University of Nebraska - Lincoln Digital Commons@University of Nebraska - Lincoln

Agronomy & Horticulture -- Faculty Publications

Agronomy and Horticulture Department

1-1-1949

A Metabolic Relationship Between the Aromatic Amino Acids

Joseph F. Nyc California Institute of Technology

Francis A. Haskins University of Nebraska - Lincoln, fhaskins@neb.rr.com

Herschel K. Mitchell California Institute of Technology

Follow this and additional works at: http://digitalcommons.unl.edu/agronomyfacpub

Part of the Biochemistry Commons, and the Plant Sciences Commons

Nyc, Joseph F.; Haskins, Francis A.; and Mitchell, Herschel K., "A Metabolic Relationship Between the Aromatic Amino Acids" (1949). Agronomy & Horticulture -- Faculty Publications. Paper 205. http://digitalcommons.unl.edu/agronomyfacpub/205

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska -Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Published in *Archives of Biochemistry* (1949) 23: 162-163. Copyright 1949, Elsevier. Used by permission.

Letters to the Editors

A Metabolic Relationship Between the Aromatic Amino Acids

The present work involves a further investigation of a *Neurospora* mutant, C-86, previously mentioned by Lein, Mitchell and Houlahan (1) as one that can utilize anthranilic acid, indole, tryptophan, kynurenine, 3-hydroxyanthranilic acid, and nicotinic acid as supplements for growth. Mutant C-86, when crossed to a "wild-type" strain, was found to differ from this wild type strain, with respect to tryptophan biosynthesis, by a mutation at a single locus.

A number of compounds were tested for growth-promoting properties for this mutant. These included: 3,4-dihydroxyphenylalanine, anthranil, benzoic acid, aniline, *p*-aminobenzoic acid, formylanthranilic acid, isatoic acid, *cis*-cinnamic acid, *trans*-cinnamic acid, phloroglucinol, phenylacetic

acid, p-aminophenylacetic acid, β -phenylethyl alcohol, phenyl-DL-a-alanine, β -phenylethylamine, salicylic acid, coumarin, coumaric acid, 2-carboxyindole, 3-carboxyindole, cinnamaldehyde, phenylalanine, and tyrosine. Of these compounds, phenylalanine, tyrosine, and t-cinnamic acid were active in promoting the growth of C-86. The relative growths of this mutant on supplements of tryptophan, indole, anthranilic acid, phenylalanine, tyrosine and t-cinnamic acid are given in Table I.

TABLE I

The Relative Growths of Neurospora Mutant C-86
in the Presence of Various Supplements

(The mold weights are for 20 ml. cultures grown at pH 4.6 and 25°C.)

μМ	Dry wt. of mold—nag.—3 days growth						
	Tryptophan	Indole	Anthranilie acid	Phenyl- alanine	Tyrosine	Trans-cinnamic acid	
0.1	11	7	8	0	0	0	0
0.2	15	18	13	2	1	±	0
0.4	20	29	24	5	3	1	0
0.8	27	36	36	12	4	2	2
1.4	35	41	42	18	8	1	5
2.0	36	36	42	21	14	1	6
2.0	35	30	40	27	20	0	7
					,		

^a Growth of mutant C-86 on supplements of trans-cinnamic acid at pH 5.6 and 25°C.

Neurospora mutant, 40008, which utilizes anthranilic acid, indole or tryptophan for growth, cannot use either phenylalanine, tyrosine, or *trans*-cinnamic acid. Apparently, strain C-86 has a genetic block which occurs at a point earlier in a reaction series involving tryptophan than does the block in strain 40008. This would imply that phenylalanine, tyrosine and *trans*-cinnamic acid are involved in the biosynthesis of tryptophan prior to the formation of indole or anthranilic acid in *Neurospora*. Another *Neurospora* strain, E-5212, utilizes phenylalanine for growth but none of the other substances found to promote the growth of strain C-86.

The evidence presented suggests the possibility of a common precursor to the aromatic amino acids.

Acknowledgments

This work was supported by grants from the Williams-Waterman Fund for the Combat of Dietary Diseases, the Rockefeller Foundation and the Office of Naval Research, United States Navy Department, N6 onr 244, Task Order No. 5.

Reference

1. Lein, J., Mitchell, H. K. and Houlahan, M. B., *Proc. Natl. Acad. Sci.* U. S. 34, 435 (1948).

Joseph F. Nyc, Francis A. Haskins and Herschel K. Mitchell

Kerckhoff Laboratories of Biology, California Institute of Technology, Pasadena 4, California

Received May 18, 1949