3-17-2016

Atomic photoionization experiment by harmonic-generation spectroscopy

M. V. Frolov
Voronezh State University, Russia, frolov@phys.vsu.ru

T. S. Sarantseva
Voronezh State University, Russia, sarantseva@phys.vsu.ru

N. L. Manakov
Voronezh State University, manakov@phys.vsu.ru

K. D. Fulfer
Louisiana State University

B. P. Wilson
Louisiana State University

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/physicsstarace
[🔗Part of the Atomic, Molecular and Optical Physics Commons, Elementary Particles and Fields and String Theory Commons, and the Plasma and Beam Physics Commons](http://digitalcommons.unl.edu/physicsstarace)
Atomic photoionization experiment by harmonic-generation spectroscopy

M. V. Frolov,1,2 T. S. Sarantseva,2 N. L. Manakov,1 K. D. Fulfer,3 B. P. Wilson,3 J. Troß,4,5 X. Ren,4,6 E. D. Poliakoff,3 A. A. Silaev,2 N. V. Vvedenskii,2 Anthony F. Starace,7 and C. A. Trallero-Herrero4
1Department of Physics, Voronezh State University, Voronezh 394006, Russia
2Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod 603950, Russia
3Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
4J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506-2604, USA
5Institut für Kernphysik, Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
6Institute for the Frontier of Attosecond Science and Technology, CREOL, and Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
7Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588-0299, USA
(Received 26 August 2015; published 17 March 2016)

Measurements of the high-order-harmonic generation yield of the argon (Ar) atom driven by a strong elliptically polarized laser field are shown to completely determine the field-free differential photoionization cross section of Ar, i.e., the energy dependence of both the angle-integrated photoionization cross section and the angular distribution asymmetry parameter.

DOI: 10.1103/PhysRevA.93.031403

Advances in laser technologies have enabled measurements of atoms and molecules that provide detailed views of their structures as well as the ability to image ultrafast processes on attosecond (10^{-18} s) time scales [1–6]. Nevertheless, the most common method for obtaining information on the electronic structure of atoms and molecules remains single-photon ionization (since the photoelectron angular and energy distributions are sensitive to both the initial target wave function and the final-state wave function of the ion and continuum electron [7–9]). Photoionization experiments nowadays are typically carried out at synchrotron or free-electron laser light source facilities. An appeal of laser spectroscopy for photoionization measurements is the tabletop size of the experimental setup. However, a main obstacle for laser spectroscopy measurements of energy-resolved photoionization spectra is the need for tunable laser sources. This remains a challenge in the important VUV and XUV photon energy regions. However, this problem can be overcome by high-order-harmonic generation (HHG) spectroscopy [10–14], which permits fully coherent, energy-resolved photoionization measurements with a laser field whose frequency is much smaller than the ionization potentials of typical atomic or molecular targets. This connection of the nonlinear harmonic-generation process with the linear photoionization process is one of the key advances in our understanding of strong-field processes.

HHG spectroscopy is based on the quasiclassical interpretation of HHG as a three-step process [3,15,16]: (i) tunnel ionization of an electron in an atomic or molecular target by a strong low-frequency laser field; (ii) propagation of the ionized electron in the laser-dressed continuum away from and back to the target ion by the oscillating field; and (iii) recombination of the returning electron back to the target ground state with emission of a harmonic photon. The intensity of the harmonic radiation carries information on the photorecombination cross section (PRCS), which is related (through the principle of detailed balance) to that for photoionization. The retrieval of the PRCS is based on the phenomenological parametrization of the HHG yield Y as the product of an electronic wave packet W(E) and the field-free PRCS σ(E) [17,18],

\[Y \propto W(E)\sigma(E), \quad E = E_\Omega - I_p, \]

where E is the energy of the recombining electron, E_\Omega is the harmonic energy, and I_p is the target binding energy. The parametrization (1) is valid in the tunneling regime and involves the exact PRCS for an electron having momentum directed along the polarization axis of the linearly polarized harmonic photon [19]. It has been confirmed in recent HHG experiments [10–14] and theoretical analyses [20,21] involving linearly polarized driving laser fields. These investigations all demonstrate that HHG spectra reveal structure-dependent target details. However, none retrieves completely the PRCS (or photoionization cross section), which (in the electric dipole approximation and for an unpolarized target) may be expressed in terms of two parameters [7–9]: the total cross section σ_0(E) and the asymmetry parameter β(E),

\[\sigma(E,\theta) = \frac{\sigma_0(E)}{4\pi} \left[1 + \frac{\beta(E)}{2} (3\cos^2\theta - 1) \right]. \]

where \(\theta \) is the angle between the polarization vector of the emitted (or absorbed) linearly polarized photon and the momentum of the recombining (or ionized) electron. Since the HHG yield (1) includes only the cross section \(\sigma(E,\theta = 0^\circ) \), HHG with a linearly polarized field does not allow the retrieval of the two independent parameters, \(\sigma_0(E) \) and \(\beta(E) \), which completely describe also the photoionization cross section of an atom in an elliptically polarized field [22–24]. Procedures for retrieving \(\sigma_0 \) and \(\beta \) by means of HHG spectroscopy have been derived theoretically [25,26]. However, their requirements for either precise harmonic polarization measurements [25] or stabilization of the relative phase of a two-color field [26] present challenges for experiment.

In this Rapid Communication we show that the parameters \(\sigma_0 \) and \(\beta \) can be retrieved from measurements of high-order-harmonic intensities for the Ar atom in a strong laser field having a small ellipticity, without any additional phase or polarization measurements. In the vicinity of the Cooper
minimum in σ_0, the results for β are highly accurate. While the
generality of this tool for HHG spectroscopy remains to
be established, the accuracy of the results for β obtained here
for Ar provide motivation for pursuing the more detailed HHG
measurements specified in Refs. [25,26] for retrieving σ_0 and
β for arbitrary targets. Provided spin-orbit and fine-structure
effects are ignored, the differential cross section (2) for a
closed-shell atom such as Ar is exact in LS coupling even though
it has the same form as for a central potential atomic
model [23]. Thus, the parameters $\sigma_0(E)$ and $\beta(E)$ in Eq. (2)
are assumed to describe fully correlated ionization from the
$3p$ subshell of Ar that can be compared with experimental
measurements.

We consider HHG in an elliptically polarized field with
electric vector $\mathbf{F}(t) = F/\sqrt{1 + \eta^2}[\hat{x}\cos \omega t + \hat{y} \eta \sin \omega t]$, where F, ω, and η are the amplitude, frequency, and ellipticity ($-1 \leq \eta \leq 1$). This parametrization ensures constant field
intensity as η is varied, as is realized in our experiment, which
employs 30 fs elliptically polarized pulses with up to 2 mJ and
$\lambda = 0.78 \mu m$ central wavelength to drive harmonics in Ar. The
harmonic yield $Y(E, \eta)$ is measured in an XUV spectrometer
comprising a flat-field variable-groove-spacing XUV grating, a
z-stack microchannel plate, and a low-noise complementary
metal-oxide-semiconductor (CMOS) camera. We vary η by
rotating a half-wave plate in front of a quarter-wave plate. The
pulse energy is controlled with a half-wave plate and polarizer.
Harmonics are measured as a function of focus position relative
to the gas jet using a translation stage. To obtain $Y(E, \eta)$ we
define a threshold and integrate the remaining image. The
normalized HHG yield $\hat{Y}(E, \eta)$, produced by a laser field of
intensity 3.8×10^{14} W/cm2 focused 2.79 mm in front of a gas
jet, is given in Fig. 1(a) as a function of harmonic order N and
η, where

$$\hat{Y}(E, \eta) = \frac{Y(E, \eta)}{Y(E, \eta = 0)}. \quad (3)$$

The experimental results in Fig. 1(a) show that $\hat{Y}(E, \eta)$
varies nonuniformly as η and $E = N \hbar \omega - I_p$ increase.

For harmonics $27 \leq N \leq 37$ (or $27.2 \text{ eV} \leq E \leq 43.0 \text{ eV}$),

$$\hat{Y}(E, \eta) \text{ decreases slowly with increasing } \eta \text{ [rather than}
\text{ exponentially, as suggested in Ref. [27] and as found for } N = 23 - \text{see Fig. 1(b)]}. \text{ This deviation from exponential}
\text{ decrease with increasing } \eta \text{ occurs in the region of the Cooper}
\text{ minimum in argon, corresponding to harmonic energies}
42.9 \text{ eV} \leq E_\Delta \leq 58.8 \text{ eV}. \text{ [Similar features (not shown here)}
\text{ were observed in krypton for harmonic energies } 65 \text{ eV} \leq
E_\Delta \leq 95 \text{ eV near the Cooper minimum.]}

To retrieve σ_0 and β from $\hat{Y}(E, \eta)$, we employ parametrization
of the HHG yield in a field $F(t)$ having a small ellipticity η
that takes into account depletion effects. For an atomic electron
having orbital momentum $l = 0$, the parametrization of the
HHG yield is similar to Eq. (1), where the dependence of the
electronic wave packet $W(E)$ on η and E can be approximated
as [28]

$$W(E) \propto e^{-\alpha \eta^2} \sqrt{\frac{E}{E_{\text{max}} - E}}, \quad E < E_{\text{max}}, \quad (4)$$

where $E_{\text{max}} = E_\Delta + 0.676 \eta^2 + 0.324 l_p$ is the maximum
energy gained by an electron in an elliptically polarized field
with small η [cf. Eq. (33) in Ref. [25]], $E_\Delta = 3.17 U_p$, and
$U_p = c^2 F^2/(4 m \omega^2)$ is the electron quiver energy in the
laser field. Also, $\alpha = (F_0/F)(E_\Delta/I_p)$, where $F_0 = F_\text{at}(2l_p/E_\Delta)^{-1/2}$
is a reduced atomic field, where $F_\text{at} = 5.14 \times 10^9 \text{ V/cm}$ and
$E_\text{at} = 27.21 \text{ eV}$. The electronic wave packet $W(E)$ in Eq. (4) decreases
with increasing η, so only small ellipticities are of interest. This
decay stems from suppression of the ionization step with
increasing η for fixed laser intensity. Note that for an initial
bound state with $l = 0$, the normalized HHG yield $\hat{Y}(E, \eta)$ is
not sensitive to the energy E [28]:

$$\hat{Y}(E, \eta) \propto e^{-\alpha \eta^2} \quad (\text{for an } s \text{ state}). \quad (5)$$

According to Eq. (2), HHG spectroscopy for $l = 0$ gives the
angle-integrated cross section $\sigma(E)$ since $\beta \equiv 2$.

For a bound atomic electron with $l > 0$, parametrization
of the HHG yield in an elliptically polarized field is more
complicated than for an s-state electron since the azimuthal
quantum number m (giving the projection of l along the z axis)
is not conserved. An initially degenerate (in m) bound state is
described by a superposition of substates with different m.
For a triply degenerate p state ($l = 1$), the elliptic field forms three
different initial substates oriented along the three Cartesian
axes: the “+” state along the \hat{x} axis (the major polarization
axis), the “−” state along the \hat{y} axis (the minor polarization
axis), and the “0” state along the \hat{z} axis [which defines the
propagation direction of the field $\mathbf{F}(t)$] [25,30]. The harmonic
yield from the state “0” is suppressed compared to those of
the “+” and “−” states since electron trajectories associated
with HHG lie in the polarization plane. Thus we neglect the
contribution of the “0” state. Although the states “−” and “+”
are superpositions of the same magnetic substates $\psi_m(r)$ with
$m = \pm 1$ [$\psi_\pm \propto (\psi_+ \pm \psi_-)$], their properties are different
[25,31]: (i) In an elliptic field, the “−” state decays faster than
the “+” state, $\Gamma_− > \Gamma_+$, where Γ_\pm are ionization rates for the
“−” and “+” states [28]; and (ii) the dipole transition matrix
elements $\mathbf{d} = \langle \psi_E | r | \psi_\pm \rangle$ between the initial (“−” or “+”) state
and the continuum state $|\psi_E\rangle$ have different directions (along the major or minor polarization axes, respectively).

The HHG yield $Y(E, \eta)$ for a p state in an elliptically polarized field is given by the sum of the yields from the initially degenerate “−” and “+” states, each having the factorized form in Eq. (1), with the electronic wave-packet factor $W(E)$ expressed as the product of an ionization factor and a propagation factor (corresponding to the first two steps of the three-step HHG scenario). The wave packets $W_\pm(E)$ for the “−” and “+” states differ because their ionization factors differ. The recombination factors in Eq. (1) also differ for the two states, with the “−” state producing harmonics almost linearly polarized along the major polarization axis and the “+” state producing harmonics almost linearly polarized along the minor polarization axis. Thus, for the same kind of classical electron trajectory (which determines the propagation factor), the recombination is determined either by the PRCS for $\theta = 0^\circ$ (for the “−” state) or for $\theta = 90^\circ$ (for the “+” state). The total HHG yield is thus [28]

$$Y(E, \eta) = W(E)[a_-\sigma(E,0^\circ) + a_+\sigma(E,90^\circ)] \tag{6a}$$

$$\propto e^{-\alpha\eta^2} \sigma(E,0^\circ)[1 + f(\eta^2) - \beta(E)/2]/1 + \beta(E)], \tag{6b}$$

where $W(E)$ is given by Eq. (4), $f(\eta^2) \equiv a_+/a_-$, and the coefficients a_\pm take into account the difference in ionization factors for the “−” and “+” states (as well as their differences from that for an s state) and also include depletion effects. For small ellipticity, the function $f(\eta^2)$ has an order of magnitude $\propto \eta^2 e^{(\eta^2)^{-1/2}}$ and τ is the laser-pulse duration. Thus depletion effects enhance the second term in Eq. (6). In contrast to Eq. (5) for an s state, Eq. (6b) shows that the normalized HHG yield $\hat{Y}(E, \eta)$ for a p state is energy dependent. It is this energy dependence that allows determination of the asymmetry parameter $\beta(E)$ by measuring the η dependence of $\hat{Y}(E, \eta)$. For a p-state electron in an alkali or rare-gas atom, the HHG yield in an elliptically polarized field is given by the sum of the yields from the “−” and “+” states (as well as their differences from that for an s state) and also include depletion effects. The total HHG yield is thus [28]

$$\hat{Y}(E, \eta) = \hat{Y}(\hat{G}(\eta)) \cdot 1. \tag{8}$$

According to Eq. (6), $\hat{R}(E, \eta)$ is proportional to the ratio of two cross sections, $\sigma(E, 90^\circ)/\sigma(E, 0^\circ)$, and thus carries information about $\beta(E)$. In Fig. 2(a) we present $\hat{R}(E, \eta)$ as a function of harmonic order N and ellipticity η. This figure shows a hump centered at the 33rd harmonic caused by suppression of the PRCS at 0° by the one at 90° near the Cooper minimum [see Fig. 2(b)], which for Ar corresponds to $E = 36.7 \pm 3$ eV [8,9] (or $E_Q = E + I_p = 52.5 \pm 3$ eV).

Experimental data for $\hat{R}(E, \eta)$ at fixed E show that $\hat{R}(E, \eta) \propto \eta^2$ [see Figs. 3(a) and 3(b)]. The third step for retrieving $\beta(E)$ is thus to approximate $\hat{R}(E, \eta)$ as

$$\hat{R}(E, \eta) \approx B(\eta^2), \tag{9}$$

where $B(E)$ is a fitting parameter obtained from the experimental $\hat{R}(E, \eta)$ data. For small η we can approximate the function $f(\eta^2)$ in Eq. (6b) by its leading term, $f(\eta^2) \approx bn^2$, where b is a constant. We can then relate $B(E)$ to the asymmetry parameter $\beta(E)$:

$$B(E) = b \frac{1 - \beta(E)/2}{1 + \beta(E)}, \quad \beta(E) = \frac{1 - B(E)/b}{1/2 + B(E)/b}. \tag{10}$$

FIG. 2. (a) Experimental results for $\hat{R}(E, \eta)$ [see Eq. (8)] as a function of harmonic order N and ellipticity η. Yellow spheres mark the 33rd harmonic. (b) The ratio $\sigma(E, 90^\circ)/\sigma(E, 0^\circ) = [1 - \beta(E)/2]/[1 + \beta(E)]$ [cf. Eq. (2)] as a function of the photoelectron energy E [obtained from theoretical random-phase approximation with exchange (RPAE) results for $\beta(E)$ [32]].

FIG. 3. Ellipticity dependence of $\hat{R}(E, \eta)$ for fixed $E = N\hbar\omega - I_p$ corresponding to the Nth harmonic. Solid lines: Bn^2; circles with error bars: experimental results. (a) $N = 33$ and $B = 18.97$. (b) $N = 29$ and $B = 13.00$.

031403-3
The parameter \(b \) can be found by fitting \(\beta(E) \) to the value \(2 - \delta \beta/2 \) for the reference harmonic (in our case, H23), for which \(\beta \approx 2 \). The quantity \(\delta \beta \) is a retrieval error, which follows from the experimental error for \(B(E) \): the relative magnitude of \(\delta \beta \) does not exceed 10%.

In Fig. 4 we present the results for \(\beta(E) \) retrieved using the procedure described above. (The self-consistency and the accuracy of this simplified retrieval procedure we discuss in the Supplemental Material [28] using an alternative although more complicated retrieval scheme.) For electron energies over the interval 25 eV \(\leq E \leq 50 \) eV, the \(\beta(E) \) results retrieved from the Ar HHG spectra are in excellent agreement with those of both accurate theoretical calculations [32] and experimental photoionization measurements [33]. The discrepancies for energies \(E < 25 \) eV may be attributed to (i) inaccuracies in the electronic wave packet used for retrieval (as only the shortest electron trajectory is taken into account, while the contributions of multiple return trajectories are known to be important for low-order harmonics [34,35]), and (ii) the parametrization (6) may fail for low-order harmonics. The discrepancies for energies \(E > 50 \) eV are most likely due to the low level of the experimental signal.

Finally, since the PRCS for \(\theta = 0^\circ \) can be retrieved from HHG experiments with linear polarization [17] [see Eq. (1)], the angle-integrated PRCS can be obtained as

\[
\sigma_\theta(E) = 4\pi \sigma(E,0^\circ)/[1 + \beta(E)].
\]

In summary, we have shown that the limitation of HHG spectroscopy with a linearly polarized field (allowing retrieval of a single photoionization parameter) can be overcome by simple harmonic yield measurements in an elliptically polarized field, in which case complete information on the angular and energy dependence of a target’s field-free photoionization cross section can be retrieved. Our experimental and theoretical studies for Ar show also that the normalized HHG yield is sensitive to its electronic structure and exhibits noticeable deviations from the widely accepted Gaussian decrease of the HHG yield with increasing laser ellipticity for harmonics whose energies are near the Cooper minimum in the photoionization cross section. Just as the HHG yield for an elliptically polarized field identifies such features of photoionization cross sections as Cooper minima, HHG spectroscopy with elliptically polarized fields can serve as a tool for scanning other features for various atoms and molecules. The simplicity of the measurement technique should encourage widespread exploration of its generality and its other uses.

The retrieval procedure presented here was supported in part by the Russian Science Foundation through Grant No. 15-12-10033 (M.V.F., T.S.S., A.A.S., and N.V.V.). This research was supported in part by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy through Grants No. DE-FG02-86ER13491 (J.T., X.R., and C.A.T.-H.) and No. DE-SC0012198 (E.D.P., K.D.F., and B.P.W.), by NSF-MRI Grant No. 1229672 (X.R.), and by NSF EPSCoR IRR Track II Nebraska-Kansas Collaborative Research Awards No. 1430519 (A.F.S.) and No. 1430493 (C.A.T.-H.). K.D.F. acknowledges a Louisiana Board of Regents Fellowship.

