
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

2011

End-User Programmers and their Communities:
An Artifact-based Analysis
Kathryn T. Stolee
University of Nebraska at Lincoln, kstolee@cse.unl.edu

Sebastian Elbaum
University of Nebraska-Lincoln, elbaum@cse.unl.edu

Anita Sarma
University of Nebraska at Lincoln, asarma@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Stolee, Kathryn T.; Elbaum, Sebastian; and Sarma, Anita, "End-User Programmers and their Communities: An Artifact-based
Analysis" (2011). CSE Conference and Workshop Papers. 216.
http://digitalcommons.unl.edu/cseconfwork/216

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/216?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages

End-User Programmers and their Communities: An Artifact-based Analysis

Kathryn T. Stolee, Sebastian Elbaum, and Anita Sarma

Department of Computer Science and Engineering
University of Nebraska – Lincoln

Lincoln, NE, U.S.A.
{kstolee, elbaum, asarma}@cse.unl.edu

Abstract—End-user programmers outnumber professionals
programmers, write software that matters to an increasingly
large number of users, and face software engineering challenges
that are similar to their professionals counterparts. Yet, we
know little about how these end-user programmers create
and share artifacts as part of a community. To gain a better
understanding of these issues, we perform an artifact-based
community analysis of 32,000 mashups from the Yahoo! Pipes
repository. We observed that, like with other online communi-
ties, there is great deal of attrition but authors that persevere
tend to improve over time, creating pipes that are more con-
figurable, diverse, complex, and popular. We also discovered,
however, that end-user programmers employ the repository
in different ways than professionals, do not effectively reuse
existing programs, and in most cases do not have an awareness
of the community. We discuss the implications of these findings.

Keywords-end-user programmers, community analysis, arti-
fact repositories

I. INTRODUCTION

The population of end-user programmers is quickly over-

whelming that of professional programmers. In 2005 there

were an estimated 55 million end-user programmers and 3

million of professional programmers in the United States.

The number of end users was projected to increase to 90

million in 2012 with 13 million describing themselves as

programmers [1], but it is not just their numbers that matter.

Despite their lack of computer science education, end-user

programmers are increasingly creating programs that are

meaningful and have consequences not just to them or the

businesses for which they work (e.g., a spreadsheet formula

error reportedly cost a company millions of dollars [2]), but

also for emerging online communities. These communities

are growing rapidly, exist in many domains, and facilitate

knowledge sharing and code reuse. For example, the public

repositories of mashups in Yahoo! Pipes [3], web page

modification scripts in Userscripts [4], and animations in

Scratch [5] have tens of thousands of program artifacts

submitted by tens of thousands of users.

As they develop software, these end-user programmers

confront some of the same challenges as professional devel-

opers and their communities. For example, as individuals,

they need to configure sample code to run in their envi-

ronments, use new APIs, or find a fault causing a failure.

As a group, they need to learn how to build on, share,

and contribute to the community. Yet, our understanding

of the challenges, motivations, and needs of these end-user

programmers and their communities is quite limited. Studies

of online end-user communities have sought to characterize

the participants roles using social evidence [6], but little

is known about the type, quantity, and quality of artifacts

contributed, and how end users and their contributions

evolve over time.

Building on the success of studies of open source com-

munities through public archives (e.g., [7] [8] [9]) this

work aims to provide a better understanding of end-user

programmers in a community setting. We perform a study

of over 32,000 programs submitted to the Yahoo! Pipes

public repository, characterizing the artifacts and using them

to draw inferences about author behavior, skill levels, and

community awareness. Specifically, we address three general

research questions: What are the characteristics of the
Yahoo! Pipes community? What are the differences in pipe
characteristics as authors gain experience? and What are
the characteristics of the most prolific authors?

Our findings reveal that, like with other online commu-

nities, there is great deal of attrition as over 81% of the

authors we studied are active (i.e., contribute artifact(s) to the

repository) for only one day. We also observe that the authors

who persevere tend to improve over time, creating pipes

that are more configurable, diverse, complex, and popular.

We also discovered, however, that end-user programmers

employ the repository in different ways than professionals.

Approximately half of the most prolific authors usually

create pipes that are very similar to pipes they had created

in the past, causing the repository to be full of duplication.

Additionally, authors do not effectively reuse programs in

the repository, and in most cases do not demonstrate an

awareness of the community; only 30% of the authors

regularly submit pipes that are highly unique compared to

other pipes in the repository.

II. RELATED WORK

Two areas of related work require discussion: end-user

programmers and studies on socio-technical communities

with artifact repositories.

2011 International Symposium on Empirical Software Engineering and Measurement

978-0-7695-4604-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ESEM.2011.23

147

A. End-user Programmers

End-user programmers create programs and engage in

programming activities to support their hobbies and work.

What differentiates end-user programmers from professional

programmers is that to end users, software is a means to

an end, not the end itself [10]. These end users utilize

programming environments and languages such as spread-

sheets, databases, web macros, mashups, and many domain-

specific scripting languages, many of which have large

public repositories (e.g., [3] [4] [5]).

Unlike professional programmers, end-user programmers

do not have much support for all stages of the software

lifecycle, and may have a different lifecycle than that which

is used by other types of programmers. Studying end-

user programmers can reveal their needs, and researchers

and practitioners have started applying software engineering

techniques to provide support for end users’ tasks. For

example, version control has been introduced to help end

users during development [11] [12], debugging has been

introduced to allow users to ask questions about output

during development [13] or preview program output dur-

ing testing [3], assertions have been used to increase the

dependability of web macros during runtime [14], and

strides have been made toward providing better program

maintenance through refactoring support [15]. However,

software engineering support is far from pervasive in end-

user programming environments.

Repositories provide a mechanism for end-user program-

mers to share code and learn from the experiences of others,

and tend to attract many participants to the communities.

For example, Yahoo! Pipes has over 90,000 users [6],

Userscripts has over 57,000 users [4], and Scratch has over

500,000 users [16]. Beyond the number of participants,

the repositories maintained by these communities contain

thousands of public artifacts. For example, the Yahoo! Pipes

repository contains over 92,400 artifacts [3], the Userscripts

repository contains over 57,200 scripts [4], and the Scratch

website contains over 47,800 galleries with as many as 1,944

projects per gallery [5].

B. Studies on Communities

Researchers in software engineering and computer sup-

ported cooperative-work have sought to understand the mo-

tivations and social organizations of developer communities.

Research on communities with public artifact repositories

has been particularly successful in open-source (e.g., [7] [8]),

and researchers are beginning to leverage repositories to

also study end-user programmer communities (e.g., [6] [16]).

Here, we consider previous work that explores how devel-

opers join these communities and social factors that govern

their contributions.

Becoming an active member of an open source project

is meritocratic; joiners start at low technical skill and low

responsibility roles, such as participating in the mailing

list, and move to more central roles as they gain more

experience learning [7] [8] [9]. Contrastingly, becoming an

active member in many end-user programmer communities

seems to be universally accessible. Contributors are typically

not required to demonstrate any expertise to participate.

In open source communities, most communication and

project activities are archived through mailing lists, bug

discussions, bug activities, versioning systems [7]. End-user

communities, on the other hand, have been observed to

communicate through user comments associated with arti-

facts [16] and public message boards [6]. These differences

in communication mechanisms may be rooted in funda-

mental differences between the groups, where generally the

open-source programmers work toward a common goal and

end-user programmers work toward individual goals [10].

Power law relationships have been shown to hold on open-

source project sizes, the number of developers per project,

and project memberships (number of projects joined by a

developer). This is largely because of social relations, where

members like to join projects that are already popular or join

projects where they know some of the key players [17]. Yet

for end-user communities, and specifically for Yahoo! Pipes

– the particular subject of our study – the social factors

may be different. Previous work has explored the nature

of participation in the Yahoo! Pipes message boards [6],

but little is known about the organization, participation, and

growth patterns for the participants who contribute to the

public artifact repository.

III. ABOUT MASHUPS AND YAHOO! PIPES

The Yahoo! Pipes community is among the largest end-

user programmer communities that has emerged in recent

years. Released in 2007, the Pipes environment provides

language and development support for the creation of web

mashups.

A mashup is an application that manipulates and com-

poses existing data sources or functionality to create a new

piece of data or service that can be plugged into a web page

or integrated into an RSS feed aggregator. One common type

of mashup, for example, consists of grabbing data from some

data sources (e.g., house sales, vote records, bike trails, map

data), joining those data sets, filtering them according to a

criterion, and plotting them on a map published at a site [18].

This type of behavior is naturally expressed on Yahoo! Pipes,

as shown in Figure 1, which provides an example of the

Pipes Editor, the Yahoo! Pipes development environment,

and shows a pipe taken from the community that plots home

sale information on a map.

The structure of a pipe resembles a graph, where the

nodes are referred to as modules (boxes in the figure), and

the edges are referred to as wires (connections between the

modules). The behavior of the pipe can be best understood

from top to bottom, as the data flows in a directional

manner from the top of the pipe through the output at the

148

Figure 1. Yahoo! Pipes development environment

bottom. At the top is a module named Fetch Feed, which

accesses external data sources and provides data to the pipe;

this module contains two fields, each specifying a different

website. The Fetch Feed module feeds data to a Filter
module, which removes data from the feed based on the

specified criteria. In the example, the filter module permits

data that matches any of the four specified criteria. Next,

a Location Extractor module geotags the data, allowing it

to be plotted on a map. Lastly, the data flows to an Output
module, the final module for any pipe.

An author can create a pipe from scratch or by cloning an

existing pipe. Once a pipe has been created, it can be shared

with the community; all pipe authors are free to contribute to

the public repository. An author can commit any of their own

pipes by clicking the publish button from a pipe’s infomation

page (accessible by clicking the Run Pipe... link from the

Pipes Editor, shown at the top of Figure 1).

IV. STUDY

Through exploration of the Yahoo! Pipes repository, we

have identified several research questions and conducted an

empirical study to assess those questions.

A. Research Question

We pose three broad research questions in this work.

The first is about the community at large, the second is

about pipe characteristics as authors gain experience, and the

third is about the characteristics of the most prolific (most

contributing) authors in the Yahoo! Pipes community.

RQ1: What are the characteristics of the Yahoo! Pipes

community?

• RQ1a: How much attrition is there among the authors

in the community?

• RQ1b: How much do authors typically contribute?

• RQ1c: What are the general characteristics of the

pipes in the community, considering structural diversity,

popularity, size, and configurability?

RQ2: How do pipe characteristics change as the authors

gain experience?

• RQ2a: What are the differences between pipes con-

tributed when authors are new to the community versus

when they have been involved for a determined amount

of time?

• RQ2b: What are the differences between pipes con-

tributed by authors with few contributions versus those

contributed by authors with many contributions?

We view the most prolific authors as those who have

the greatest impact on the repository in terms of quantity.

This leads us to explore characteristics of these authors’

contributions:

RQ3: What are the characteristics of the pipes created

by the most prolific authors? That is, how different are a

prolific author’s contributed pipes compared to their previous
contributions and the pipes in the community?

• RQ3a: What implications does the uniqueness of an

author’s contributions have for the types of activities in

which the author engages?

• RQ3b: What implications does the uniqueness of an

author’s contributions over time have for an author’s

evolution in terms of skill level and the value provided

to the community?

• RQ3c: What implications does the uniqueness of an

author’s contributions have for the author’s awareness

of the community?

For our analysis we look at four dependent variables:

configurability, popularity, and size of the pipes, and diver-

sity (or uniqueness) when compared to pipes created by the

author and by the community. Each of these variables is

defined in the next section. We manipulate several indepen-

dent variables related to author experience to uncover trends,

including the days of experience an author had when the pipe

was created and number of pipes created by an author.

B. Study Setup

To address the research questions, we conduct an empiri-

cal study using artifacts from the Yahoo! Pipes repository. In

performing this study, we had three main challenges: obtain-

ing the artifacts, analyzing the artifacts, and measuring the

differences (i.e., diversity) among artifacts. In this section,

we describe the methods for each of these steps.

1) Artifact Collection: To perform this study we lever-

aged an infrastructure from a previous study to scrape

the Yahoo! Pipes repository for artifacts [15]. Between

January and September 2010, we scraped 32,887 pipes

created between February 2007 and September 2010 from

the Yahoo! Pipes repository. This number corresponds to the

149

Table I
SUMMARY OF DIVERSITY METRIC LEVELS

Level Criteria
1 The structure and content of the pipes are identical
2 The structure and fields per module are the same, but the

field values relax
3 Topography/structure is the same; the field counts and

values relax
4 Module bag (module names and counts) is the same
5 Module set is the same
6 Type bag is the same
7 Size is the same
8 The pipes exist

set of distinct pipes returned from approximately 50 queries

against the repository, each of which returned a maximum

of 1,000 pipes. To obtain a representative pool of pipes

without restricting the selection based on configuration or

structure (since that may impact the effectiveness of this

study in terms of measuring diversity among artifacts), we

issued queries for pipes that utilized the 50 most popular

data sources.1

2) Artifact Analysis: Once the artifacts were collected,

the next step was to measure different properties of the pipes.

The pipe structures are returned from Yahoo!’s servers in

JSON format; we were able to reuse parts of the decoding

and analysis infrastructure from our previous study [15] and

extended it to measure the additional properties needed for

this work. Now, we define each of the dependent variables

measured for this study:

Size: Pipe size is measured in number of modules.

In Figure 1, the size of the pipe is four, since it has four

modules. Every pipe is required to have an Output module,

and so the minimum size is one for a pipe that has no

behavior. Among the sample we studied, the maximum size

is 287 with an average of 8.2 and a median of 6.0.

Configurability: The configurability of a pipe is mea-

sured by the number of user-setter modules in a pipe, where

a user-setter module allows a user to specify field values at

run-time [15]. Configurable modules allow authors to create

more general pipes that can serve a variety of purposes.

Within the sample, one-third of the pipes have at least one

user-setter module.

Popularity: The popularity of a pipe is measured in the

number of clones; a clone is created when a user creates an

exact copy a pipe in the repository for their own purposes.

This copy can then be saved and modified by the user,

allowing them to reuse their own work or the work of

others. The number of clones is reported for each pipe in

the repository. Among the sample we studied, over 54% of

the pipes had been cloned at least once.

Diversity: Due to the size and the limited expressive-

ness of the Yahoo! Pipes language, we conjectured that there

was much similarity among the artifacts in the repository. To

1To facilitate replication, the data used in this analysis is available online:
http://cse.unl.edu/∼kstolee/esem2011/artifacts.html

Table II
DURATION OF AUTHOR ACTIVITY (DAYS)

Duration # Authors % Authors
1 day 16,592 81.68%
2 days to 1 week 957 4.71%
1 week to 1 month 655 3.22%
1 month to 6 months 928 4.56%
6 months to 1 year 537 2.64%
1 year to 3 years 631 3.10%
More than 3 years 13 0.06%
all 20,313 100.00%

assess this conjecture, we defined an ordinal diversity metric

to measure the types of differences (i.e., uniqueness) among

the artifacts and determine how much novelty exists in the

repository as a whole. The diversity metric has eight levels

(1 . . . 8) to describe differences between any two pipes in the

repository, summarized in Table I. Given two pipes, p1 and

p2, a low diversity level indicates that p1 and p2 are very

similar (i.e., there are few differences between the pipes).

Higher levels of diversity indicate that p1 and p2 are less

similar and thus more unique.

Level 1 represents pipes that have the same behavior as

another pipe in the population, possibly resulting from a

clone. Level 2 represents pipes with the same structure in

terms of modules, the number of fields per module, and

connections, but the parameter values can change, whereas

Level 3 represents pipes with the same structure, relaxing all

parameter values and counts. Level 4 relaxes the connections

between the modules but requires that the module bags

(module names and frequencies) are the same, and Level

5 relaxes the frequencies and considers only the set of mod-

ules. Level 6 considers the bag of modules based on types

(i.e., generator, setter, path-altering, and operator [15]),

Level 7 considers only the number of modules, and Level 8

is a catch-all for pipes not clustered in an earlier level (truly

unique pipes). The goal was to create a diversity gradient

where the lower levels apply to pipes that are very similar,

and the higher levels to pipes that are very diverse, with the

assumption that differences in field values are less impactful

than differences in topology. In summary, levels 1, 2, and 3

consider changes to fields but keep the structures the same.

Levels 4 and 5 consider changes to the connections between

modules, but utilize the same language features (modules).

Levels 6, 7, and 8 represent pipes that are quite different.

V. ANALYSIS OF COMMUNITY

In this section, we explore how much and how often

authors contribute to the repository, and the characteristics

of the contributed pipes.

RQ1a: Author Attrition

From the sample of 32,887 pipes, we found they were

created by 20,313 distinct authors. Most authors do not stay

active in the community for very long, where activity is

measured by the difference between the earliest and latest

creation dates on the pipes they contributed. Approximately

150

Table III
AUTHOR CONTRIBUTIONS (IN # OF PIPES)

of Pipes # Authors % Authors
1 15,420 75.91%
2 2,761 13.59%
3 to 5 1,572 7.74%
6 to 15 479 2.35%
16 or more 81 0.39%
all 20,313 100.00%

Table IV
CLUSTERING OF 32,887 PIPES

Diversity Level # Clustered % of Pipes
1 1,731 5.26%
2 15,186 46.18%
3 19,319 58.74%
4 20,262 61.61%
5 24,316 73.94%
6 29,346 89.24%
7 32,862 99.93%
8 32,887 100.00%

82% of the authors were active for only one day, and

only 13 authors were active for more than three years

(maximum was 1,253 days), as shown in Table II. The

Duration column indicates the length of time an author was

active and the # Authors column indicates how many authors

were active for this time duration. As shown, the Yahoo!

Pipes community suffers from attrition levels similar to other

online communities [17].

RQ1b: Author Contributions

Contributions are measured in number of pipes, and the

average author contributes 1.62 pipes. Among the authors,

15,420 (76%) submitted only one pipe, as shown in Table III.

This accounts for 47% of the pipes in the sample. The

remaining 24% of the authors are responsible for over 53%

of the pipes, following a skewed distribution with a long

tail; the most prolific author created 98 pipes.

RQ1c: Artifact Characteristics

We explore the artifact characteristics considering each of

the dependent variables: diversity, popularity, configurability,

and size.

Diversity: We create clusters among the pipes in the

sample given the diversity metric in Table I. When a pipe

p matches another pipe at some levels l, we say that p is

clustered at level l, where l is the minimum of all levels

in which a match occurs. If we count the number of pipes

that are clustered at level 1, we see that only 1,731 (5.26%)

of the pipes out of 32,887 have an exact match elsewhere

in the sample, as shown in Table IV. The Diversity Level
column indicates the level of diversity, the # Clustered
column indicates the number of pipes that were clustered

at the given level, and the % of Pipes column identifies the

percentage of pipes can be clustered at a given level.

Table IV shows that there is much diversity among the

pipes in the repository at low levels of abstraction (only

5% of the pipes are clustered at level 1), but not as much

diversity at higher levels (nearly 60% of the pipes have

Table V
POPULARITY PER PIPE IN COMMUNITY

Clones # Pipes % Pipes
0 15,013 45.65%
1 7,175 21.81%
2 3,290 10.00%
[3, 5] 3,766 11.44%
[6, 10] 1,632 4.96%
[11, 50] 1,529 4.64%
[51, 9180] 482 1.46%

Table VI
CONFIGURABILITY PER PIPE IN COMMUNITY

Configurable Modules # Pipes % Pipes
0 21,768 66.19%
1 6,301 19.15%
2 2,286 6.95%
3 1,590 4.83%
[4, 73] 942 2.86%

. Table VII
SIZE PER PIPE IN COMMUNITY

Modules # Pipes % Pipes
[0, 2] 2,691 8.18%
[3, 5] 11,171 33.97%
[6, 10] 11,084 33.70%
[11, 20] 6510 19.79%
[21, 287] 1,431 4.35%

a match at level 3, and 89% at level 6). Similar to other

repositories of code [19], the Yahoo! Pipes repository is

full of duplication at higher levels of abstraction. This high

frequency of similarity from a structural perspective may

occur because authors can easily copy a pipe for their own

usage by cloning; there is little incentive to start from scratch

if a user can start with a baseline pipe from another user.

Popularity: We associate a high number of clones with

high popularity. Within the sample we studied, the average

number of clones per pipe was 5.67 with a median of one

clone per pipe. We observe that 17,874 (54.35%) of the pipes

had been cloned at least once, and the distribution of clones

over pipes is shown in Table V. Approximately 11% of the

pipes have more than five clones, so the overall majority

have been cloned very few times. This low frequency of

cloning may be because authors often cannot find pipes in

the repository that suit their needs.

Configurability: The average number of user-setting mod-

ules across the pipes in the sample is 0.650, with a maximum

of 73. Across all the pipes we studied, 33.81% have at least

one configurable module. The distribution of configurable

modules over pipes is shown in Table VI. The majority

of pipes were not made to be configurable. There may be

many reasons for this, such as a lack of understanding of

the user-setter modules, being unaware of the benefits of

generalizability in code, or being unable to configure some

modules (e.g., some fields are set using a drop-down box,

which cannot be configured at run-time).

Size: The average size across pipes in the community is

8.2 with a median of 6.0 modules per pipe. The distribution

of sizes over pipes is shown in Table VII. We observe that

more than two-third of the pipes have between three and

151

Table VIII
CHARACTERISTICS OF PIPES CONTRIBUTED EARLY OR LATE IN AN

AUTHOR’S LIFESPAN IN THE COMMUNITY. α = 0.01.

Characteristic Early (1) Late (2) H0 : p-value
of Pipes 27,555 5,332
Diversity 3.519 4.126 μ1 > μ2 2.200 * 10−16

Popularity 4.984 9.254 μ1 > μ2 2.200 * 10−16

Configurability 0.614 0.838 μ1 > μ2 2.200 * 10−16

Size 7.919 9.587 μ1 > μ2 2.200 * 10−16

Table IX
CHARACTERISTICS OF PIPES BY AUTHORS WITH MANY

CONTRIBUTIONS AND AUTHORS WITH FEW CONTRIBUTIONS. α = 0.01.

Characteristic Few (1) Many (2) H0 : p-value
of Pipes 30,503 2,384
Diversity 3.639 3.355 μ1 > μ2 1.000
Popularity 4.302 23.250 μ1 > μ2 2.200 * 10−16

Configurability 0.644 0.729 μ1 > μ2 2.114 * 10−11

Size 8.194 8.136 μ1 > μ2 0.001799

ten modules, but that there is a long tail on the distribution

where the largest pipe has 287 modules. This shows a large

range in the complexity and size of pipes created by the

community, indicating a range of skill levels and investment

by the authors.

VI. ANALYSIS BASED ON AUTHOR EXPERIENCE

We examine differences among pipes that have been

created by authors with different levels of experience, mea-

suring experience along two dimensions: the number of days

of experience an author had when a pipe was created, and

the total number of contributions by an author. We explore

differences among the community artifacts by segmenting

along these lines, to address each subpart of RQ2.

RQ2a: Contributions Based on Experience (time)

Approximately 10% of authors submitted a pipe at least

one month after submitting their first pipe (Table II). With

this threshold in mind, we examine differences in the con-

tributions made early in an author’s experience (i.e., within

the first month) versus late in their experience (i.e., after the

first month). One month seemed reasonable time period for

authors to gain sufficient experience with the environment;

the results are shown in Table VIII.

For all the dependent variables, diversity, popularity, con-

figurability, and size, one-tailed Mann-Whitney tests where

H0 : μearly > μlate and α = 0.01 reveal significant

differences between the sample means. We therefore reject

the null hypothesis; the sample means for all dependent

variables are smaller for the pipes submitted within the first

month versus after the first month of author experience.

Thus, experience seems to play a role in increased diversity,

popularity, configurability and size of contributed pipes.

RQ2b: Comparisons Between Contribution Levels

In Table III, we see that less than 0.5% of the authors

created more than 15 pipes in the sampling of the repository.

With this threshold in mind, we segment the pipes into two

groups, those created by prolific authors who contributed

more than 15 pipes, and those created by less prolific

authors. The results are shown in Table IX.

For three of the dependent variables, popularity, config-

urability, and size, one-tailed Mann-Whitney tests where

H0 : μfew > μmany and α = 0.01 reveal significant

differences. Thus, we reject the null hypotheses; authors who

create more pipes have more clones, make their pipes more

configurable, and make their pipes larger. Note that for size

we reject the null hypothesis even though the means support

it; after further inspection we confirmed that this is correct

as the mean numbers were caused by a handful of pipes in

the “few group” with more than 200 modules that account

for its large mean value. For diversity, the null hypothesis is

not rejected. This is likely because, within the most prolific

authors, some only submit pipes that are very similar to

others they have submitted in the past, a phenomenon we

will explore further in Section VII.

VII. ANALYSIS OF THE MOST PROLIFIC AUTHORS

In this analysis, we concentrate on the individual authors

and the uniqueness of their contributions, addressing each

subpart of RQ3. We chose to consider the most prolific

authors since their contributions have a greater impact on the

repository. To identify the most prolific authors, we selected

authors who had contributed more than 15 artifacts to the

repository. This threshold balanced our need to do individual

author analysis while having enough samples to generalize

across prolific authors. In total, we studied 81 authors (< 1%
of the authors in the study), who contributed 2,384 pipes

(∼7% of the pipes in the study).

We have identified three categories of interest for char-

acterizing the participants and their contributions: author

activities, author evolution, and author awareness.

RQ3a: Author Activities

Each pipe submitted by an author represents an activity

the author is performing, and the level of diversity of one

pipe compared to those created previously by that same

author gives an indication of the goal the user had when

creating the pipe.

To identify such activities, we first perform a rolling

cluster analysis over time of the pipes contributed per author.

That is, we identify the level at which each pipe is clustered

as it is added to the set of pipes created by an author. This

produces a graph, like that shown in Figure 2(a). Time on the

x-axis represents the number of days since the most recent

pipe was submitted, and the diversity levels are on the y-

axis. More concretely, the left-most dot represents the level

at which the second pipe was clustered, compared to the

first. The second left-most dot represents the level at which

the third pipe was clustered, when considering the first two

pipes. Thus, each subsequent pipe is compared to all those

that came before it. For example, in Figure 2(a), we see the

third dot at diversity level 7, with an x-axis label of 16.

This means that when the fourth pipe was created, it was

152

0
2

4
6

8

Time in days: 713 total

D
iv

er
si

ty

0

51
3 16 14
8 2 0 0 0 0 0 1 0 0 31 0 0 1 0 1

0
2

4
6

8

(a) Pipes Clustered Over Time for One Author, High Skills, Mean = 7.32

0
2

4
6

8

Time in days: 19 total

D
iv

er
si

ty

0 0 0 0 0 0 0 0 11 0 1 2 0 0 0 0 0 0 0 5

0
2

4
6

8

(b) Pipes Clustered Over Time for One Author, Low Skills, Mean = 1.70

Figure 2. Rolling Cluster Analysis Examples. The y-axis shows diversity
levels from Table I. The x-axis represents the number days since the creation
of the previous pipe.

clustered at a level 7 compared to those that came before it

and was created 16 days after the third pipe.

Over one-quarter of the pipes created by a prolific author

are highly unique (level 8) compared to the author’s previous

contributions. The percentages of pipes clustered within

author at each diversity level and averaged across authors

are shown in Table X. On average, 32.79% of an author’s

pipes are clustered at level 2, the most common level.

Clearly from the results, authors tend to submit pipes that

are either very similar (levels 1, 2 and 3), or very different

(levels 6, 7 and 8) to what they submitted in the past. Based

on this observation and further pipe examination, we were

able to map these results to two typical author activities.

First, project initiation refers to pipes that are drastically

different from those pipes an author had created previously.

It is likely that the newly submitted pipe has a different

purpose than the previous ones. Second, pipe tweaking
refers to pipes that are quite similar to those pipes created

previously. It is likely that the author created something very

similar to a pipe they submitted in the past (e.g., an author

changes the filter criteria for the home search in Figure 1,

giving a diversity level of 2 or 3, depending on the change).

We see that for the average author, 52% of the pipes cre-

ated represent new initiatives, while 43% represent tweaks.

RQ3b: Author Evolution

As authors gain more experience with the Yahoo! Pipes

language, it was expected that they will become more able to

regularly create unique pipes, demonstrating increased skills

and providing more value to the community. To investigate

this conjecture, we perform two analyses. The first estimates

a skill level of the author based on their ability to regularly

Table X
PERCENTAGE OF PIPES ADDED AT EACH DIVERSITY LEVEL,

AVERAGED ACROSS AUTHORS

Level Avg. % Level Avg. %
of Pipes of Pipes

1 1.63% 5 4.35%
2 32.79% 6 5.64%
3 8.40% 7 19.36%
4 1.26% 8 26.56%

Table XI
AUTHORS CLASSIFIED BY SKILL LEVEL

Cluster Average Skill Level # Authors % Authors
(5, 8] High 45 55.56%
(3, 5] Variable 14 17.50%
[1, 3] Low 22 27.16%

create unique pipes compared to their previous contributions.

The second measures the value of author contributions by

correlating experience in terms of days with the uniqueness

of their pipes compared to other pipes in the community,

with the assumption that more unique contributions are more

valuable to the community.

For the skills analysis, we need to gauge the skill levels of

the authors. We use the rolling cluster analysis described for

RQ3a and calculate the average cluster level for each author

to represent the average uniqueness of each pipe an author

submitted to the repository, when compared to what they had

previously submitted. A high average, like that illustrated

in Figure 2(a), indicates an author who regularly submitted

distinct pipes, and can be considered a high skills author.

A low average, like that shown in Figure 2(b), indicates

an author who regularly submitted pipes very similar to

those of the past, representing an author with low skills.

A medium average indicates an author who submitted pipes

with varying uniqueness and has variable skills.

Table XI shows the percentages of authors that fall into

each of the skill categories, where the first column indicates

the range of average cluster values that map to each skill

level. Approximately half of the authors are highly skilled

submitting pipes that are distinct to the previous ones they

submitted. Over 27% of the authors have low skill levels.

These authors tend to submit pipes that are very similar to

other pipes they have submitted, in essence using the public

repository as their own personal repository. They are not

able to identify the unique pipes among those they have

created and their contributions clutter the repository. The

remaining 18% of the authors have variable skills. These

authors contribute a variety of pipes, some that are unique,

and some that are similar to what they have previously

submitted, but do not exhibit a clear pattern high or low.

For the value analysis, we assume that more unique pipes

are more valuable to the community, and investigate if

prolific authors with more experience create more valuable

pipes. To do this, we measure the number of days of

experience the author had when each pipe was created, and

correlate that with diversity against the community. There

153

0 200 400 600 800 1000

0
2

4
6

8

Days Active in Community

A
ve

ra
ge

 C
lu

st
er

 L
ev

el
 o

f P
ip

es
 P

er
 A

ut
ho

r

0
1

2
3

4
5

6
7

8

Figure 3. Author Pipes Average Cluster Levels vs. Days Active for the
Most Prolific Authors

is a positive correlation (Spearman’s r = 0.42136), so it

appears that as the most prolific authors gain experience,

the pipes they create tend to be more unique (and to a

certain extend more configurable as well with Spearman’s

r = 0.30866). This could indicate that over time, their

contributions to the community become more valuable. We

explore this relationship further by collapsing across authors

and plotting the total number of days an author was active

with the average diversity level of all pipes they submitted,

shown in Figure 3. Among the prolific authors, there is a

clear upward trend between experience and diversity to the

community (Spearman’s r = 0.53694).

RQ3c: Author Awareness

Authors have different levels of awareness about what

they submit and what is available in the public repository.

As authors contribute more artifacts to the community, it

is expected that their awareness of the community will

increase. We study this awareness using the uniqueness of

each pipe compared to the author’s previous contributions
(local) and the pipes in the community (community).

Using the skill levels, we classify the uniqueness for each

pipe as high, medium, or low. For each pipe contributed

by an author, we look at how the local uniqueness differs

from the community uniqueness, and then draw conclusions

about their awareness. We observe that authors submit some

pipes that are very similar to other pipes they have already

submitted (i.e., low local uniqueness, which implies low

community uniqueness), so we say these authors have no
awareness. Other authors submit some pipes that are very

unique compared to what they had done in the past, but

very similar to other pipes in the community (i.e., local

uniqueness is strictly greater than community uniqueness);

these authors have local awareness. Last, there are authors

who submit pipes that are very unique compared to what

Table XII
AUTHOR AVERAGE SUBMISSIONS CLASSIFIED BY AWARENESS

Awareness Avg. % of Pipes
None 50.06%
Local 19.20%
Community 30.74%

they had done in the past and also very unique compared to

the community (i.e., high local and community uniqueness,

or medium local and community uniqueness); these authors

have community awareness.

The average community uniqueness level for the pipes

created by the most prolific authors was 3.35, and the

average local uniqueness level was 4.39. On average, 50%

of the pipes submitted per author represented no awareness,

20% represented local awareness, and 31% represented high

awareness, as shown in Table XII.

VIII. DISCUSSION

From the analysis, we have made several general ob-

servations about the Yahoo! Pipes community, and these

have led to some implications on how to better support the

community.

A. Observations

Few authors are responsible for most artifacts. Like

with other online communities, Yahoo! Pipes suffers from

attrition and the contributions of the participants follow a

skewed distribution with a long tail. Most of the participants

(> 81%) are active for only one day, and only 24% of the

participants are responsible for over 53% of the artifacts in

the repository.

Authors evolve over time. Pipes created early in authors’

careers are significantly less diverse, popular, configurable,

and large. This is shown by the significant differences

between the groups of pipes when controlling for experience

(Table VIII) and by the positive correlation between average

clustered level with the community and days active in

the community for the most prolific authors (Figure 3).

Additionally, author skill level is strongly correlated with the

total time an author is active in the community (Spearman’s

r = 0.61111). These are positive observations for the

community, showing that authors are able to grow over time.

Authors have varying levels of community awareness.
The trend of community awareness among all authors is

unclear, as few exact matches in the repository indicates high

awareness, but little diversity at higher levels of abstraction

indicates low awareness. We observed that most pipes have

been cloned. This means that if authors clone a pipe but

do not modify it, they delete it or do not share it, possibly

indicating some level of community awareness. However,

despite the evidence of awareness at low levels of abstrac-

tion, there remains much similarity among the artifacts at

higher levels of abstraction. We find that 59% of pipes are

structurally similar to another in the repository (Table IV),

154

indicating much duplication in the repository and potentially

little community awareness among all authors.

Among the most prolific authors, most demonstrate little

awareness, but a small minority demonstrate higher aware-

ness. About 43% of pipes submitted by the most prolific

authors represent tweaks of a previous pipe they had created

and 50% of the most prolific authors tend to submit pipes

that have the same structure (if not also the same fields) as

their previous pipes (Table XII), suggesting that even the

most prolific authors do not have much awareness. Yet for a

minority of the most prolific authors (30%), the pipes they

create are different from what they have created in the past

and different from what already exists in the community

(Table XII). Further study is needed to understand what

features differentiate authors with high awareness of the

community from authors with low awareness.

Experienced authors make more configurable pipes.

A third of all pipes across the community are configurable

(Table VI), and authors with more experience (Table VIII)

and who create more pipes (Table IX) tend to make pipes

that are significantly more configurable. This indicates that

authors with more experience may have a greater interest

in serving themselves or the community through their more

configurable contributions.

Community participants seem interested in utilizing
the community knowledge. Most pipes have been cloned,

with a minority of pipes having hundreds, if not thousands,

of clones (Table V). This indicates that participants are likely

interested in building on the expertise of others.

B. Implications

Authors may need artifact maintenance support. Over

one quarter (27%) of the prolific authors were seen to have

low skills (Table XI), and over 43% of the author submis-

sions represented tweaks on already-submitted pipes. This

indicates that authors may be using the public repository as

a private repository to store incremental changes on pipes,

and they may benefit from a versioning system. It may also

be that authors are unable to configure their pipes or do

not know about the configuration options, and so they are

forced to create pipes with few deviations from existing

pipes. To assess these conjectures, further analysis is needed

to see if authors have patterns of progressive “adding” over

time. That is, they make several pipes, p1 . . . pn where

content(pi) ⊆ content(pi+1), and content is measured in

terms of fields, modules, and connections.

The repository may need moderators. We observed

that pipes created by prolific authors are significantly more

popular and configurable (Table IX). However, with the

number of authors who are only active for a short period

of time (Table II), the repository gets cluttered with highly

similar and less configurable pipes. An alternative approach

might be to notify authors of highly similar, existing pipes.

Considering that 70% of the pipes submitted demonstrate no

awareness or local awareness (Table XII), a mechanism to

alert authors when they are duplicating existing code might

reduce the clutter in the repository and support end users in

becoming more efficient.

Authors may need better search for the repository.
Only 5% of the pipes have an exact clone elsewhere in the

community, and over 46% have an exact match except for the

field values (Table IV). It may be that the high frequency

of similarity is a result of an author’s inability to find an

appropriate pipe from the clutter in the repository.

Authors may need help understanding pipe behavior.
Since we observed no correlation between popularity and

uniqueness (Spearman’s r = 0.06088), it is likely that

authors are unable to understand the more unique pipes,

cannot find what they need in the repository, or that the

highly unique pipes solve a very narrow problem. If the

pipes cannot be understood, authors may re-invent the wheel.

Perhaps better support is needed to help authors understand

the semantics of pipes created by others. One solution might

be a comments module so authors can annotate their code,

or through automatically-generated documentation.

Authors may need better development support. Given

that approximately 50% the authors are unable to consis-

tently produce unique pipes (Table XI), pipes are not very

configurable (33%, Table VI), and most pipes contain un-

favorable characteristics (as found in previous studies [15]),

there is an implied need for better compositional support

to allow authors to create higher quality, more diverse

and general pipes. Considering also the high frequency of

tweaking (43% of pipes) that is performed by the authors

and the high frequency of pipes with similar structures (59%,

Table IV), authors would likely benefit from support in

composition and design.

IX. THREATS TO VALIDITY

A. External

In this study, we consider only one domain, that of

Yahoo! Pipes. Our results may not generalize to other end-

user repositories, but we attempted to structure our analysis

in such a way that new diversity metrics and notions of

popularity, size, and configurability could be defined for new

domains and then the results compared to ours.

The sample of pipes we scraped are those that were

returned by the Yahoo! search results. Since we do not have

control over the search mechanism, these pipes may not be

representative of the population. To reduce this threat, we

obtained a large sample for analysis.

Along these same lines, the observations on individual

authors only considered the most prolific authors and the

pipes they submitted to the public repository that happen to

be within our sample. This does not account for all the pipes

created by these authors, nor all the pipes they submitted to

the repository.

155

B. Construct
In our diversity analysis, we consider only structural

similarity, not semantic similarity, which may not accurately

measure similarity. Future work is needed to control for this

threat. One avenue would be to refactor the pipes to remove

some structural variability and re-cluster, or to measure the

diversity of data sources as an indication of semantics.

C. Internal
The most clear internal threat is that all the analysis was

done through the lens of a public repository, which offers

limited visibility. Other threats are based on our artifact

selection criteria. In the author analysis, we selected prolific

authors who had more than 15 pipes submitted within our

sample. It is possible that this threshold is not optimal. The

clone counts were gathered at the time each pipe was scraped

from the repository, so the clone values for each pipes were

often collected on different days.

We use the diversity of pipes to draw conclusions about

the skill levels of the authors, with the assumption that the

creation of more diverse pipes is an indication of higher

skills. However, we do not measure how functional the

submitted pipes are, nor can we tell the provenance of any

pipe and so the complex structures may not have originated

with the submitting author.

Another internal threat concerns the correctness of the

tools we have developed, including the infrastructure to

obtain and analyze the artifacts. While we have developed

unit tests for all analyses and manually verified anomalies

and interesting points in the data, the threat remains.

X. CONCLUSION

In this work, we present an artifact-based analysis of

an end-user community, observing how authors grow with

time and the impact of different variables such as time and

proliferation on the diversity, popularity, size, and config-

urability of artifacts in the Yahoo! Pipes public repository.

Similar to other communities, there is high attrition and the

contributions of the participants follow a skewed distribution

where few of the authors are responsible for a majority

of the artifacts. However, authors who stay active with

the community seem to evolve. We have observed that

more experienced authors tend to make pipes that are more

diverse, popular, large, and configurable than authors with

less experience, and that only 30% of the most prolific

authors are able to regularly submit pipes that are highly

unique compared to the community. From the results of our

analysis, we have identified several implications for how end

users could be better supported as they interact with Yahoo!

Pipes, with the hope that some of these findings can be

extended to other end-user languages and communities.

ACKNOWLEDGMENT

This work was supported by the NSF Graduate Research Fel-

lowship under CFDA#47.076, NSF Award #0915526, and AFOSR

Awards #FA9550-10-1-0406 and #FA9550-09-1-0687.

REFERENCES

[1] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers
of end users and end user programmers,” in Symposium on
Visual Languages and Human Centric Computing, 2005.

[2] R. Panko, “What we know about spreadsheet errors,” Journal
of End User Computing, vol. 10, pp. 15–21, 1998.

[3] “Yahoo! Pipes,” http://pipes.yahoo.com/, February 2011.

[4] “Userscripts,” http://userscripts.org/, February 2011.

[5] “Scratch,” http://scratch.mit.edu/, February 2011.

[6] M. C. Jones and E. F. Churchill, “Conversations in Developer
Communities: A Preliminary Analysis of the Yahoo! Pipes
Community,” in International Conference on Communities
and Technologies, 2009.

[7] W. Scacchi, “Free/open source software development: Re-
cent research results and methods,” Advances in Computers,
vol. 69, pp. 243–295, 2007.

[8] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/libre
open source software development: What we know and what
we do not know,” ACM Computing Surveys, 2010.

[9] N. Ducheneaut, “Socialization in an open source software
community: A socio-technical analysis,” Computer Supported
Cooperative Work, vol. 14, pp. 323–368, 2005.

[10] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers,
M. B. Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck,
“The state of the art in end-user software engineering,” ACM
Computing Survey, 2011.

[11] “IBM Mashup Center,” http://www.ibm.com/software/info/mashup-

center/, August 2009.

[12] S. K. Kuttal, A. Sarma, A. Swearngin, and G. Rothermel,
“Versioning for mashups an exploratory study,” in Interna-
tional Symposium on End-User Development, 2011.

[13] A. J. Ko and B. A. Myers, “Debugging Reinvented: Asking
and Answering Why and Why Not Questions About Program
Behavior,” in International Conference on Software Engineer-
ing, 2008.

[14] A. Koesnandar, S. Elbaum, G. Rothermel, L. Hochstein,
C. Scaffidi, and K. T. Stolee, “Using assertions to help end-
user programmers create dependable web macros,” in Inter-
national Symposium on Foundations of Software Engineering,
2008.

[15] K. T. Stolee and S. Elbaum, “Refactoring pipe-like mashups
for end-user programmers,” in International Conference on
Software Engineering, 2011.

[16] A. Dahotre, Y. Zhang, and C. Scaffidi, “A qualitative study of
animation programming in the wild,” in International Sympo-
sium on Empirical Software Engineering and Measurement,
2010.

[17] G. Madey, V. Freeh, and R. Tynan, “The open source soft-
ware development phenomenon: An analysis based on social
network theory,” in Americas Conference on Information
Systems, 2002.

[18] J. Wong and J. Hong, “What Do We ”Mashup” When We
Make Mashups?” in International Workshop on End-User
Software Engineering, 2008.

[19] M. Gabel and Z. Su, “A study of the uniqueness of source
code,” in International symposium on Foundations of software
engineering, 2010.

156

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2011

	End-User Programmers and their Communities: An Artifact-based Analysis
	Kathryn T. Stolee
	Sebastian Elbaum
	Anita Sarma

	End-User Programmers and their Communities: An Artifact-based Analysis

