2015

Interfacial reactions of a MAX phase/superalloy hybrid

James L. Smialek
NASA Glenn Research Center, james.l.smialek@nasa.gov

Anita Garg
National Aeronautics and Space Administration

Follow this and additional works at: http://digitalcommons.unl.edu/nasapub

http://digitalcommons.unl.edu/nasapub/219

This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Interfacial reactions of a MAX phase/superalloy hybrid

James L. Smialek* and Anita Garg

Oxidation resistant, strain tolerant MAX phase coatings are of general interest for high temperature applications. Accordingly, Cr₂AlC MAX phase coupons were vacuum diffusion bonded to an advanced turbine disk alloy at 1100 °C for compatibility studies. The interface revealed an inner diffusion zone consisting of ~10 μm of β-Ni(Co)Al, decorated with various γ′(Ni,Co)₆Al, Ta(Ti,Nb)C, and W(Cr,Mo)₆B₂ precipitates. On the Cr₂AlC side, an additional ~40-μm Al-depletion zone of Cr₇C₃ formed an interconnected network with the β-Ni(Co)Al. On the superalloy side, enhanced carbide precipitation developed over a depth of ~80 μm. Subsequent annealing for 100 h and 1000 h at 800 °C coarsened some features, enhanced TCP precipitation in the superalloy, but only enlarged the diffusion layers by ~5 μm at most. Because of Al depletion from the MAX phase and corresponding Al enrichment of the alloy, the reaction zone displayed similarities to an oxidized Cr₂AlC surface and an aluminized superalloy, respectively. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

Keywords: Cr₂AlC MAX phase; diffusion reaction; superalloys; aerospace materials; high temperature; coatings

Introduction

M–A–X compounds are carbide or nitride ceramics well known for their unique behavior as ‘deformable’ and ‘strain-tolerant’ ceramics. This property arises from the special hexagonal crystal structure that contains weakly bonded (0003) hkl crystallographic planes. This allows these compounds to deform by sliding and kinking in contrast to macroscopic cracking and cleavage typical of most ceramics. The chemistry is generically described as M = group III–VI transition metals (Sc, Ti, V, Cr); A = group IIIA–VA (Al, Si, Ge, P); and X = C, N. The stoichiometry is commonly M₂AX₃, M₃AX₅, or M₄AX₇. The structure is distinguished by planes of A-group elements every 3rd, 4th, or 5th layer, respectively, in a global Mₓₙ,Xₙ lattice. While many of the M–X ceramic properties are maintained, such as high melting temperature, high modulus, and high strength, the relatively weak M–A and A–X bonds allow for easy intercalated planar delamination that results in the high strain tolerant behavior. This produces unique aspects such as good machinability, moderate friction toughness, excellent thermal fatigue resistance, and high coefficient of thermal expansion for an otherwise ‘ceramic-like’ material.

While there have been over 60 MAX phases identified, those containing Al have the potential of excellent oxidation resistance owing to the formation of Al₂O₃ scales.[2] These include primarily Ti₅AlN, Ti₅AlC₃, Ti₃AlC₂, and Cr₉AlC exhibiting the highest oxidation resistance.[4–6] In general these studies have found alumina scale growth rates in the range of those formed on oxidation resistant NiAl or FeCrAl alloys, with good oxidation resistance up to 1200 °C for Cr₇AlC and 1300 °C for Ti₅AlC₂ and Ti₃AlC₂.[15] Indeed, rate controlling oxygen grain boundary diffusion in the scale has been surmised to be equivalent to that observed for oxidation resistant FeCrAl alloys.[7,8] Ti₃AlC₂ has been characterized as having good cyclic oxidation resistance because of its good thermal expansion match to that of the alumina scale. The higher CTE of Cr₇AlC leads to an increased spallation tendency similar to that observed for metals, but at higher temperatures.

Furthermore, published studies document good corrosion resistance of Ti₅AlC₂ and Cr₉AlC in SO₂ environments.[9,10] Molten Na₂SO₄ salt hot corrosion resistance was demonstrated for Cr₂AlC[5] and for preoxidized Ti₅AlC[11] and Ti₃AlC₂.[12] Thus the production of MAX phases as protective coatings for stainless steel, Ni-base superalloy M368G, Ti6242, and TiAl substrates has been demonstrated, primarily via magnetron sputtering.[13–18] Emerging problem areas of environmental degradation in turbines are gas phase embrittlement, oxidation, and low temperature hot corrosion (LTHC) of advanced disk alloys used in the high pressure turbine stage.[19–27] This issue becomes more critical at the highly stressed disk and blade attachment regions. Accordingly, crack tip oxidation has experienced increased attention.[28,29] Typical metallic aluminate and NiCrAlY coatings, engineered for higher temperature blade exposures and Type II hot corrosion resistance, actually lead to fatigue debits because of CTE mismatch stresses, lower strength, and tendencies for brittle behavior in a disk environment. This has led to modified approaches, such as fully ductile Ni–Cr coatings or fatigue resistant, refractory strengthened γ′/γ NiCrAl–Ta₆W ‘EQ’ coating alloys.[30,31]

In the present study, we consider Cr₂AlC in a potential coating application for thermal protection in gas turbine engines. It has three desirable attributes: strain tolerance because of micro-laminate kinking, a relatively high CTE (13 × 10⁻⁶/°C), and good Type I hot corrosion resistance.[32] Initial studies indicate improved Type II low temperature corrosion behavior as well.[J. Smialek, unpublished research]. However little information is available regarding cyclic thermal stability of a superalloy coated with this
Thus the purpose of the present paper is to examine the compatibility of a hot pressed Cr$_2$AlC–superalloy hybrid after repeated cycling to 800 °C. Interfacial mechanical and diffusional stabilities are the primary focus points of the present work, whereas many preliminary results, including scale characterizations, can be found in prior work.$^{[32]}$

Figure 1. Unaffected LSHR superalloy features away from the interface: a) fine–cuboidal γ′ particles in a γ matrix, grain boundary γ′, and MC carbides; b) EDS spectra corresponding to overall γ/γ′ region showing high Ni, Co, and Cr peaks, with Al, Ti, W, Ta, and Nb. (sample DC2, exposed 100 h at 800 °C; SEM/SE).

Figure 2. Unaffected Cr$_2$AlC MAX phase structure away from the interface: a) ~5 vol. % Al$_2$O$_3$ (dark) and 3 vol. % Cr$_7$C$_3$ (bright) impurity phases; EDS spectra corresponding to b) Cr$_2$AlC MAX phase; c) Cr$_7$C$_3$; and d) Al$_2$O$_3$ impurity phases. (Sample DC2, exposed 100 h at 800 °C; SEM/BSE).
Materials and procedure

The superalloy portion of the hybrid couple was a low γ' solvus and a high refractory content alloy, called ’LSHR’, developed by NASA for disk applications.\[33\] The as-forged LSHR composition is (wt.%):

$$\text{Ni-20.4Co-12.3Cr-4.3W-3.4Ti-3.4Al-}$$
$$2.7Mo-1.5Ta-1.5Nb-0.05Zr-0.03B-0.04C$$

Production scale powder metallurgy disks were produced by argon atomized and hot compacted powders, followed by extrusion and isothermal forging. Specimen blanks were supersolvus heat treated at 1171 °C for 2 h, cooled at 72°/min, and dual aged at 855 °C/4 h and 775 °C/8 h. Phase constituents were primarily γ-Ni(-Co,Cr,Mo,W) solid solution, strengthened by dense γ'-Ni(Ti,Ta,Nb)$_3$Al cuboidal precipitates. The alloy also contained a low density of dispersed (Ta,Nb,Ti)C carbides, coarse (W,Mo,Cr)$_3$B$_2$ borides, and fine grain boundary (W,Cr)$_2$C$_6$ carbide particles.\[34\] A representative microstructure including a grain boundary and the EDS spectrum corresponding to the general γ'/γ area are presented in Fig. 1(a,b).

The starting Cr$_2$AlC MAX phase ingot, approximately 2 × 2 × 12 cm, was obtained from Sandvik/Kanthal. The as-received density was ~67% based on an assumed theoretical density of 5.22 g/cm3. Thus an effort was made to improve density by hot pressing in vacuum (77 Pa or 10$^{-6}$ Torr) using graphite dies. It was found that hot pressing at 1300 °C for 2 h using 35 MPa pressure resulted in 97% density. Numerous fine secondary phases were present as shown in Fig. 2. The phase constituency was estimated by XRD Rietveld analyses to be ~92% Cr$_2$AlC, 5% Al$_2$O$_3$, and 3% Cr$_7$C$_3$ (vol. %). (This did not change appreciably in bulk with 1300 °C hot pressing, 1100 °C diffusion bonding, or 800 °C thermal exposures). The corresponding EDS spectra for the MAX phase constituents are presented in Figs. 2b–2d. They show the distinguishing peaks of the constituent Cr$_2$AlC matrix and Al$_2$O$_3$ and Cr$_7$C$_3$ impurity phases.

Coupons ~6 mm by 12 mm were sectioned from the LSHR superalloy and hot pressed Cr$_2$AlC using a diamond wafer saw. The thickness of the two LSHR coupons was 1.8 mm, whereas the Cr$_2$AlC coupons were ~0.3 and 1.5 mm for the 100-h and 1000-h exposure couples (samples DC2 and DC3), respectively. These were polished to 2400 grit SiC emery finish. Bonding was accomplished by vacuum hot pressing at 1100 °C for 2 h under ~110-MPa pressure (DC2). This caused substantial deformation of the LSHR alloy, to the extent that the slightly undersized Cr$_2$AlC layer was fully impressed into the metal. The second couple (DC3), hot pressed at 1100 °C for 2 h at ~52 MPa pressure, was used for the 1000 h test. Here, only minimal deformation of the LSHR alloy was noted, as shown in Fig. 3. Grafoil mold release was burned off at 800 °C for 1 h. One end of the couple was sectioned for as-diffusion bonded microscopy as a baseline for comparison to the thermally cycled samples.

The cut edge and major 6 × 12 mm exposed surfaces were repolished to 4000 grit emery and ultrasonically cleaned in ethanol. The couples, and separate coupons of LSHR and Cr$_2$AlC, were exposed to 800 °C air in a Thermolyne resistance muffle furnace, with intermittent removal for weight change measurements and optical examination. Vacuum infiltrated epoxy mounted and polished cross sections were prepared before and after oxidation. These sections were analyzed by conventional metallographic, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. SEM samples were coated with a conductive carbon coating and imaged primarily in backscatter electron imaging mode (BSE), sensitive to atomic weight of the features. Energy dispersive
spectroscopy (EDS) was conducted at 15 kV for chemical composition, with selective standardless semi-quantitative analysis. But because of the carbon coating, fine particle sizes, and excited volume overlap issues, most EDS assessments of phases were qualitative.

Results

The 800 °C weight change behavior of the diffusion bonded hybrid couple DC3 is shown in Fig. 4. Very little oxidation occurred, gaining only 0.18 mg/cm² after 1000 h. The companion sample DC2 gained 0.09 mg/cm² after 100 h, as shown previously. Both the Cr₂AlC and LSHR alloy contribute to this 1000-h value, with separate individual samples gaining 0.12 and 0.29 mg/cm², respectively. The literature suggests 800 °C weight changes on the order of 0.20 mg/cm² for Cr₂AlC oxidized for 1000 h and 0.57 mg/cm² for LSHR oxidized for 1000 h. Because oxidation is not a focus of this particular study, the kinetics are not discussed in more detail. There were no signs of delamination or oxidative deterioration of the bond interface after hot pressing or intermittent cycling to 800 °C.

The full thickness of the Cr₂AlC layer of the as hot-pressed DC2 sample can be seen to be on the order of 260 μm, with an overall diffusion zone of ~45 μm, as presented in Fig. 5. The original 300-μm Cr₂AlC coupon was reduced to a 260-μm-thick Cr₂AlC layer after removing ~40 μm by surface preparation after hot pressing. Unaffected LSHR superalloy and unaffected Cr₂AlC structures can be seen at the extreme left and right regions, respectively. An overview of the major diffusion zones can be represented by the montage presented in Fig. 6, obtained for the DC2 sample after 100 h at 800 °C. Here and under all conditions the LSHR region exhibits a gradation of white particles, with increased size and frequency near the bonded interface. The Cr₂AlC side exhibits a distinctive diffusion layer along with numerous other features. These
are summarized in the schematic of Fig. 6b that can be used as a microstructural guide in the following discussion of the specific details. Furthermore, a comprehensive complementary catalog of all the phases found in each of these distinctive zones is presented in the Appendix, Table A1.

The details of the diffusion zone features and their chemistries are discussed for the different conditions in the remaining figures. The microstructure of the DC2 sample after hot pressing is presented in Fig. 7a. Energy dispersive spectroscopy suggested that the primary reaction layer is β-Ni(Co)Al (Fig. 7b), peppered with less distinct very fine precipitates. Typically, semi-quantitative analyses yielded 42Ni–38Al–13Co–5Cr–2Ti (at. %) for all the regions marked β-Ni(Co)Al.

The center bond line is decorated with dark Al$_2$O$_3$ particles (Fig. 7c). The origin of the Al$_2$O$_3$ is unclear, but likely occurred by slight oxidation in the hot press. In the diffusion zone close to the superalloy side, large and very bright W(Mo,Cr)$_3$B$_2$ (Fig. 7d) particles were commonly observed. (Note: B peaks are problematic in SEM/EDS analyses). On the other hand, light gray (Ta,Nb,Ti)C particles (Fig. 7e) were prevalent on both sides of the bond line. Both of these boride and carbide phases were more pronounced in these regions as compared to the unaffected superalloy region far away from the interface, also with size and shape differences. The suggested boride and carbide stoichiometries derive from published precise TEM diffraction, microprobe, and semi-quantitative EDS analyses of similar features in the same bulk superalloy.$^{[34]}$ The latter study indicated 33.0Cr–20.6Co–14.3Ni–5.4Mo–2.5W–24.2C in atomic percent for the MC carbide and 18.8Cr–15.8Mo–8.7W–39.7B (plus 4.5Ni–3.2Co–2.4Nb–2.4Ti–0.7Ta–3.8C) atomic percent for the M$_3$B$_2$ boride.$^{[34]}$ A high density of fine precipitates was observed in the primary reaction zone β matrix (Fig. 7a), but were too narrow (~0.2 μm) for EDS analysis. Moving to the right side of the diffusion zone, closer to the Cr$_2$AlC wafer, extensive growth of an amorphous Cr$_7$C$_3$ phase was observed intertwined with the β-Ni(Co)Al.

Figure 7. Detailed microstructural features of the diffusion/reaction zones for as-hot pressed sample DC2 showing a) Ni(Co)Al reaction layer with bright M$_3$B$_2$, light MC, γ', and dark Al$_2$O$_3$ bond-line particles; EDS spectra corresponding to b) Ni(Co)Al reaction layer, c) embedded Al$_2$O$_3$, d) (W, Mo)$_3$B$_2$ borides, and e) (Ta, Ti, Nb)C carbides.
After sample DC2 was heated for 100 h at 800 °C, the interface displayed features similar to those observed after hot pressing. The β layer has grown by approximately 3 μm. In the LSHR region adjacent to the diffusion interface, nucleation of a new phase with long, needle-like or platelet morphology has begun. The fine precipitate phase in the β-Ni(Co)Al interdiffusion layer coarsened into more distinctly visible intragranular precipitates arranged in a Widmanstätten pattern (Fig. 6a). EDS analysis (Fig. 8b) suggested these and larger precipitates in the region to be high in Ni, Co, Al, and Cr. These spectra are similar to those for γ′-Ni3Al, but with higher Cr sometimes approaching that of σ-phase TCP (previously measured as 28Co–26Cr–14Mo–14W–12Ni–4Ta–2Ti in the alloy, but without any Al[34]). Semi-quantitative standardless EDS analyses yielded 26Ni–20Al–22Co–27Cr–2Mo–2W–11.7Ni–4.1Ta–2.4Ti in atomic percent.[34] In addition, darker particles were also distinctly visible at the grain boundaries in the LSHR. A characteristic EDS spectrum of the latter phase (Fig. 9c) suggested these particles to be a Cr(Mo, W)–oxide, possibly Cr(Mo, W)O4. The other previously discussed phases such as MC and γ'/γ were also marked in Fig. 9a. Despite these alterations, the individual and total overall diffusion zones did not increase with respect to the as-hot pressed dimensions (Table 1) as surmised from both low and high magnification measurements. These zones did not show a systematic increase in thickness compared to the DC2 100 h data either.

Discussion

Wafers of Cr2AlC MAX phase have been successfully bonded to an advanced disk alloy, LSHR, at 1100 °C. A noticeable amount of interdiffusion took place during hot pressing, producing a distinct Ni–Al interfacial layer, consistent with β-Ni(Co)Al. This zone straddled what appeared to be the original interface, as demarked by alumina stringers in one sample. Little growth took place after 100 or 1000 h exposure to 800 °C ambient air. No evidence of interfacial damage or cracking was apparent despite cooling to room temperature for 10–20 times, respectively.

The reaction zone constituents can be described in terms of superalloy elements (Ni, Ta, Ti, W, Mo, and Nb) diffusing into the Cr2AlC and counterdiffusion of MAX phase elements (Cr, Al, and C) moving into the superalloy. The inner reaction zone of β-Ni(Co)Al is a result of Al diffusing into the superalloy on one side and Ni diffusing into the MAX phase on the other, delineated in one sample by the Al2O3 at the original bond line. Many of the features in the reaction zone are reminiscent of microstructures formed in alumined superalloys, both as-coated and after subsequent thermal exposure. Here, duplex microstructures were the rule, with an outer layer of γ′-Ni3Al and an inner layer containing γ-Ni3Al precipitates plus carbides.[36] Subsequent interdiffusion depletes the coating of Al and allows γ'-Ni3Al precipitation within the β-phase.[37–39] Similarly, in the present study, various modifications of the interface zone were manifested on both sides of the bond line as (Ta, Ti, Nb)C carbide particles and a profusion of (Ni, Co, Al, Cr)-rich Widmanstätten precipitates, with compositions intermediate between the superalloy and the β-NiAl phase. W-rich M23B particles appeared exclusively on the LSHR side of the reaction zone.

The LSHR alloy adjacent to the diffusion zone exhibited a dispersion of α-like TCP lathes after long time exposures, superimposed on the prior broad, fading zone of enlarged MC carbides. The
Carbide enhancement and high-Cr TCP precipitates were consistent with C and Cr diffusing into the superalloy from the Cr$_2$AlC MAX phase. Again, Cr, Co, Mo, and W-rich TCP precipitates, such as σ, μ phases, are well-known occurrences in a similar zone beneath the external coating for annealed aluminized superalloys.[39,40] Also, fine alumina particles, similar to those found at the bond line in the present study, are sometimes seen trapped near the interface between the outer β-NiAl layer and inner diffusion zone in aluminized coatings.[38]

On the other side of the interface, i.e. toward the Cr$_2$AlC wafer, a multiphase zone with a large component of Cr-carbide has formed. This is analogous to similar Cr$_7$C$_3$ sublayer depletion zones formed under aluminas scales as Al is extracted from Cr$_2$AlC during oxidation.[5,6] Also, it has been predicted thermodynamically and shown experimentally that NiAl will deplete Al from Cr$_2$AlC to form Cr$_7$C$_3$.[41] Given that Al in Cr$_2$AlC interdiffused with the nickel superalloy, Cr$_7$C$_3$ is an expected depletion zone in this LSHR–Cr$_2$AlC couple. Finally, some W, Mo, Ni, and Co have been observed in the Cr$_7$C$_3$ phase at the innermost region of the reaction layer, showing the limited extent of diffusion of these elements from the superalloy.

The degree of oxidation indicated by weight change was minimal. Oxidation was not a focus of this paper, but in general Cr$_2$O$_3$ and (Cr,Ta,Ti)O$_2$ rutile phases were identified on LSHR by xrd, while α-Al$_2$O$_3$ and α-Cr$_2$O$_3$ were identified for the Cr$_2$AlC MAX phase. At present, more detailed characterizations of these materials can be found in previous works.[21,32]

Conclusions

Cr$_2$AlC MAX phase is relatively stable, mechanically and chemically, with a Ni-base superalloy in 800 °C cycling and may offer promise as...
a high temperature, strain tolerant, corrosion resistant coating. The cyclic integrity of bonded 0.3 or 1.2-mm-thick layers indicate a robustness compared to other oxidation-resistant coatings, the latter being typically much thinner at ~0.1 mm or less. Complex interfacial reaction layers were produced during hot pressing at 1100 °C. About 10 μm of β-Ni(Co)Al formed, decorated with various γ’ (Ni)Co23Al, Ta(Ti,Nb)C, and W(Cr,Mo)2B2 precipitates formed near the bond interface. The constituent phases and microstructures were reminiscent of those produced in aluminized superalloy coatings. On the Cr2AlC side, an additional ~40-μm reaction zone of Cr–C3 formed in an interconnected network with β-Ni(Co)Al. This transitioned into a dense Cr–C3 Al-depletion zone, similar to that formed by Al-depletion during high temperature oxidation.

Little if any additional growth occurred after extensive exposure to 800 °C, i.e. near the expected maximum service temperature for this application, although the detailed morphology changed. The ability of MAX phases to deform without cracking may provide some strain tolerance and fatigue benefit as a coating. However, the (brittle) NiAl diffusion zone may limit this benefit because of its known fatigue debit as a coating for superalloys. The occurrence of some TCP α-phase in the LSHR side is another cause of concern. However, it is believed that lower processing temperatures associated with overlay coatings (i.e. below 1100 °C) will greatly decrease these detrimental diffusion effects.

Oxidation of Cr2AlC is extremely slow at 800 °C and should pose no problem for surface degradation. As a carbide, a MAX phase coating should also reduce oxygen diffusion and oxygen-induced gas phase embrittlement (GPE) of the underlying alloy. Cr2AlC is an alumina/chromia former with no Ni or Co exposed to the environment. Therefore, Type II low temperature hot corrosion, triggered by the formation of Ni–Co–Na sulfate eutectics, is also expected to be minimal for Cr2AlC.

Acknowledgements

The authors are grateful to Donald Humphrey for hot pressing and Joy Buehler for metallography. The helpful comments from Drs. T. Gabb and I. Locci are appreciated. This work has been supported by the Fixed Wing Project of the NASA Fundamental Aeronautics Program.

References

Appendix A. Phase categorization summary by zone

A large number of features in five distinct zones have been discussed. For the sake of clarity and easy comparison, a summary of the more comprehensive characterization has been constructed in Table A1. Here all the primary features are listed by zone with respect to specific EDS spectra. They are presented in sequence, top to bottom, from the superalloy, across the diffusion and reaction zones, to the Cr2AlC (left to right in micrographs). The four subcategories of the diffusion zones correspond to (i) LSHR adjacent to the diffusion zone (LSHRDZ), (ii) the inner diffusion zone (DZ) portions near LSHR (DZLSHR) or (iii) near Cr2AlC (DZ1Cr2AlC), and (iv) the predominantly Cr7C3 depletion layer (DZ2Cr7C3). Characteristic EDS intensity is presented in descending order as strong, medium, or weak elemental peaks, arbitrarily designated as 50–100%, 20–50%, and <20% of the maximum peak height, respectively. The diffusion zone entries are for the 800 °C exposed samples and generally exhibited little or no change from the 100-h to 1000-h treatments.

Thus, in sequence, the constituents for the unaffected LSHR alloy (top) exhibit a Ni-rich matrix with low levels of all the alloying elements (Co, Cr, Al, W, Mo, Ti, C, and B). There is also a small concentration of the (Ta, Ti, Nb) MC carbides and (W, Mo, Cr) M23B2 borides in the as-received superalloy, as previously characterized.[34] For the exposed samples, Cr-rich TCP and a grain boundary oxide were observed in the superalloy, especially after 1000 h. The carbide and boride phases were also present in the β-Ni(Co)Al reaction zone near the superalloy (left), while only the carbide persisted on the Cr2AlC side of the bond interface (right). Small oxide particles, assumed to be Al2O3, decorated the apparent original bond line in both the as-hot pressed and 100 h exposed sections, but only for the DC2 sample. An (Ni, Al)-rich phase, too fine to be clearly analyzed (~0.2 μm wide) was also present in the β-Ni(Co)Al reaction zone. It contained significant Cr (and Co), but less than that for a TCP-related phase, and was high in Ni and Al suggesting γ’-Ni3Al, but with higher Cr. At present a more consistent identification is unavailable. The final zone is a mixture of the β-Ni(Co)Al reaction layer and the Cr7C3 carbide, in varying degrees. This region is populated with many large alumina particles in higher concentrations than the impurity alumina phase in the as-received Cr2AlC. Eventually the Cr7C3 carbide is the only phase in contact with unaffected Cr2AlC, which in turn contains Al2O3 alumina and Cr7C3 impurity phases in the starting material (bottom of table).
<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Proposed phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSHR</td>
<td>matrix</td>
<td>Ni, Co</td>
<td>Cr, Al</td>
<td>W, Mo, Ti</td>
<td>γ′/γ</td>
</tr>
<tr>
<td>LSHR</td>
<td>light grey particle</td>
<td>Ta, Nb, Ti</td>
<td>C</td>
<td></td>
<td>MC</td>
</tr>
<tr>
<td>LSHR</td>
<td>g.b. precipitate</td>
<td>Ni</td>
<td>W, Co, Cr</td>
<td>Ti, Al, Ni, Co, B</td>
<td>γ′</td>
</tr>
<tr>
<td>LSHR</td>
<td>white spherical</td>
<td>W, Mo, Cr</td>
<td>Ti, Al, Ni, Co, B</td>
<td>M₂B₃</td>
<td></td>
</tr>
<tr>
<td>LSHR₉₀₂</td>
<td>matrix</td>
<td>Ni, Co</td>
<td>Cr, Al</td>
<td>W, Mo, Ti</td>
<td>γ′/γ</td>
</tr>
<tr>
<td>LSHR₉₀₂</td>
<td>grey oriented plate</td>
<td>Cr</td>
<td>Co, Ni</td>
<td>W, Mo, Al</td>
<td>TCP</td>
</tr>
<tr>
<td>LSHR₉₀₂</td>
<td>light circular phase</td>
<td>Ta, Nb, Ti</td>
<td>C</td>
<td></td>
<td>MC</td>
</tr>
<tr>
<td>LSHR₉₀₂</td>
<td>dark gb precipitate</td>
<td>Cr</td>
<td>Ni, Co, W, Mo</td>
<td>Cr₂O₃</td>
<td></td>
</tr>
<tr>
<td>DZ₁_LSHR</td>
<td>D.Z matrix</td>
<td>Ni, Al</td>
<td>Cr, Co</td>
<td>W, Mo, Ti</td>
<td>β-NiAl</td>
</tr>
<tr>
<td>DZ₁_LSHR</td>
<td>grey particle</td>
<td>Ni, Al</td>
<td>Cr, Co</td>
<td>W, Mo, Ti</td>
<td>?</td>
</tr>
<tr>
<td>DZ₁_LSHR</td>
<td>grey particle</td>
<td>Ta, Nb, Ti</td>
<td>C</td>
<td></td>
<td>MC</td>
</tr>
<tr>
<td>DZ₁_LSHR</td>
<td>white particle</td>
<td>W, Mo, Cr</td>
<td>C, B</td>
<td></td>
<td>M₁B₁</td>
</tr>
<tr>
<td>bond line</td>
<td>dark bond line particle</td>
<td>Al</td>
<td>O</td>
<td>Al₂O₂</td>
<td></td>
</tr>
<tr>
<td>DZ₁_Cr₂AlC</td>
<td>D.Z matrix</td>
<td>Ni, Al</td>
<td>Cr, Co</td>
<td>W, Mo, Ti</td>
<td>β-NiAl</td>
</tr>
<tr>
<td>DZ₁_Cr₂AlC</td>
<td>grey particle</td>
<td>Ni, Al</td>
<td>Cr, Co</td>
<td>W, Mo, Ti</td>
<td>?</td>
</tr>
<tr>
<td>DZ₁_Cr₂AlC</td>
<td>grey particle</td>
<td>Ti, W</td>
<td>Nb, Mo</td>
<td>C, Al</td>
<td>MC</td>
</tr>
<tr>
<td>DZ₂_Cr₂AlC</td>
<td>amorphous islands</td>
<td>Cr</td>
<td>W, Mo</td>
<td>C</td>
<td>Cr₂C₃</td>
</tr>
<tr>
<td>DZ₂_Cr₂AlC</td>
<td>dark particle</td>
<td>Al</td>
<td>O</td>
<td>Al₂O₃</td>
<td></td>
</tr>
<tr>
<td>DZ₂_Cr₂AlC</td>
<td>underlayer</td>
<td>Ni</td>
<td>Al</td>
<td>Ti, Cr, Co</td>
<td>γ′/γ</td>
</tr>
<tr>
<td>DZ₂_Cr₂AlC</td>
<td>outer D.Z. matrix</td>
<td>Ni, Al</td>
<td>Al</td>
<td>Co, Cr</td>
<td>β-NiAl</td>
</tr>
<tr>
<td>DZ₂_Cr₂AlC</td>
<td>amorphous islands</td>
<td>Cr</td>
<td>C</td>
<td>Al</td>
<td>Cr₂C₁</td>
</tr>
<tr>
<td>Cr₂AlC</td>
<td>dark particle</td>
<td>Al</td>
<td>O</td>
<td>Al₂O₂</td>
<td></td>
</tr>
<tr>
<td>Cr₂AlC</td>
<td>light phase</td>
<td>Cr</td>
<td>C</td>
<td>Cr₂C₃</td>
<td></td>
</tr>
<tr>
<td>Cr₂AlC</td>
<td>matrix</td>
<td>Cr</td>
<td>Al</td>
<td>Cr₂AlC</td>
<td></td>
</tr>
</tbody>
</table>

Sequenced (top to bottom) from LSHR side, through diffusion zone, to unaffected Cr₂AlC.