
six users, each of whom is mayor of tens of venues, which
are all concentrated in a city area. The other five users in the
second group, including the one with over 12,000 check-ins,
the highest among all users, do not have any mayorships, and
they received much less badges than the first group. A further
analysis indicates that four of the five users in the second group
appeared in a recent visitor list of a venue, while the users
in the first group are all in the recent visitor lists of a large
amount of venues. This provides us with strong evidence that
the users in the second group are cheaters and were caught,
so their check-ins are invalidated.

C. Suspicious Check-in Patterns

Next, we will examine if the check-in pattern or history can
tell if a user is a location cheater through further analysis of
the crawled data.

We analyze a user’s check-in pattern based on the recent
check-in records. Figure 7 shows the recent check-in locations
of a suspected cheater. We draw the venues to which a user
has checked in on a map, so that we have a general idea of
the places the user has “visited”. This user is in the recent
visitor lists of over 1000 venues. As we can see in Figure 7,
those venues are scattered pretty far apart and spread over
30 different cities throughout the United States, including
Alaska, and Europe. Judging from this user’s ID (foursquare
increments this ID as user registers), we believe that the user
has used foursquare for less than one year. It illustrates that
within a year, the user has “visited” at least 30 different cities,
hence this user is suspected of location cheating.

Figure 8 shows the recent check-in locations of a user with
a similar number of recent check-in records and similar ID
(it means the two users registered for the foursquare service
at almost the same time) as the user in Figure 7. But the

−130 −120 −110 −100 −90 −80 −70
24

26

28

30

32

34

36

38

40

42

Longitude

La
tit

ud
e

Fig. 8. Check-in locations of a “normal” user

venues he/she visited are concentrated in three cities (places
with darker markers) and a few other places, where he may
have visited on vacation. After examining the users with more
than 1,000 recent check-in records, users with more than 2000
total check-ins, and users with more than 100 mayorships, we
believe that the check-in pattern in Figure 8 is normal.

In the future, we will focus on those cheaters that haven’t
been detected by foursquare’s current system. Foursquare im-
plemented its cheater code anticheating system online around
April 2010. Since then, all detected cheating check-ins are
still count in the total number of check-ins, but do not receive
any rewards. By the time this investigation was conducted
(August, 2010), all mayors passed the scrutiny of the cheater
code. So any cheaters we found in this group of users were
new discoveries. There are 425,196 users who have the mayor
title, and there are 2,315,747 venues which have mayors. On
average, each user with a mayorship is the mayor of 5.45
venues. Those who are mayors of many venues are likely to
be cheaters.

V. POSSIBLE SOLUTIONS AGAINST LOCATION CHEATING

The investigation presented in this paper allows an attacker
to launch automated location cheating attacks against a large
number of victims, including service providers, business part-
ners, and users. The root cause of the vulnerability is the lack
of effective location verification mechanisms which can be
deployed at a large scale. However, it is possible to counter
these attacks. In this section, we list possible techniques to
thwart the location cheating; and we suggest that location
security be enhanced by limiting the access to user and venue
profiles.

A. Location Verification Techniques

Distance bounding: Distance bounding protocols [12], [13],
[14] that exploit the limitation on transmission range or speed
of a communication signal for location verification, which does
not rely on GPS inputs. This solution requires the deployment

747

of verifiers around the registered venues, hence it will be
expensive to deploy location verification based on distance
bounding.

Address mapping: Using address mapping to geolocate IP
addresses has been proposed in various applications, such
as Tracert Map and Google Location Service. Researchers
have adopted IP address mapping to locate mobile phones
[15]. A challenge of applying IP address to verify location is
that mobile phones may access the Internet from nonlocal IP
addresses, and the IP addresses can be changed dynamically.

Venue side location verification: The Wi-Fi routers that
provide the Wi-Fi hotspot services can work as location
verifiers. This technique provides an intrinsic distance bound-
ing since only devices that are physically within the radio
communication range of a Wi-Fi router can communicate with
it. According to previous literature [16], [17], the radio range
of a Wi-Fi router is generally no more than one hundred
meters. This range level enable use to identify cheaters that are
miles away from the venue. However, for the cheaters within
the transmission range a Wi-Fi router, this approach does not
work. For example, a cheater sitting inside a McDonald’s
can check-in to the Wendy’s next door, which is only 50
meters away. In this case, Wendy’s owner can configure the
Wi-Fi router to limit the communicate within the restaurant
via hardware or firmware configuration tools (i.e., DD-WRT
[18]). In this solution, a Wi-Fi router takes the responsibility
to measure if a check-in message was sent from a device in a
legal area by checking the communication delay between the
Wi-Fi router and the device. If so, the Wi-Fi router sends the
verification information to the corresponding LBS server.

In order to provide location verification service, the Wi-Fi
routers must be registered to the LBS server and establish
trusted communication with the server to block the imperson-
ating attacks by location cheaters.

When comparing the three solutions, Distance Bounding
provides the most accurate location data, and it can be used
anywhere, but it is difficult to implement and has the highest
cost. Address Mapping is the least accurate in terms of the
location data it provides, it can be used anywhere, and it
has the lowest cost and is the easiest to implement. Venue
Side Location Verification has enough location accuracy, and
it incurs no extra hardware purchase or installation cost for the
venues. Owners of the venues can simply update the software
on their existing routers to make these routers capable of
defeating location cheaters.

B. Mitigating Threat from Location Cheating

As alluded above, with the assistance of profile analysis,
an attacker may optimize the location cheating strategies. To
limit the effect of potential location cheating attacks, we need
to reduce the information exposed to the public. Along this
direction we can employ the following techniques.

Access control for crawling: To prevent large-scale profile
analysis by attackers, a direct solution is to take counter
measures to stop or limit crawling. If a user must login to view
the publicly available profile pages, it will be easier to detect
the crawling users and block them. This can be combined
with IP address blocking, if the service provider can detect the
crawler’s IP address. Even if the crawlers hide behind network
address translations (NATs), blocking their IP addresses will
cause limited collateral damage. Casado and Freedman [19]
show most NATs only have a few hosts behind them, and
proxies generally have much more. Crawling behind a public
proxy cannot achieve enough performance. Although tools like
Tor [20] may provide a high level of anonymity on the Internet,
it also suffers from limited performance for crawling purpose.

Hiding information from profiles: To reduce the information
leak, we hope that even if an attacker can successfully crawl
the website, the information that can be extracted from the data
is still limited. But if a subset of information in the profiles is
removed, the usability of the location-based social networking
service will be suffered. For example, if the recent check-in
list is removed from the venue’s profile, users cannot query
the recent visitors to the venue for their comments about the
venue. Hence, removing the information from profiles is not
a good solution to prevent profile analysis. Rather, the service
provider may use the hash function to hide necessary infor-
mation (such as user IDs in the recent check-in list). Recently,
the information leak has been studied. Griffith and Jakobsson
[21] use public records to infer individuals’ mothers’ maiden
names, and Heatherly et al. [22], as well as Zheleva and Getoor
[23], show how public data provided by social networks can
be used to infer private information.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel and practical loca-
tion cheating attack that enables an attacker to make the
location-based service providers believe that the attacker is
in a place far away from his/her real location. Through real
world experiments on foursquare, the leading location-based
social network, we demonstrate that our attacking approach
works as expected; and location cheating really threatens
the development and deployment of location-based mobile
social network services. The counter measures against location
cheating in current systems are not perfect.

We suggest several techniques for enhancing the security
of location information. In the future, we will investigate to
find better solutions to identify possible cheaters, especially
those whom haven’t been found by the existing anticheating
mechanisms. We also would like to seek better solutions to
the balance between the usability and the security in order
to make the location-based mobile social networking service
more attractive.

REFERENCES

[1] http://www.foursquare.com.

748

[2] http://www.gowalla.com.
[3] http://www.gypsii.com.
[4] http://www.loopt.com.
[5] http://www.brightkite.com.
[6] http://www.skylab-mobilesystems.com/en/products/

gps_sim.html.
[7] http://www.zylsoft.com/vgps.htm.
[8] http://www.avangardo.com/index.php?option=

com_content&view=article&id=47&Itemid=55.
[9] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A practical attack

to de-anonymize social network users,” in 2010 IEEE Symposium on
Security and Privacy. IEEE, 2010, pp. 223–238.

[10] J. Cho and H. Garcia-Molina, “Parallel crawlers,” in Proceedings of the
11th international conference on World Wide Web. ACM, 2002, pp.
124–135.

[11] D. Chau, S. Pandit, S. Wang, and C. Faloutsos, “Parallel crawling
for online social networks,” in Proceedings of the 16th international
conference on World Wide Web. ACM, 2007, pp. 1283–1284.

[12] G. Hancke and M. Kuhn, “An RFID distance bounding protocol,” 2005.
[13] J. Chiang, J. Haas, and Y. Hu, “Secure and precise location verification

using distance bounding and simultaneous multilateration,” in Proceed-
ings of the second ACM conference on Wireless network security. ACM,
2009, pp. 181–192.

[14] N. Sastry, U. Shankar, and D. Wagner, “Secure verification of location
claims,” in Proceedings of the 2nd ACM workshop on Wireless security.
ACM, 2003, pp. 1–10.

[15] M. Balakrishnan, I. Mohomed, and V. Ramasubramanian, “Where’s that
phone?: geolocating IP addresses on 3G networks,” in Proceedings of the
9th ACM SIGCOMM conference on Internet measurement conference.
ACM, 2009, pp. 294–300.

[16] W. Lehr and L. McKnight, “Wireless Internet access: 3G vs. WiFi?* 1,”
Telecommunications Policy, vol. 27, no. 5-6, pp. 351–370, 2003.

[17] A. Howard, S. Siddiqi, and Sukhatme, “An experimental study of
localization using wireless ethernet,” in Field and Service Robotics.
Springer, 2006, pp. 145–153.

[18] http://www.dd-wrt.com.
[19] M. Casado and M. Freedman, “Peering through the shroud: The effect

of edge opacity on IP-based client identification,” in Proceedings of the
4th Networked Systems Design and Implementation, 2007.

[20] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th conference on
USENIX Security Symposium-Volume 13. USENIX Association, 2004,
p. 21.

[21] V. Griffith and M. Jakobsson, “Messinwith Texas Deriving Mothers
Maiden Names Using Public Records,” in Applied Cryptography and
Network Security. Springer, 2005, pp. 91–103.

[22] R. Heatherly, M. Kantarcioglu, B. Thuraisingham, and J. Lindamood,
“Preventing private information inference attacks on social networks,”
2009.

[23] E. Zheleva and L. Getoor, “To join or not to join: the illusion of
privacy in social networks with mixed public and private user profiles,”
in Proceedings of the 18th international conference on World wide web.
ACM, 2009, pp. 531–540.

749

