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The regulatory gene fadR has been previously characterized by classical genetic means as a diffusible protein
which exerts negative control over fatty acid degradation and acetate metabolism. fadR has also been
implicated in the regulation of unsaturated fatty acid biosynthesis. To facilitate the identification of the product
of the fadR gene and to study the mechanism by which this multifunctional regulatory gene exerts its control,
we cloned a segment of DNA containing the fadR gene in the phage vector AL47. Subsequent subcloning of a
segment of the chromosomal DNA from the AfadR* phage into various plasmid vectors resulted in the isolation
of the fadR gene on a 1.3-kilobase-pair HindIII-EcoRYV fragment. fadR strains harboring the cloned fadR* gene
showed inducible levels of fatty acid oxidation and crotonase (enoyl-coenzyme A-hydratase, fadB) activity. The
cloned gene exerted transcriptional control over B-galactosidase synthesis in an fadR strain that had a
AD(fadE-lacZ*) operon fusion. An fadR mutation in fabA(Ts) strains prevents growth at permissive
temperatures without unsaturated fatty acid supplementation (Nunn et al., J. Bacteriol. 154:554-560, 1983).
Plasmids carrying the fadR* gene suppress this unsaturated fatty acid auxotrophy in fadR fabA(Ts) strains at
the permissive condition. Maxicell analysis identified a 29,000-dalton protein encoded by the 1.3-kilobase

Vol. 161, No. 2

fragment which appeared to be associated with functional fadR gene activity.

The fadR* gene of Escherichia coli is a multifunctional
regulatory gene mapping at 25.5 min (26) which appears to
exert negative control over the fatty acid-degradative (fad)
regulon (21, 26, 27) and the acetate (ace) operon (13, 15).
The fadR* gene is also required for maximal expression of
unsaturated fatty acid (UFA) biosynthesis (fab) (20). The
product of the fadR* gene is believed to be a diffusible
protein which exerts control over fatty acid degradation by
decreasing the transcription of the fad structural genes (6,
24). These genes map at no fewer than four distinct loci on
the E. coli chromosome (10, 21, 29) and encode at least five
enzyme activities involved in the transport, acylation, and
B-oxidation of medium-chain (C6 to C10) and long-chain
(C12 to C18) fatty acids. Long-chain fatty acids can induce
the fad enzymes, whereas medium-chain fatty acids cannot.
Therefore, wild-type E. coli (fadR") can utilize long-chain
fatty acids such as oleate (C18:1) but not medium-chain fatty
acids such as decanoate (C10~ phenotype) as a sole carbon
and energy source. Strains which are mutant in fadR have
constitutive levels of the fad enzymes and can use decanoate
as a sole carbon and energy source (C10* phenotype).

In addition to the fad enzymes, the expression of the
glyoxylate shunt enzymes is also required for the growth of
E. coli on acetate or fatty acids as a sole carbon source. In
wild-type E. coli repression of the ace operon is under the
control of two genes, fadR and iclR (13, 15). The studies of
Maloy and Nunn (16) suggest that both the ic/R and fadR
genes regulate the glyoxylate shunt in a transdominant and
synergistic manner at the level of transcription.

fadR has also been suggested to play a role in the
regulation of UFA biosynthesis (fab) (20). fadR mutants
synthesize significantly less UFAs than do wild-type strains.
In addition, fadR fad™ mutants synthesize significantly less
UFAs than their fadR* fad~ parents. The latter results
suggest that the low levels of UFAs in fadR strains are not
due to their constitutive levels of fad enzymes. Thus, a
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functional fadR gene is required for E. coli to optimally
synthesize UFAs. The mechanism by which fadR exerts this
effect remains undefined at this time.

In the present work, we describe the cloning and charac-
terization of the fadR gene and the identification of the fadR
gene product by maxicell analysis. The cloned fadR gene
will facilitate detailed studies of the mechanism(s) by which
this multifunctional protein exerts control over the fad, ace,
and fab structural genes.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth conditions. The E.
coli bacterial strains and plasmids used in this study are
listed in Tables 1 and 2, respectively.

The bacteria were routinely grown in either LB broth (19)
or TB broth (1) and incubated at 37°C in a New Brunswick
gyratory water bath shaker. For induction of the fad en-
zymes or \®(fadE-lacZ) fusions, cells were grown in TB
broth supplemented with S mM oleate in 0.5% Brij 58.
Noninducing medium was TB broth supplemented with
0.5% Brij 58. Antibiotics were added to maintain plasmid
selection as necessary. Final concentrations were 100 pg of
ampicillin (Ap) per ml, 10 pg of tetracycline (Tc) per ml, and
45 pg of kanomycin (Km) per ml. Bacterial growth was
monitored at 540 nm in a Klett-Summerson colorimeter.
Solid minimal medium E (19) supplemented with 5 mM
oleate or 5 mM decanoate was used to screen the fadR
phenotype.

The spontaneous fadR strains 1.S6734 and L.S1085 were
obtained by plating LE392 and C600, respectively, on min-
imal medium containing decanoate. Strain LS6927 was made
fadR by transduction of LS6926, using ®P,vir grown on
LS5381 (fadR::Tnl0) with primary selection for tetracycline
resistance. The deleted fadR strain LS6925 was generated
by spontaneous excision of the Tn/0 transposon in LS5381
as described by Maloy and Nunn (14). The A®(fadE-lacZ)
fusion strain of Clark (6) was stabilized with Ap1(209) as
described by Komeda and lino (11) to generate strain
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TABLE 1. Strain list

Strain Genotype-phenotype Reference or source
L.S6924 Prototrophic srlA::Tnl0 recA This study
LS6925 AfadR srlA::Tnl0 recA This study
LS6926 AO(fadE-lacZ™) This study
LS6927 NP(fadE-lacZ*) fadR::Tnl0 This study
LS1085 leu thr thi lacY tonA supE This study
srlA::Tnl0 recA fadR

DCs531 ®(fadE-lacZ*) of MC410 Clark (6)

LS1001 Hfr thi relA \ c1857 Tc" This study
fadR*

L.S5381 fadR::Tnl0 (26)

L.S6592 fadR::Tnl0 fabA2 (20)

L.S5484 zcf+:Tnl0° Simons et al.

(26)
LS6734 fadR met \ cI857 This study

“ Transposon insertions are designated as previously described (26). When
an insertion is not within a known gene, it is given a three-letter symbol
starting with z, and the second and third letters indicate the approximate map
location in minutes (i.e., z¢f corresponds to 25 min) (5).

LS6926. Strains were made recA by transduction with
®P,vir grown on NK5304 (srlA::Tnl0 recA).

Isolation and manipulation of DNA. Chromosomal E. coli
DNA was prepared by the method of Marmur (18). Lambda
DNA was prepared essentially as described by Maniatis et
al. (17). Large-scale (1 liter or more) isolation and purifica-
tion of plasmid DNA was by the cleared lysate-polyethylene
glycol precipitation method of Humphreys et al. (8). Super-
coiled plasmid DNA was further purified by centrifugation in
a cesium chloride density gradient containing ethidium bro-
mide (23). Plasmid DNA from small cultures (10 to 15 ml)
was isolated by the method of Ish-Horawicz and Burke (9).

For preparation of the DNA library used to select the
fadR™ clone, E. coli chromosomal DNA was isolated from
strain 1.S5484 and digested with 0.4 U of the restriction
endonuclease Sau3A per pg of DNA at 37°C for 15 min.
Approximately 200 pg of this partially restricted DNA was
loaded onto a 10 to 30% continuous sucrose gradient to size
fractionate the DNA, essentially as described by Maniatis et
al. (17). Fragments 10 kilobases (kb) or larger were pooled,
precipitated with ethanol, suspended in 10 mM Tris-1 mM
EDTA (TE) (pH 8.0), dialyzed for 3 h with three changes
against TE, centrifuged at 100,000 x g for 30 min, and
ethanol precipitated to concentrate the sample. This size-
fractionated chromosomal DNA was ligated to BamHI-re-
stricted AL47 DNA at a final concentration of 200 pg/ml.
This ligation mixture was packaged in vitro and amplified in
the P2 lysogen LG106 to give a high-titer phage stock (101°
PFU/ml) representing 10° separate packagings. A sample of
this amplified bank was used to transduce strain LS6734 to
Tc'. Phages were prepared from lysogens which proved to
carry fadR* (C10~ phenotype) as well as Tc", using a 5-min
heat shock at 42°C. Recombinant Tc' fadR* phage was
prepared from the resulting mixture of helper (\cI857) and
recombinant phage by lytic growth on LS6734 in LB solid
medium containing tetracycline and on the P2 lysogen LG106.

The fadR* gene was subcloned from DNA prepared from
N Tc" fadR* by partial Sau3A restriction (as described
above) and ligation to BamHI-restricted plasmid pDF41
DNA (3). The resulting plasmid, pDFfadR, proved to be
phenotypically C10~ and Tc®. The plasmids pACfadR,
pACfadR3, and pACfadR1 are fadR* subclones of pDFfadR
prepared in the multicopy vector pACYC177 (4) by ligation
of restriction endonuclease-generated fragments (listed in
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Fig. 1) essentially as described by Spratt et al. (28). Deleted
fadR subclones pACHincl, pACHinc5, and pACES1 were
similarly prepared.

E. coli cells were transformed essentially as described by
Dagert and Ehrlich (7). Initial selection on solid medium was
for a plasmid marker (trpE for pDF41 and Km" or Ap" for
pACYC177), followed by replica plating to minimal medium
containing oleate or decanoate to determine the fadR phe-
notype.

The fadR fabA(Ts) strain LS6592 was not able to survive
the CaCl, transformation procedure. Therefore, the plas-
mids pACfadR3 and pACYC177 were introduced by gen-
eralized transduction with ®P,vir grown on strain LS6925
carrying pACfadR3 or pACYC177. Transductants were se-
lected by growth on solid medium E containing 40 mM
glycerol, 100 uM oleate, and 100 pg of ampicillin per ml at
30°C.

Biochemical procedures. Measurement of the B-oxidation
of [1-1“Cloleate was performed with whole cells as previ-
ously described (26). A sample of the same cells was
ruptured in a French press and centrifuged at 30,000 x g,
and the supernatant was assayed for crotonase activity
essentially as described by Binstock and Schulz (2). B-
Galactosidase activity was assayed as described by Clark
(6). Before each of these procedures, cells were rinsed once
with M9 medium (19) containing 0.5% Brij 58 and twice with
M9 alone to remove all fatty acid and detergent.

Macicells and electrophoresis of proteins. The procedure
described by Sancar et al. (25) for labeling plasmid-encoded
proteins with [**S]methionine was used as previously de-
tailed (28).

Chemicals. Antibiotics and other chemicals were obtained
from Sigma Chemical Co. The various restriction endonucle-
ases and bacteriophage T4 DNA ligase were obtained from
Bethesda Research Laboratories. Acrylamide, bis-acryl-
amide, N,N,N’,N’'-tetramethylethylenediamine, ammonium
persulfate, and CsCl were of ultra-pure quality and were
obtained from Bethesda Research Laboratories. All other
chemicals were of reagent grade and were obtained from
standard suppliers.

RESULTS

Cloning of fadR from the E. coli chromosome. Since there is
no direct selection for clones containing fadR™, an indirect
selection procedure was employed which involved cloning a
transposon that was adjacent to the fadR locus. Strain
L.S5484 carries the Tc' transposon Tn/0 near fadR* (26). A
recombinant DNA library was prepared from chromosomal
DNA extracted from this strain in the vector AL47 (12) as
described above. The resultant phage pool was used to

TABLE 2. Plasmid list

Plasmid Relevant phenotype?® Reference or source

pACYC177 Ap" Km" “)

pACfadR Km" C10~ This study
pACfadR3 Ap" Km" C10~ This study
pACfadR1 Ap' C10~ This study
pACHincl Km" C10* This study
pACHinc5 Km" C10* This study
pDFfadR TrpE* C10~ This study
pDF41 TrpE* D. Helinski (3)
pACES1 Ap" C10* This study

“ Ap', Ampicillin resistant, Tc", tetracycline resistant; Km', kanamycin
resistant.
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FIG. 1. Physical maps of recombinant plasmids containing portions of the fadR gene inserted into the plasmid vector pACYC177.
Abbreviations: Ps, PstI; Hd, HindlII; EI, EcoRI; Bg, Bglll; Hc, Hincll; EV, EcoRV; Ha, Haell; and Bm, BamHI. Numbers above the DNA
fragment indicate the insert size in kb pairs. The heavy line in pACHinc5 indicates a portion of the insert derived from the vector.

select Tc™ lysogens of an fadR derivative of the strain
LE392, termed LER, using the prophage AcI857 to provide
homology for integration and the cI repressor for mainte-
nance of lysogeny. These T¢' double lysogens were subse-
quently tested for the presence of fadR™* by replica plating to
minimal medium containing the medium-chain fatty acid
decanoate as sole carbon and energy source. fadR* strains
cannot utilize decanoate as a sole carbon and energy source
(C10~ phenotype), whereas fadR strains can (C10* pheno-
type) due to their constitutive levels of the fad structural
gene products (21, 26, 27). Approximately 90% of the Tc*
lysogens of LER were also C10~ and presumed to contain a
functional fadR gene. This was confirmed when it was
determined that phage lysates prepared from one of the Tc"
C10~ lysogens (L.S1001, N Tc' fadR*) transduced several
independently isolated fadR strains to both Tc' and C10~.
The presence of the fadR™* gene was further substantiated by
determining whether these Tc" C10~ lysogens were inducible
for [**CJoleate oxidation. In all cases, the TcF C10~ lysogens
of the fadR strains were inducible for B-oxidation (data not
shown).

The fadR* gene was subcloned from A Tc" fadR™ to the
single-copy plasmid vector pDF41 (courtesy of D. Helinski,
University of California, San Diego). The resulting plasmid
pDFfadR contained a 9.4-kb insert which carried the fadR*
gene but not the Tc" gene. All further subcloning experi-
ments followed the C10~ phenotype. An 8.3-kb insert con-

TABLE 3. Oxidation of oleate and crotonase activity of E. coli
strains containing an fadR plasmid

. . Growth Rate of
Plasmid® Strain (genotype) condition® release of Crotonase
[“cico,
pACYC177 LS6924 (srl::Tnl0 Uninduced 1.0¢ 127
recA) Induced 16.2 974
LS6925 (AfadR Uninduced 18.1 1,202
srl::Tnl0 recA) Induced 14.2 2,154
pACfadR3 L.S6924 (srl::Tnl0 Uninduced 0.2 35
recA) Induced 9.1 685
LS6925 (AfadR Uninduced 0.39 37
srl::Tnl0 recA) Induced 9.2 750

@ See text and Fig. 1 for construction of hybrid plasmids.

b Uninduced, TB medium with 0.5% Brij 58 and kanomycin; induced, TB
medium with 5 mM oleate, 0.5% Brij 58, and kanomycin.

¢ Values are in nanomoles per minute per milligram of protein. Results are
the average of two experiments. Each sample was assayed in triplicate.

taining fadR* was removed by restriction of pDFfadR with
Pstl and BamHI and inserted into the plasmid vector
pACYC177 which had been restricted with the same en-
zymes. fadR strains harboring the 8.3-kb fragment inserted
into pACYC177, termed pACfadR, were phenotypically
C10~. This demonstrated that the fadR* gene could be
stably maintained within the cell in a multicopy plasmid. The
plasmid pACfadR was reduced by 5.0 kb by the deletion of
a Bglll-BamHI segment (pACfadR3) (Table 2 and Fig. 1).
Subsequent subcloning experiments localized the entire
fadR* gene to a 1.3-kb HindIII-EcoRV fragment
(pACfadR1). The gene contains at least two essential sites:
one Hincll site 0.5 kb from the HindIII end and one Haell
site 0.4 kb from the EcoRV end.

B-Oxidation in strains harboring plasmids containing the
JfadR gene. In wild-type E. coli, the enzymes which catalyze
fatty acid degradation are repressed by the trans-acting
product of the fadR gene (21, 26, 27). High levels of the fad
enzymes can be induced by growth in the presence of
long-chain fatty acids (e.g., oleate, C18:1). Constitutive
levels of the enzymes are found in fadR mutants (21, 27).
The B-oxidation of [**Cloleate was compared under inducing
and noninducing conditions in a AfadR recA strain harboring
the vector pACYC177 or the clone pACfadR3. The AfadR
recA strain LS6925 harboring the vector pACYC177 showed
high rates of [**Cloleate oxidation under inducing or nonin-
ducing conditions, whereas the clone pACfadR3 had low
levels of [C]Joleate oxidation when grown under noninduc-
ing conditions and high levels when grown under inducing
conditions (24-fold induction) (Table 3). As expected, the
fadR* recA strain LS6924 showed inducible levels of
[*CJoleate oxidation whether harboring the vector or the
clone (16- and 45-fold induction, respectively). To confirm
that the regulation of the levels of B-oxidation was due to
regulation of the fad enzymes, one enzyme activity, croton-
ase (encoded within fadAB [28]), was measured in extracts
prepared from the same cell cultures used to assay B-
oxidation. As expected, these data (Table 3) showed high
levels of crotonase under noninducing conditions only in the
AfadR recA strain with the vector pACYC177.

Transcriptional control of the fadE gene by the cloned fadR
gene. To assess whether the cloned fadR gene controls the
fad structural genes at the level of transcription, one of the
Mu d(Ap’ lacZ) fusion strains of Clark, DC531 ®(fadE-
lacZ*), was stabilized with Ap1(209) as described by Komeda
and Iino (11). In the stabilized strain A®(fadE-lacZ*), B-
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TABLE 4. Transcriptional control of A®(fadE-lacZ*) by different
fadR plasmids

B-Galactosidase activity”

fadR with the following growth
Plasmid” Strain genotype of conditions*:
\ ®(fadE-

lacZ*) TB  TBlc 1B

ole
pACYC177 LS6926 Wild type 173 82 743
LS6927  fadR::Tnl0 932 287 837
pACfadR LS6926  Wild type 32 24 877
LS6927  fadR::Tnl0 24 22 150
pACfadR3 LS6926 Wild type 31 17 396
LS6927  fadR::Tnl0 24 17 412
pACfadR1 LS6926 Wild type 56 42 1,089
LS6927  fudR::Tnl0 67 42 843
pACHincl  LS6926  Wild type 91 44 611
LS6927  fadR::Tnl0 1,198 359 1,222
pACHinc5 LS6926  Wild type 164 82 1,096
LS6927  fadR::Tnl0 1,855 498 1,430

“ See text and Fig. 1 for construction of hybrid plasmids.

® Values are in nanomoles per minute per milligram of protein.

< TB is TB medium supplemented with 0.5% Brij 58; TB lac is TB medium
supplemented with 0.5% Brij 58 and 0.4% lactose; TB ole is TB medium
supplemented with 0.5% Brij 58 and S mM oleate. All were supplemented with
ampicillin or kanomycin.

galactosidase synthesis is under the control of the putative
promoter-operator region of fadE, the gene encoding acyl-
coenzyme A dehydrogenase (21). B-Galactosidase activity is
therefore inducible by long-chain fatty acids. When an fadR
mutation was introduced into this strain [A®(fadE-lacZ*)
fadR::Tnl0], B-galactosidase activity was constitutive. Fu-
sion strains harboring the plasmids pACfadR, pACfadR3, or
pACfadR1 all showed induction of B-galactosidase when
grown in the presence of the inducing substrate oleate
whether the chromosomal genotype was fadR* or
fadR::Tnl0 (Table 4). The fadR fusion strain LS6927
INP(fadE-lacZ*) fadR::Tnl0] had constitutive levels of B-
galactosidase when harboring the vector pACYC177 or
deleted fadR subclone pACHincl or pACHinc5. This dem-
onstrates that the fadR™ gene lies between the HindIII and
EcoRV restriction sites of the original pACfadR subclone
and contains at least one essential HinclI site (Fig. 1).

In all cases, B-galactosidase levels were repressed at least
twofold in cells grown in noninducing medium (TB) (Table 4)
containing 0.2% lactose. This result was not unexpected
since the fad enzymes are subject to catabolite repression by
glucose (6, 22, 26, 29).

Implication of the cloned fadR gene in control of UFA
biosynthesis. fadR mutants synthesize significantly less UFAs
than fadR* strains (20). This characteristic is phenotypically
asymptomatic unless the fadR strain also carries a lesion in
fabA, the structural gene for B-hydroxydecanoyl-thioester
dehydrase. Unlike fadR* fabA(Ts) mutants, fadR fabA(Ts)
strains synthesize insufficient UFAs to support their growth
at low temperatures and, therefore, must be supplemented
with UFAs at both low and high temperatures (20). The low
levels of UFAs in the fadR fabA(Ts) strains are not due to
their constitutive level of fad enzymes, because fad~ deriv-
atives of these strains also do not synthesize sufficient UFAs
to support their growth at both low and high temperatures
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(20). Although the control mechanism(s) is unknown, it is
clear that a functional fadR gene is required for maximal
expression of UFA biosynthesis in E. coli (20). As additional
evidence that the plasmid pACfadR3 contains a functional
fadR gene, we determined whether this plasmid would allow
fadR fabA(Ts) strains to grow at low temperatures in the
absence of UFAs. When the plasmid pACfadR3 was intro-
duced by generalized transduction (see above) into an fadR
fabA(Ts) strain, resultant transductants carrying the plasmid
antibiotic resistance marker no longer required fatty acid
supplementation at low temperatures (30°C) but only the
restrictive temperature for fabA(Ts) (42°C). In contrast,
®P,vir grown on cells carrying the vector alone transduced
the antibiotic resistance marker to fadR fabA(Ts) strains, but
transductants failed to survive at any temperature without
fatty acid supplementation. These results confirm that
pACfadR3 carries a functional fadR* gene.

Identification of the fadR gene product. The maxicell pro-
cedure of Sancar et al. (25) was used to detect plasmid-en-
coded proteins from fadR* subclones pACfadR3 and
pACfadR1 and deleted fadR subclones pACHincl and
pACHinc5. A 29-kilodalton polypeptide was only present in
the fadR* plasmids and is presumed to be the fadR gene
product (Fig. 2).

DISCUSSION

We identified a clone containing the fadR* gene of E. coli
by using the primary selection for Tc' encoded by trans-

144
2

FIG. 2. Autoradiogram of [*S]methionine-labeled plasmid-en-
coded proteins in maxicells. Maxicells were prepared and plasmid-
encoded proteins were analyzed on a 12% sodium dodecyl sulfate-
polyacrylamide gel. Lanes: A, unirradiated control cells without
plasmid; B, irradiated control cells without plasmid; C, pACYC177;
D, pACfadR3; E, pACfadR1; F, pACHincl; and G, pACHinc5. A
total of 20,000 cpm was loaded in each sample lane. The strain used
for maxicell analysis was LS1085. Short arrows indicate the posi-
tions of protein standards (numbers are in kilodaltons). The long
arrow denotes the position of the fadR protein; note the absence of
this protein in lanes C, F, and G. The 31-kilodalton protein is
encoded by the antibiotic resistance gene of the plasmid and is
therefore present in all lanes.
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poson Tn/0 inserted near the wild-type gene since a conven-
ient, direct selection scheme for fadR* was not available.
Once identified in a AL47 recombinant phage, the fadR*
gene was subcloned first to a single-copy plasmid (pDF41)
and subsequently to a multicopy plasmid (pACYC177). As
these subclones did not carry Tc", the presence of the fadR*
gene was determined initially by restoration of the C10~
phenotype to fadR strains. The presence of the fadR* gene
on these plasmids has been confirmed by studies showing
that fadR recA strains harboring the fadR™* plasmid
pACfadR3 show inducible levels of oleate oxidation and the
fad enzyme crotonase. Noninduced and induced levels of
B-oxidation and crotonase are lower (at least twofold) in
strains harboring the plasmid pACfadR3 than in strains
harboring the vector pACYC177. This may reflect the in-
creased copy number of the cloned gene as compared with
the chromosomal gene. In addition, fadR fabA(Ts) strains
harboring the fadR™ clone grow at low temperatures without
UFA supplementation. The latter results confirm that a
functional fadR* gene is required for fadR fabA(Ts) strains
to synthesize sufficient UFA to grow at permissive temper-
atures.

These studies confirm and extend the work of Overath et
al. (21, 22) and Simons et al. (26, 27), demonstrating that the
product of the fadR* gene is a trans-acting repressor protein
of the fad regulon. Control of the fad structural gene by the
cloned fadR™* gene appears to be at the level of transcription
(6, 24). This was confirmed by comparing B-galactosidase
levels in a A®(fadE-lacZ™) fadR::Tnl0 strain harboring the
fadR* plasmids pACfadR, pACfadR3, and pACfadR1 (fully
inducible B-galactosidase activity) with the vector and de-
leted fadR plasmids pACHincl, pACHincS, and pACES1
(constitutive B-galactosidase activity).

Simons et al. (27) have shown by complementation tests
that only one polypeptide is encoded by the fadR gene. We
believe that the 29-kilodalton protein identified by the maxi-
cell procedure is the fadR gene product because (i) it is the
only protein synthesized by the 1.3-kb HindIII-EcoRYV insert
(Fig. 2), and (ii) functional fadR gene control correlatés with
the presence of this protein. This preliminary characteriza-
tion of the fadR clone may now be further exploited to study
(i) the mechanism of induction of the fad regulon, (ii) the
interaction of the fadR gene product with the fad structural
genes, and (iii) the role of this multifunctional regulator in
acetate metabolism and UFA biosynthesis. It will be inter-
esting to determine whether the cloned fadR gene exerts
control over the fab structural genes and whether this
control is also at the level of transcription.
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