Adaptive Neighborhood Inverse Consistence as Lookahead for Non-Binary CSPs

Robert J. Woodward
University of Nebraska - Lincoln, rwoodwar@cse.unl.edu

Shant K. Karakashian
University of Nebraska - Lincoln, shantk@cse.unl.edu

Berthe Y. Choueiry
University of Nebraska - Lincoln, choueiry@cse.unl.edu

Christian Bessiere
University of Montpellier, France, bessiere@lirmm.fr

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork

Part of the Computer Sciences Commons

http://digitalcommons.unl.edu/cseconfwork/219

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Adaptive Neighborhood Inverse Consistency as Lookahead for Non-Binary CSPs

Robert J. Woodward¹ Shant Karakashian¹ Berthe Y. Choueiry¹ Christian Bessiere²

¹Constraint Systems Laboratory • University of Nebraska-Lincoln • USA
²LIRMM-CNRS • University of Montpellier • France
Contributions
1. The property Relational Neighborhood Inverse Consistency (RNIC)
2. Characterization of RNIC in relation to previously known properties
3. An efficient algorithm for enforcing RNIC, bounded by degree of the dual graph
4. Three reformulations of the dual graph to address topological limitations of the dual graph
5. An adaptive, automatic selection policy for choosing the appropriate dual graph
6. Empirical evidence on difficult CSP benchmarks

Definition
A Constraint Satisfaction Problem (CSP) is a combinatorial decision problem defined by a set of variables \{A,B,C,…\}, a set of domain values for these variables, and a set of constraints \{R_1,R_2,R_3,…\} restricting the allowable combinations of values for variables.

The task is to find a solution (i.e., an assignment of a value to each variable satisfying all constraints), or to find all such solutions.

Local Consistency
Local consistency is at the heart of Constraint Processing. It guarantees that all values (or tuples) participate in at least one solution in a given combination of variables (or constraints).

Neighborhood Inverse Consistency (NIC) ensures that every value in the domain of a variable can be extended to a solution in the subproblem induced by the variable and its neighborhood [1].

\(R(\ast,m)\) ensures that, in every given combination \(\varphi\) of \(m\) relations, every tuple \(\tau_i\) in every relation \(R_i\) can be extended to a tuple \(\tau_j\) in every relation \(R_j \in \varphi \setminus \{R_i\}\) such that all those tuples form a consistent solution to the relations in \(\varphi\) [3].

Relational Neighborhood Inverse Consistency (RNIC) ensures that every tuple \(\tau_i\) in every relation \(R_i\) can be extended to a tuple \(\tau_j\) in each \(R_j \in \text{Neigh}(R_i)\) such that together all those tuples are consistent with all the relations in \(\text{Neigh}(R_i)\) [4].

- Number of combinations = \(O(e^m) = e\)
- Size of each combination = \(m\)
- Twelve combinations for \(R(\ast,3)C\)
 1. \{R_1,R_2,R_3\}
 2. \{R_1,R_2,R_4\}
 3. \{R_1,R_2,R_5\}
 4. \{R_1,R_2,R_6\}
 5. \{R_1,R_3,R_4\}
 6. \{R_1,R_3,R_5\}
 7. \{R_2,R_4,R_6\}
 8. \{R_2,R_4,R_6\}
 9. \{R_3,R_4,R_6\}
 10. \{R_3,R_4,R_6\}
 11. \{R_3,R_4,R_6\}
 12. \{R_4,R_5,R_6\}
- Number of subproblems=number of constraints=\(e\)
- Size of subproblems varies, \(|\text{Neigh}(R_i)|+1\)
- Six induced subproblems
 - \(\text{Neigh}(R_1) = \{R_2,R_3\}\)
 - \(\text{Neigh}(R_2) = \{R_1,R_4\}\)
 - \(\text{Neigh}(R_3) = \{R_1,R_4,R_5,R_6\}\)
 - \(\text{Neigh}(R_4) = \{R_3,R_5,R_6\}\)
 - \(\text{Neigh}(R_5) = \{R_3,R_4,R_6\}\)
 - \(\text{Neigh}(R_6) = \{R_3,R_4,R_6\}\)
A queue Q of relations to update
- For each relation R, a queue of tuples $Q_t(R)$ whose supports must be verified
- Algorithm iterates over every R in Q and applies SEARCH\ SUPPORT to every τ in $Q_t(R)$
- SEARCH\ SUPPORT runs over $\text{Neigh}(R)$

Algorithm for Enforcing RNIC

Propagation Algorithm

- A queue Q of relations to update
- For each relation R, a queue of tuples $Q_t(R)$ whose supports must be verified
- Algorithm iterates over every R in Q and applies SEARCH\ SUPPORT to every τ in $Q_t(R)$
- SEARCH\ SUPPORT runs over $\text{Neigh}(R)$

Implementation

Index-Tree to quickly check the consistency of two tuples [3].

Complexity

- **Time:** $O(t^{d+1}e\delta)$
 - Delete at most $O(te)$ tuples, enqueuing $O(\delta)$ relations
 - For each tuple, SEARCH\ SUPPORT executes search on a problem with δ variables of domain size t
- **Space:** $O(ke\delta)$
 - Storing $O(et\delta)$ supports, $O(ke\delta)$ Index-Trees
Reformulating the Dual Graph

Removing Redundant Edges [2]
- Dense dual graphs → Neighborhoods are large → Cost of our algorithm increases
- Redundancy removal reduces cost

Triangulating the Dual Graph
- In cycles of length ≥ 4, propagation is poor, RNIC≡R(\(*,3\)C
- Triangulation boosts propagation

Triangulating a minimal dual graph
- The two operations do not ‘clash’
- The solution set of the CSP is the same in all three reformulations
- In total, four types of dual graphs

Selection Strategy
- If Density ≥ 15%, remove redundant edges
- If triangulation increases density no more than two fold, triangulate
- Each operation is executed at most once

Empirical Results
Statistical analysis on benchmark problems. Max of 90 minutes per instance, yielding censored data (data with values missing). Consistency properties used as full lookahead.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>CPU</th>
<th>#F</th>
<th>Rank</th>
<th>EquivCPU</th>
<th>#C</th>
<th>EquivCmp</th>
<th>#BT-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>wR((*,2)C</td>
<td>944924</td>
<td>52</td>
<td>3</td>
<td>A</td>
<td>138</td>
<td>B</td>
<td>79</td>
</tr>
<tr>
<td>wR((*,3)C</td>
<td>925004</td>
<td>8</td>
<td>4</td>
<td>B</td>
<td>134</td>
<td>B</td>
<td>92</td>
</tr>
<tr>
<td>wR((*,4)C</td>
<td>1161261</td>
<td>2</td>
<td>5</td>
<td>B</td>
<td>132</td>
<td>B</td>
<td>108</td>
</tr>
<tr>
<td>GAC</td>
<td>1711511</td>
<td>83</td>
<td>7</td>
<td>C</td>
<td>119</td>
<td>C</td>
<td>33</td>
</tr>
<tr>
<td>RNIC</td>
<td>6161391</td>
<td>19</td>
<td>8</td>
<td>C</td>
<td>100</td>
<td>C</td>
<td>66</td>
</tr>
<tr>
<td>triRNIC</td>
<td>3017169</td>
<td>9</td>
<td>9</td>
<td>C</td>
<td>84</td>
<td>C</td>
<td>80</td>
</tr>
<tr>
<td>wRNIC</td>
<td>1184844</td>
<td>8</td>
<td>6</td>
<td>B</td>
<td>131</td>
<td>B</td>
<td>84</td>
</tr>
<tr>
<td>wtriRNIC</td>
<td>937904</td>
<td>3</td>
<td>2</td>
<td>B</td>
<td>144</td>
<td>B</td>
<td>129</td>
</tr>
<tr>
<td>selRNIC</td>
<td>751586</td>
<td>17</td>
<td>1</td>
<td>A</td>
<td>159</td>
<td>A</td>
<td>142</td>
</tr>
</tbody>
</table>
References

Acknowledgments

Robert Woodward was supported by a Goldwater Scholarship & an NSF Graduate Research Fellowship. This research is also supported by NSF Grant No. RI-111795.

Experiments were conducted utilizing the Holland Computing Center of the University of Nebraska.