2013

Scalar-top masses from SUSY loops with 125 GeV m_h and precise M_W, m_t

Vernon Barger
University of Wisconsin, barger@pheno.wisc.edu

Peisi Huang
University of Wisconsin, huang@physics.tamu.edu

Muneyuki Ishida
Meisei University, ishida@phys.meisei-u.ac.jp

Wai-Yee Keung
University of Illinois

Follow this and additional works at: http://digitalcommons.unl.edu/physicsfacpub
Scalar-top masses from SUSY loops with 125 GeV m_h and precise M_W, m_t

Vernon Bargera, Peisi Huanga, Muneyuki Ishidab,*, Wai-Yee Keungc

a Department of Physics, University of Wisconsin, Madison, WI 53706, USA
b Department of Physics, Meisei University, Hino, Tokyo 191-8506, Japan
c Department of Physics, University of Illinois at Chicago, IL 60607, USA

A R T I C L E I N F O

Article history:
Received 3 October 2012
Received in revised form 21 November 2012
Accepted 22 November 2012
Available online 23 November 2012
Editor: T. Yanagida

Keywords:
Higgs boson
Top squark
SUSY

Supersymmetry (SUSY) is a theoretically attractive extension of the Standard Model (SM) that may explain the hierarchy of the weak scale and the Planck scale. Of the SUSY particles, the lighter scalar-top squark may have a sub-TeV mass and be detectable by LHC experiments. Existence of a light top squark is particularly suggested by the Natural SUSY model [1–21], that has less fine-tuning. The first- and second-generation squarks have multi-TeV masses to mitigate unwanted flavor changing neutral currents (FCNC) and large CP violation. For a third-generation scalar GUT-scale mass $m_0(3) < 1$ TeV, m_t is less than 400 GeV from the running of the RGE equations [17].

A light top squark can give a significant radiative contribution to the W-boson mass. The precision of M_W has been improved by recent Tevatron measurements: $M_W = 80,387 \pm 12\text{(stat.)} \pm 15\text{(syst.)}$ MeV by the CDF Collaboration [22] and $M_W = 80,367 \pm 13\text{(stat.)} \pm 22\text{(syst.)}$ MeV by the D0 Collaboration [23]. Including these measurements, the world average M_W is shifted downward from [24] $M_W^{\text{exp}} = 80,399 \pm 26 \text{ MeV}$ to $80,385 \pm 15 \text{ MeV}$. The SM prediction [25,26] of M_W at 2-loop order is

$$M_W^{\text{SM}} = 80,361 \pm 7 \text{ MeV}$$

(1)

where we have used the numerical formula of Ref. [27] with central values of parameters [28]. The uncertainties of the SM prediction of M_W resulting from the uncertainties of these input parameters are summarized in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Uncertainty of the SM M_W prediction from the uncertainties of the parameters. Beside these errors, there is another uncertainty due to missing higher order corrections, which is estimated as about 4 MeV [27].</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta m_h = 1.0 \text{ GeV}$</td>
</tr>
<tr>
<td>$\delta m_t = 1 \text{ GeV}$</td>
</tr>
<tr>
<td>$\delta M_Z = 2.1 \text{ MeV}$</td>
</tr>
<tr>
<td>$\delta(\Delta m_{31}^2) = 0.6 \times 10^{-4}$</td>
</tr>
<tr>
<td>$\delta a_t(M_Z) = 0.0007$</td>
</tr>
</tbody>
</table>

The LHC experiments have reported indications of a Higgs boson at mass $125.3 \pm 0.4\text{,stat} \pm 0.3\text{,syst}$ GeV in CMS data [29] and at $126.0 \pm 0.4\text{,stat} \pm 0.4\text{,syst}$ GeV in ATLAS data [30]. Accordingly, we assume a Higgs boson mass of 125.5 \pm 1 GeV in our study. Then, the difference of the experimental and SM values of M_W is

$$M_W^{\text{exp}} - M_W^{\text{SM}} = 24 \pm 15 \text{ MeV}.$$

(2)

As can be seen in Table 1, the largest source uncertainty in M_W^{SM} (of 6.0 MeV) is from the uncertainty $\delta m_t = 1$ GeV in the top mass measurement. It is significantly smaller than the experimental uncertainty in M_W^{exp} (of 15 MeV), given in Eq. (2).

The contributions of SUSY particles to the 1-loop calculation of M_W [31] along with the W self-energy at the 2-loop level [32] can account for the 1.6σ deviation of the experimental value from the SM prediction [31]. Conversely, the M_W measurement gives a constraint on the squark masses of the third generation, $m_{\tilde{t}_1}$, $m_{\tilde{t}_2}$, and $m_{\tilde{b}_1}$. We assume no mixing in sbottom sector since that...
off-diagonal element is proportional to m_b; m_{bR} is irrelevant to δM_W.

The dominant SUSY radiative corrections to m_b are due to loops of f_1 and f_2. Implications of a 125 GeV Higgs boson for super-symmetric models are investigated in Ref. [33]. If m_b is confirmed with the value of the present Higgs boson signal ~ 125.5 GeV, the values of $m_{\tilde{g}}$, $m_{\tilde{t}_1}$, and the top-squark mixing angle θ_t can be constrained from the measured m_b. We investigate how a Higgs mass $m_h = 125.5 \pm 1.0$ GeV and the new experimental value of M_W constrain the third-generation SUSY scalar-top masses.

1. Constraint from M_W

The M_W prediction is obtained by calculating the muon lifetime [25,26,31]. The SUSY correction Δr to the Fermi constant G_F is

$$G'_F = \frac{e^2}{8\pi^2 M_W^2} (1 + \Delta r)$$

where Δr is calculated [31] in the MSSM, and the corresponding M_W prediction is obtained by iterative solution of the equation

$$M_W^2 = M_Z^2 \times \left[1 + \frac{\pi \alpha}{4} \frac{1}{\sqrt{2} G'_F M_Z^2} \left[1 \pm \Delta r(M_W, M_Z, m_t, \ldots) \right] \right].$$

Then, the correction to M_W^2 at 1-loop level is

$$\Delta M_W^2 = -M_Z^2 \frac{c_w^2 s_w^2}{s_w^2} \Delta r.$$

Δr is given by [25,26]

$$\Delta r = \frac{c_W^2}{s_W^2} \left(\frac{\delta M_W^2}{M_Z^2} = \frac{\Delta M_W^2}{M_Z^2} \right) + \Delta \alpha + (\Delta r)_{\text{rem}}.$$

The first term on the left-hand side is the on-shell energy correction to gauge boson masses, $\frac{\delta M_W}{M_Z} = \frac{\Delta M_W}{M_Z}$. $\Delta \alpha$ is the radiative correction to the fine structure constant α. The remainder term $(\Delta r)_{\text{rem}}$ includes correction box diagrams at 1-loop level which give subleading contributions compared with the first term of Eq. (7) [31].

The main contribution to δM_W is the on-shell gauge boson self-energy, which is well approximated [32,34] with its value at zero momenta as

$$\Delta r \approx \frac{c_W^2}{s_W^2} \left(\frac{\Sigma^Z(0)}{M_Z^2} - \frac{\Sigma^W(0)}{M_W^2} \right) = \frac{c_W^2}{s_W^2} \Delta \rho.$$

where $\Delta \rho$ is the deviation of the ρ parameter due to new physics in the EW precision measurements. It is related to the T parameter [35] by

$$\Delta \rho \approx \alpha(M_Z)T.$$

The squark, slepton, and neutralino/chargino loops contribute to $\Delta \rho$ at 1-loop level, which we denote as $\Delta \rho_0$. The neutralino/chargino contributions are small [36], and the slepton contributions are suppressed relative to squark contributions by color, and thus the squark contributions are dominant. It is well known [37] that the weak $SU(2)_L$ isospin violation from SUSY doublet masses gives non-zero contributions to δM_W. The scalar-top sector is expected to have a large $L-R$ mixing since the off-diagonal elements of the top-squark mass matrix are proportional to m_t. Finally, δM_W is given by [32,34]

$$\delta M_W \simeq -\frac{M_W^2}{2} \frac{c_w^2}{s_w^2} \Delta \rho_0.$$

$\Delta \rho_0 = \frac{3G_F}{8\sqrt{2}\pi^2} \left(-s_w^2 c_t^2 F_0(m_{t_1}^2, m_{t_2}^2) + s_w^2 c_t^2 F_0(m_{t_1}^2, m_{t_2}^2) \right).$$

where $F_0(a,b) = a + b - \ln \frac{a}{b}$, $s_\theta = \sin \theta_\tau$, $c_\theta = \cos \theta_\tau$, and θ_τ is the top-squark mixing angle. The 2-loop gluino/gluingo exchange effects, $\Delta \rho_{\text{SUSY}}$, are neglected since they are subleading compared with the 1-loop $\Delta \rho$ for $M_{\text{SUSY}} \gtrsim 300$ GeV [34]. The prediction of M_W in SUSY is then $M_W = M_W^{\text{SM}} + \delta M_W$. From Eq. (10) the δM_W of Eq. (2) corresponds to

$$\Delta \rho = (4.2 \pm 2.7) \times 10^{-4}, \quad T = 0.054 \pm 0.034.$$

The uncertainty is substantially reduced from that of the previous global electroweak precision analyses: $\Delta \rho = (3.67 \pm 8.82) \times 10^{-4}$ [38], $T = 0.03 \pm 0.11$ [39]. By using Eq. (10) with (2), we can determine the allowed region in the m_{t_1}, Δm_t plane for a given value of θ_τ. Here $\Delta m_t = (m_{t_2} - m_{t_1})$. The case $\theta_\tau = \frac{\pi}{2}$ is shown in Fig. 1. Note that X_t and θ_t are independent because the soft-SUSY parameters in the diagonal elements are different.

We also note that m_{b_1} in Eq. (10) is given by m_{t_1}, m_{t_2}, and θ_t.

$$m_{b_1}^2 = m_{t_1}^2 \cos^2 \theta_t + m_{t_2}^2 \sin^2 \theta_t - m_t^2 + m_b^2 - M_W^2 \cos 2\beta.$$

\[\text{Fig. 1.} \] Allowed regions in the $(m_{t_1}, \Delta m_t)$ plane for $\theta_\tau = \frac{\pi}{2}$; $\Delta m_t = (m_{t_2} - m_{t_1})$. Black (red) solid lines are $\delta M_W = 24$ MeV (maximum m_b with $X_t = -\sqrt{\Delta m_{\text{SUSY}}}$). The blue (dark-shaded) region is $m_b = 123.5$ to 127.5 GeV and the white lines represent its central value $m_b = 125.5$ GeV. The green (medium-shaded) region is allowed by δM_W at 90% CI, and the dot-dashed lines represent its 1σ deviation, $\delta M_W = 24 \pm 15$ MeV.
Eq. (12) is symmetric under the exchange
\[m_{\tilde{t}_1} \leftrightarrow m_{\tilde{t}_2}, \quad c_t \leftrightarrow s_t, \quad \text{i.e.} \quad \theta_t \rightarrow \pi/2 - \theta_t. \] (13)

2. Constraint from \(m_{\text{th}} \)

The mass of the Higgs boson in the MSSM receives substantial radiative corrections to the tree level result. The scalar-top sector gives the dominant contribution, for which \(\Delta m_t^2 \propto m_t^2 / v^2 \). Tremendous efforts [40–71] have been expended to calculate \(m_t \) with sufficient accuracy to compare with LHC measurements, and the Higgs mass has been calculated through the 3-loop level, \(a_b a_t^2 \), for the leading \(m_t^4 \) corrections [64,65] and partially at 4-loop level [59]. The dominant contributions arise from supersymmetric loops involving the top squarks, along with gluon and gluino exchanges.

There are several different approaches that have been used in the theoretical evaluation of \(m_t \): perturbative calculation of the Higgs self-energy diagrams to (i) 2-loop and (ii) 3-loop orders, (iii) effective field theory (EFT) methods based on second derivatives of an effective Higgs potential, (iv) effective potential method based on RGE evolution from the GUT scale, and (v) the effective Lagrangian method. We succinctly summarize the five methodologies:

(i) The FeynHiggs package [58] calculates \(m_t \) diagrammatically in 2-loop order in the on-shell (OS) renormalization scheme.

(ii) A MATHEMATICA program, H3m [65], does the 3-loop calculation; it is interfaced with the 2-loop FeynHiggs program for \(m_t \) predictions. A numerical 3-loop accuracy on \(m_t \) has been estimated to be \(\sim 1 \) GeV. However, its expansion in mass-squared ratios does not apply in one parameter regions relevant to Natural SUSY.

(iii) In the EFT 2-loop leading-log approximation [48,43,67], \(m_t^2 \) is calculated in the limit of stop matrix elements \(M_L = M_R \) [67–71], and \(M_L \gg M_R \) [50].

The \(m_t^2 \) formula in the general case with \(M_L \neq M_R \), is given in the large \(m_t \) limit by [67]

\[
m_t^2,\text{EFT2}(m_{\tilde{t}_1}, m_{\tilde{t}_2}, x_t) = M_t^2 c_{2\beta} \left(\frac{3m_t^4}{2\pi^2 v^2} \frac{1}{2} \bar{X}_t + t + \left(\frac{1}{16\pi^2} - 32\pi \alpha_s(m_t) \right) \right) \left(\bar{X}_{t\max} + \frac{t_{\max}}{2} \min_t - \min_{t_{\max}} (2t - t_{\min} - t_{\max}) \right),
\] (14)

where \(\nu \equiv 1/\sqrt{2}G_F \approx 246 \) GeV and the contribution from the sbottom sector can be omitted so long as the \(\tan\beta \) is not close to its upper bound of \(\sim 60 \).

In the above equation, \(\bar{X}_t \) is related with the stop-mixing parameter \(x_t = A_t - \mu \cot \beta \) by

\[
\bar{X}_t = 2|X_t|^2 \left(\frac{m_{\tilde{t}_2}^2}{m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2} + |X_t|^2 \frac{2 - m_{\tilde{t}_2}^2/m_{\tilde{t}_1}^2}{m_{\tilde{t}_2}^2/m_{\tilde{t}_1}^2} \ln(m_{\tilde{t}_2}^2/m_{\tilde{t}_1}^2) \right) \right). (15)
\]

In Eqs. (14) and (15) the \(X_t \) is a quantity regularized with the renormalization scale \(\mu = M_{\text{SUSY}} \) in the \(\overline{\text{MS}} \) scheme, while the running top-quark mass \(\tilde{m}_t \) is evaluated at \(\mu = \mu_0 \) itself in the \(\overline{\text{MS}} \) scheme. \(\tilde{m}_t(\mu) \) was calculated in the \(\overline{\text{DR}} \) scheme by Ref. [72] and in \(O(a_t^7) \) [73,74]. Its value in the \(\overline{\text{MS}} \) scheme is \(\tilde{m}_t = 163.71 \pm 0.95 \) GeV [39] which corresponds to the on-shell top-quark mass \(M_t = 173.4 \pm 1.0 \) GeV.

The \(\bar{X}_t \) in Eq. (15) is well approximated as

\[
\bar{X}_t = 2X_t^2 - \frac{16}{6} x_t = \frac{X_t}{M_{\text{SUSY}}}, \quad x_t = \frac{X_t}{M_{\text{SUSY}}}, \quad (16)
\]

with the choice of SUSY-breaking scale

\[
M_{\text{SUSY}} = \frac{1}{2}(m_{\tilde{t}_1} + m_{\tilde{t}_2}). \quad (17)
\]

The \(m_{\text{th}}^2 \) of Eq. (14) has its maximum at \(|x_t| = |X_t|_{\text{max}} = \sqrt{3} \) or \(|x_t| = |X_t|_{\text{max}} = \sqrt{3} M_{\text{SUSY}} \), for which \(\bar{X}_t = 6 \). It is also a common feature of the analytic EFT formula at 1– and 2-loop levels [67–70]. A region \(|x_t| \gtrsim \sqrt{3} M_{\text{SUSY}} \) is theoretically not allowed from considerations of false vacuum of charge and color symmetry breaking [75–78].

\(M_{\text{max}} \) are related to the stop squared-mass matrix \(M_t^2 \) in on-shell (OS) renormalization scheme as

\[
M_t^2 = \left(M_{t1}^2, M_{t2}^2 \right) = \left[\begin{array}{cc} m_{t1}^2 & m_{t1} m_{t2} \left(2\bar{X}_t \right) \\ m_{t1} m_{t2} & m_{t2}^2 \end{array} \right], \quad \left(M_{t1}^2 \right)_{\text{max}} \left(M_{t2}^2 \right)_{\text{max}} = \min \left(M_{t1}^2, M_{t2}^2 \right) = \frac{m_{t1}^2 + m_{t2}^2}{2} \frac{(m_{t1}^2 - m_{t2}^2)^2 - (M_{t1}^2, M_{t2}^2)}{2}. \quad (18)
\]

Our sign convention of \(X_t \) agrees with that used in Ref. [70]. \(X_t^2 \) is the on-shell stop mass matrix parameter. The relation between \(M_{\text{SUSY}} \) and \(X_t^2 \) in OS scheme and those in \(\overline{\text{MS}} \) scheme are given in [70], see also [57]. Here we treat \(M_{\text{max}} \) as being equal to \(M_{\text{max}} \) in Eq. (14) since the difference is small (less than 4%) for \(M_{\text{SUSY}} > 1 \) TeV.

In Eq. (17), the r.h.s. is given by the on-shell stop masses and thus, more precisely Eq. (17) is \(M_{t1}^2 \). Here we regard \(M_{\text{SUSY}} \) as being equal to \(M_{\text{SUSY}} \) in \(\overline{\text{MS}} \) scheme since the difference is small.

On the other hand, \(X_t \) affects a relatively large difference between the \(\overline{\text{DR}} \) and OS schemes. Numerically, we define the ratio

\[
\kappa = (X_t)_{\text{max}} / (X_t^2)_{\text{max}} \quad (20)
\]

which is about 1.2 from the formula relating \(\overline{\text{MS}} \) and OS schemes given \(^1\) in Carena et al. [70]. Coincidentally, \(\kappa \approx \sqrt{3}/2.0 \). We choose this form because the factor \(\sqrt{3} \) matches the x_t value in the \(\overline{\text{MS}} \) scheme giving maximum \(\bar{X}_t \) of Eq. (16) which leads to maximum \(m_{\text{th}}^2 \) of Eq. (14). The 2.0 in the denominator is given as a numerical value of the ratio \((X_t^2)_{\text{max}} / M_{\text{SUSY}} \) in Ref. [70]. We have also checked the ratio (20) by using ISAJET 7.83 [80]: ISAJET adopts the \(\overline{\text{DR}} \) scheme and \(\overline{\text{DR}} \sim \overline{\text{MS}} \) and converts to OS stop masses using [57]. ISAJET outputs of \(X_t^2 \) and on-shell stop masses are numerically consistent with the relation \((X_t^2)_{\text{max}} / (X_t^2)_{\text{max}} = \sqrt{3}/2.0 \). (See, also, the caption of Fig. 4.) We apply this relation (20) in the region close to “maximal mixing”, \(|X_t| / M_{\text{SUSY}} \sim \sqrt{3} \):

\[
X_t = \kappa X_t^2, \quad \kappa = \sqrt{3}/2.0. \quad (21)
\]

The EFT method is not gauge-fixing invariant [59]. Nonetheless, it is found to give a good approximation when compared to

\(^1\) \(X_t^2 = X_t^2 + \frac{1}{2} M_{\text{SUSY}}[\frac{1}{2} - X_t^2 X_t^2 + \frac{1}{2} X_t^2 \ln \frac{m_{\tilde{t}_1}}{m_{\tilde{t}_2}}] \) in 1-loop level [70] where the renormalization prescription is not specified in \(O(a_t^3) \) term.
other methods. The formula (14) with (15) give larger \(m_h \) values by about 1 GeV than the results of H3m with the inputs of the Natural SUSY benchmark points, as will be commented on below.

The \(m_h^2 \) formula obtained from the 2-loop diagramatic approach (i) can be matched to the EFT formula above by adjusting the renormalization prescription [70], except for additional non-logarithmic terms in the diagrammatic formula that give asymmetric heights of the peak \(m_h \) at \(X_t > 0 \) and \(X_t < 0 \). The latter contributions arise from SUSY threshold effects that are not taken into account in the RGE running down from the SUSY-breaking scale that includes logarithms of \(M_{\text{susy}}/\tilde{m}_t \).

(iv) In the unification approach, RGEs are evolved from the GUT coupling unification scale [72], where the first- and second-generation scalars in Natural SUSY have an \(m_0 \sim 10 \) TeV mass and the third-generation scalars have \(m_0 \sim 1 \) TeV [17,79]. The Higgs potential at the SUSY-breaking scale \(M_{\text{susy}} \) is based on 1-loop MSSM radiative corrections that are RGE improved. With the choice of \(M_{\text{susy}} = \sqrt{m_t \bar{m}_t} \), the most important 2-loop effects [66] are included in the effective potential. The RGE evolution is implemented with the ISASUSY package [80,81], with a scan over GUT-scale parameters.

(v) In the effective Lagrangian approach, the gauge couplings, the Yukawa couplings, and the soft-SUSY terms are also RGE evolved to the weak scale from high scale boundary values, where the gauge couplings unify. The ISASUSY program for this RGE evolution incorporates SUSY threshold effects [80,81]. The weak scale parameters so obtained are taken as input to the diagrammatic calculation at 2-loop order by the FeynHiggs [58] or 3-loop order by the H3m [65]. It has been argued [59] that this method may provide the most accurate evaluation of the leading and next-to-leading contributions to \(m_h \) in 3-loop order in the approximation of large QCD and top-quark Yukawa couplings.

We adopt the latter approach in the framework of Natural SUSY using ISASUSY [80,81], with a scan over GUT-scale input parameters. We have also converted the sign convention of \(X_t \) in ISASUSY in order to match ours. We then evaluate \(m_h \) using the H3m program with the ISASUSY input for the SUSY parameters at the weak scale. Specifically, we adopt the benchmark line NS3 of Ref. [17] that has a Higgsino mass term \(\mu = 150 \) GeV and other Natural SUSY benchmark points RNS1 and RNS2 of Ref. [18].2

The NS3 gives \(m_h = 125.5 \) GeV that is consistent with the LHC experimental value. There is a strong preference for \(A_t(M_{\text{susy}}) \sim 0 \) and \(\tan\beta > 10 \) in Natural SUSY [17]. Since \(\mu \) is small in Natural SUSY, \(X_t \) is approximately \(A_t \) for \(A_t \sim \) TeV. We should note that variations of the masses of the first and second generations and gauginos from the NS3 inputs have little effect on \(m_h \) since they are heavy in Natural SUSY scenario.

The \(m_h \) effective Lagrangian result with the NS3 input parameters can be numerically represented by the formula

\[
m^2_h = m_{h,B}^2(x_t) = M^2 + 2\delta m_B^2 + 3\mu^2 \theta^2 [c_0 + (c_1 + c_2 x_t) \tilde{X}_t],
\]

\[
\tilde{X}_t = 2x_t \left(1 - \frac{x_t^2}{12} \right), \quad x_t = \frac{X_t}{M_{\text{susy}, B}} \tag{22}
\]

where the subscript \(B \) means the NS3 benchmark point: \(c_2 \delta m_B = \cos 2\beta \mu \) is calculated from \(\tan \beta = 19.4 \). \(M_{\text{susy}, B} \) is the SUSY-breaking scale corresponding to \((m_{11}, B, m_{12}, B) = (812.5, 250.5, 24.8, 492.1) \).

\[\text{Fig. 2.} \ A_t(M_{\text{susy}}) \text{ dependence of } m_h \text{ in 3-loop calculation by } H3m \text{ with the effective Lagrangian method. (Solid circles) The input parameters are a Natural SUSY benchmark line (NS3): } (m_{1, B}, m_{1, B}) = (812.5, 1623.2) \text{ GeV which corresponds to } M_{\text{susy}} = 1212.9 \text{ GeV. It is obtained by varying the third-generation scalar mass } m_0 \text{ at the unification scale: The solid line is the formula, Eq. (22), that is designed to numerically reproduce the effective Lagrangian result. The dashed lines are obtained from the formula (23) withinputs } (m_{1, B}, m_{1, B}) = (812.5, 1623.2) \text{ GeV is shown by blue band. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)} \]

[2] The SOFTSUSY [82], SPheno [83,84], and SuSpect [85] codes use the same algorithm as ISAJET [80,81] and employ similar threshold transitions matching the MSSM to the SM. The four codes produce mass spectrum in the mSUGRA model that is in close agreement. The ISAJET [80,81] code provides the NUHM2 model of our interest.
peak value of m_t gradually increases with $\sim \ln M_{\text{susy}}$. The Higgs mass constraint $m_h > 124.5$ GeV requires a SUSY-breaking scale $M_{\text{susy}} \gtrsim 0.6$ TeV.

The M_{susy} dependence of m_h in Natural SUSY points following Ref. [17] is shown in Fig. 3. The points indicate a $\ln M_{\text{susy}}$ dependence, and in order to explain $m_h > 124.5$ GeV, it is indeed plausible that $M_{\text{susy}} > 1$ TeV.

The maximal mixing condition $|X_t| \simeq 2 M_s$, which corresponds to $|X_t| \simeq \sqrt{6M_s}$ in the $\overline{\text{MS}}$ scheme, can be obtained by RGE running from the SUSY-GUT scale, as illustrated for Natural SUSY in Fig. 4; note that $A_t < 0$ is almost absent. The generated points are mainly in the region $0 < A_t < 2$; however, although improbable from the scan, the maximal mixing $X_t = \sqrt{6M_{\text{susy}}}$ is possible in Natural SUSY.

By taking $m_h = 125.5 \pm 2$ GeV as a constraint to Eq. (23), we can determine the allowed region in $(m_{t_1}, m_{t_2} \mu)$ plane for a given value of θ_t. Here we allow a somewhat large uncertainty of $m_h, 2$ GeV, because of the theoretical uncertainty of our formula (23). The Higgs mass constraint severely constrains the top-squark sector parameters, especially in that $\Delta m_t (≡ m_{t_2} - m_{t_1})$ has a lower limit. From an ISAJET scan over GUT-scale parameters, we obtain the θ_t dependence of Δm_t in Fig. 5. Almost all data points have large $\theta_t, 3 \leq \theta_t < 1.1$, which means $\ell_1 \simeq \ell_2$. Δm_t decreases as θ_t decreases from 1.1. Actually θ_t has a lower limit of 1.1 and we find that the on-shell stop mass difference is bounded by

$$\Delta m_t \gtrsim 400 \text{ GeV}. \quad (25)$$

3. Concluding remarks

We have studied the implications for the scalar-top sector of the recent Tevatron M_W measurements and the LHC and Tevatron indications of a 125 GeV Higgs boson. We utilized the H3m package to evaluate m_{t_2} through 3 loops in an effective Lagrangian approach with RGE evolution from the GUT scale. Natural SUSY was assumed, for which the third-generation scalar quarks are much lighter than the multi-TeV masses of squarks of the first two generations and the Higgsino mixing parameter μ is small, 150 GeV. A maximal Higgs mass is attained that is close to the LHC experimental indications. The condition for maximal Higgs mass is an off-diagonal value of the stop-mixing matrix $X_t = \sqrt{6M_{\text{susy}}}$ in the $\overline{\text{MS}}$ scheme, which requires an on-shell soft-SUSY parameter at the weak scale of $A_t(M_{\text{susy}}) \approx 2$ TeV. The minimum value of the mass splitting of two top-squark states was found to be 400 GeV.

As can be seen in Fig. 1, the allowed region from the m_h constraint (blue region) satisfies the M_W constraint at 90% Confidence Level, independent of the value of θ_t. For $\theta_t = \frac{\pi}{2}$ a top squark with sub-TeV mass is somewhat favored by the M_W data; $m_{t_1} > 500$ GeV is possible for almost all values θ_t when $\ell_1 \simeq \ell_2$. Precise experimental determination of m_h at the LHC will tighten the restrictions on the top-squark masses. The detection of the scalar-top states at the LHC would establish the SUSY theoretical underpinning of electroweak symmetry breaking.

Acknowledgements

V.B. thanks Howie Baer for valuable conversations on this topic. M.I. is very grateful to the members of the Phenomenology Institute of University of Wisconsin–Madison for hospitality. This work was supported in part by the U.S. Department of Energy under grants No. DE-FG02-95ER40896 and DE-FG02-12ER41811, in part by KAKENHI (2274015, Grant-in-Aid for Young Scientists (B)) and in part by Special Researcher grant of Meisei University.