
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Papers in Veterinary and Biomedical Science Veterinary and Biomedical Sciences, 
Department of 

2016 

A synthetic porcine reproductive and respiratory syndrome A synthetic porcine reproductive and respiratory syndrome 

unprecedented levels of heterologous protection unprecedented levels of heterologous protection 

Hiep Vu 
University of Nebraska-Lincoln, hiepvu@unl.edu 

Fangrui Ma 
University of Nebraska-Lincoln, fangrui.ma@gmail.com 

William W. Laegreid 
University of Wyoming, wlaegrei@uwyo.edu 

Asit K. Pattnaik 
University of Nebraska-Lincoln, apattnaik2@unl.edu 

David Steffen 
University of Nebraska-Lincoln, dsteffen1@unl.edu 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/vetscipapers 

 Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental 

Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, 

Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology 

Commons 

Vu, Hiep; Ma, Fangrui; Laegreid, William W.; Pattnaik, Asit K.; Steffen, David; Doster, Alan R.; and Osorio, 
Fernando A., "A synthetic porcine reproductive and respiratory syndrome unprecedented levels of 
heterologous protection" (2016). Papers in Veterinary and Biomedical Science. 217. 
https://digitalcommons.unl.edu/vetscipapers/217 

This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and 
Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/vetscipapers
https://digitalcommons.unl.edu/vetbiomedsci
https://digitalcommons.unl.edu/vetbiomedsci
https://digitalcommons.unl.edu/vetscipapers?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/8?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/8?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/664?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/763?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/764?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/764?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/vetscipapers/217?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Hiep Vu, Fangrui Ma, William W. Laegreid, Asit K. Pattnaik, David Steffen, Alan R. Doster, and Fernando A. 
Osorio 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
vetscipapers/217 

https://digitalcommons.unl.edu/vetscipapers/217
https://digitalcommons.unl.edu/vetscipapers/217


1 
 

A synthetic porcine reproductive and respiratory syndrome virus strain confers 1 

unprecedented levels of heterologous protection 2 

Hiep L. X. Vua,b#, Fangrui Maa, William W. Laegreidc, K. Pattnaika,b, David Steffenb, Alan  R. 3 

Dosterb and Fernando A. Osorioa,b#  4 

 5 

Nebraska Center for Virologya, and School of Veterinary medicine and Biomedical Sciencesb, 6 

University of Nebraska-Lincoln, Lincoln, Nebraska  7 

Department of Veterinary Sciences, University of Wyoming, Laramie, Wyomingc 8 

 9 

Running title: A synthetic PRRSV strain eliciting broad protection 10 

Word count: Abstract – 172; Main text- 5,894  11 

Key words: PRRSV, synthetic virus, broadly protective vaccine, centralized immunogen, reverse 12 
genetics 13 
 14 

# Corresponding authors: 15 

Hiep L.X. Vu (hiepvu@unl.edu) 16 

Fernando A. Osorio (fosorio1@unl.edu) 17 

 18 

  19 

JVI Accepted Manuscript Posted Online 23 September 2015
J. Virol. doi:10.1128/JVI.01657-15
Copyright © 2015, American Society for Microbiology. All Rights Reserved.



2 
 

Abstract 20 

Current vaccines do not provide sufficient levels of protection against divergent porcine 21 

reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due 22 

to the substantial variation of the viral genome. We describe here a novel approach to generate a 23 

PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection 24 

against divergent PRRSV isolates. Using a set of 59 non-redundant, full genome sequences of 25 

type-2 PRRSV, a consensus genome (designated as PRRSV-CON) was generated by aligning 26 

these 59 PRRSV full genome sequences, followed by selecting the most common nucleotide 27 

found at each position of the alignment. Next, the synthetic PRRSV-CON virus was generated 28 

through the use of reverse genetics. The PRRSV-CON virus replicates as efficiently as our 29 

prototype PRRSV strain FL12, both in vitro and in vivo. Importantly, when inoculated in pigs, 30 

the PRRSV-CON virus confers significantly broader levels of heterologous protection than the 31 

wild-type PRRSV. Collectively, our data demonstrates that the PRRSV-CON virus can serve as 32 

an excellent candidate for the development of a broadly protective PRRS vaccine.  33 

 34 

 35 

 36 

 37 

 38 
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Importance  39 

The extraordinary genetic variation of RNA viruses poses a monumental challenge for 40 

the development of broadly protective vaccines against these viruses. To minimize the genetic 41 

dissimilarity between vaccine immunogens and the contemporary circulating viruses, 42 

computational strategies have been developed for generation of artificial immunogen sequences 43 

(so-called “centralized” sequences) that have equal genetic distances to the circulating viruses. 44 

Thus far, “centralized” vaccine immunogens have been carried out at the level of individual viral 45 

proteins. We expand this concept to for PRRSV, a highly variable RNA virus, by creating a 46 

synthetic PRRSV strain based on a “centralized” PRRSV genome sequence. This study provides 47 

the first example of “centralizing” the whole genome of an RNA virus to improve vaccine 48 

coverage. This concept may be significant for the development of vaccines against genetically 49 

variable viruses that require active viral replication in order to achieve complete immune 50 

protection.  51 

 52 

 53 

 54 

 55 

 56 

 57 
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Introduction 58 

Porcine reproductive and respiratory syndrome (PRRS) is widespread in most of swine-59 

producing countries worldwide, causing significant economic losses to swine producers. In the 60 

U.S alone, the disease causes approximately $664 million losses to the American swine 61 

producers annually (1).  Clinical signs of PRRS include reproductive failure in pregnant sows 62 

and respiratory diseases in young pigs. The causative agent of PRRS is a positive-sense, single-63 

stranded RNA virus that belongs to the family Arteriviridae of the order Nidovirales and is 64 

referred to as porcine reproductive and respiratory syndrome (PRRSV) (2-4). The PRRSV 65 

genome is approximately 15 Kb in length and encodes at least 22 different viral proteins (5). 66 

Several viral proteins have been shown to elicit humoral and/or cell mediated immune responses 67 

in infected pigs but none of those proteins have been conclusively shown to elicit complete 68 

immune protection (6-9). 69 

PRRS vaccines have been licensed for clinical application since 1994. Two types of 70 

PRRS vaccines are currently available including killed virus (KV) vaccines and modified live 71 

virus (MLV) vaccines. Sub-unit vaccines are not available, mainly due to the lack of information 72 

on which viral proteins should be incorporated into the vaccine in order to achieve optimal 73 

protection. The efficacy of MLV vaccines is far superior to that of KV vaccines (10-13). Current 74 

PRRS MLVs confer excellent protection against a PRRSV strain that is genetically similar to the 75 

vaccine strain (14, 15). However, the levels of protection against heterologous PRRSV strains 76 

are highly variable and overall are considered sub-optimal in all cases (10, 14-19).  77 

The prominent genetic variation of PRRSV genome is the biggest hinder for the 78 

development of a broadly protective PRRS vaccine. PRRSV is classified into 2 major genotypes: 79 

type-1 (European) and type-2 (North American) that share approximately 65% genomic 80 
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sequence identity (20, 21). In addition, there exists a highly pathogenic variant of type-2 PRRSV 81 

(so called HP-PRRS) that is endemic in Asia, causing death in pigs of all ages with the mortality 82 

up to 100% (22). The genetic variation among PRRSV strains within each genotype is 83 

substantial. Based on phylogenetic analysis of the viral glycoprotein 5 (GP5, the most 84 

hypervariable surface envelope), type-2 PRRSV can be classified into 9 different lineages, with 85 

the pairwise interlineage genetic distance ranging from 10% to 18% (23). The average 86 

substitution rate of type-2 PRRSV ORF5 is estimated to be 9.6 x 10-3 substitution/site/year (23). 87 

Genetic divergence has been shown to occur when a PRRSV strain is serially passed from pig-88 

to-pig (24). Further, co-circulation of multiple PRRSV variants within one herd or even within 89 

one animal has been demonstrated in the field (25).  90 

Multiple strategies have been employed to overcome the formidable challenge posed by 91 

such substantial genetic diversity of PRRSV. Many swine producers choose to immunize their 92 

herds by means of exposing the animals to wild-type, highly virulent PRRSV that is 93 

autochthonous to their farm (for instance, though direct inoculation of viremic serum) so that 94 

their herds will acquire protective immunity specific to the residential PRRSV isolates (26). A 95 

polyvalent vaccine comprising 5 different live-attenuated PRRSV strains had been tested in pigs 96 

(27). However, this polyvalent vaccine did not seem to provide any significant improvement in 97 

the levels of heterologous protection as compared with the monovalent PRRS vaccine (27). 98 

Recently, several chimeric viruses have been generated by molecular breeding of different 99 

structural proteins from genetically divergent strains (28, 29). Although these chimeric viruses 100 

have been shown to elicit better cross-neutralizing antibody responses than did the parental 101 

PRRSV strains, the levels of heterologous protection conferred by these chimeric viruses remain 102 

to be tested (28, 29).  103 
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Genomic variation is a common characteristic of RNA viruses (30). One effective 104 

vaccinology approach to overcome the extraordinary genetic diversity of RNA viruses is to 105 

computationally design vaccine immunogen sequence, so-called “centralized sequences”, that 106 

should be located at the center of a phylogenetic tree, thereby having equal genetic distances to 107 

all wild-type viruses (31, 32). As demonstrated in the case of human immune deficiency virus 108 

type 1 (HIV-1), the use of centralized sequences could effectively reduce the genetic distances 109 

between vaccine immunogens and the wild-type viruses by half of those between any wild-type 110 

viruses to each other (31-33). Three different computational methods have been developed to 111 

generate a centralized immunogen sequence including: Consensus, common ancestor and center 112 

of the tree (31, 32). A consensus sequence that caries the most common amino acid found at each 113 

position of the alignment is the simplest method for construction of a centralized immunogen 114 

(31).  Studies on HIV-1 and influenza virus have clearly demonstrated that the vaccines based on 115 

the consensus sequences elicit broader immune responses than the vaccines based on naturally 116 

occurring sequences (34-38). 117 

We describe here the generation and characterization of a synthetic PRRSV strain that 118 

was constructed based on a consensus, full genome sequence of type-2 PRRSV. We show that 119 

the PRRSV consensus genome (designated as PRRSV-CON) is fully infectious, and the 120 

synthetic PRRSV-CON virus displays typical characteristics of a naturally occurring PRRSV 121 

strain. Importantly, when inoculated to pigs, the PRRSV-CON virus confers exceptional levels 122 

of heterologous protection against divergent PRRSV strains as compared with a reference wild-123 

type PRRSV strain. 124 
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Materials and Methods 125 

Ethics Statement 126 

All animal experiments in this study were conducted in compliance with the Animal 127 

Welfare Act of 1966 and its amendments, and the Guide for the Care and Use of Agricultural 128 

Animals in Research and Teaching (3rd edition). The animal care and use protocol was approved 129 

by the University of Nebraska-Lincoln (UNL) Institutional Animal Care and Use Committee 130 

(protocol # 930). 131 

Cells, antibodies and PRRSV strains 132 

Monkey-kidney cell line MARC-145 (39), porcine kidney 15 (PK-15, baby hamster 133 

kidney 21 (BHK-21) and Hela cells were cultured in Dulbecco’s Modified Eagle’s Medium  134 

(DMEM) supplemented with 10% fetal bovine serum (FBS). Immortalized porcine alveolar 135 

macrophages, clone 3D4/31 (PAM 3D4/31, ATCC CRL-2844) were cultured in RPMI-1640 136 

supplemented with 10% FBS (40). All cell lines were cultured at 37oC and 5% CO2. PRRSV-137 

specific hyper-immune antibody used for virus-neutralization assay was generated previously 138 

(41). This hyper-immune antibody can cross-neutralize different type-II PRRSV strains with 139 

high end-point neutralization titers (41).  PRRSV-specific monoclonal antibodies (MAbs) used 140 

for indirect immunofluorescent assay include anti-GP5 (clone ISU25-C1 (42)), anti-M protein 141 

(clone 201 (43)) and anti-N protein (clone SDOW17 (44)). Alexa fluor® 488-conjugated goat 142 

anti-mouse antibody was purchased from Invitrogen (Eugene, OR). PRRSV strains used for 143 

immunization or challenge infection include: FL12, 16244B and MN184C. PRRSV strains FL12 144 

was recovered from the full length infectious cDNA clone (45) derived from PRRSV strain 145 

NVSL 97-7895 (GenBank accession no. AY545985). PRRSV strain 16244B (GenBank 146 

accession no. AF046869) was isolated in 1997 from a piglet originated in a farm where sows 147 
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experienced severe reproductive failure (20).  PRRSV strain MN184C (GenBank accession no. 148 

EF488739 (46)) was kindly provided by Dr. Faaberg, National Animal Disease Center, USA.   149 

 150 

Collection of type-2 PRRSV full genome sequences and design of the consensus PRRSV 151 

genome  152 

Through our studies on the “Immunologic Consequences of PRRSV Diversity” (Laegreid 153 

et al., un-published data), we sequenced the full genome of 64 type-2 PRRSV strains/isolates 154 

originating in Midwestern states (Iowa, Nebraska and Illinois) of the USA. In addition, we were 155 

able to collect 20 genome sequences of type-2 PRRSV isolates from GenBank that also 156 

originated in the USA. After removing redundant sequences, we attained a final set of 59 157 

genome sequences of type-2 PRRSV: 39 genome sequences were sequenced by our laboratories 158 

and 20 genome sequences were collected from GenBank. List of PRRSV genome sequences with 159 

the GenBank accession number is presented in Table S1. The PRRSV genome sequences were 160 

aligned using the MUSCLE 3.8 program (47). A consensus genome (PRRSV-CON) was 161 

constructed using the Jalview program (48). The PRRSV-CON genome was aligned with the 162 

reference PRRSV strain FL12 genome and frameshift mutations (insertion and deletion 163 

mutations) were manually corrected to ascertain that the viral proteins would be properly 164 

expressed. Finally, the 5’ and 3’ un-translated regions (UTR) of the PRRSV-CON genome were 165 

replaced by the counterparts of FL12 genome. Phylogenetic tree of the 59 naturally occurring 166 

PRRSV genomes, together with the PRRSV-CON, was constructed using PHYML 3.0, an 167 

implementation of maximum likelihood method (49). 168 

 169 
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Generation of the synthetic PRRSV-CON virus 170 

To generate an infectious virus based on the PRRSV-CON genome, a full genome cDNA 171 

clone of the PRRSV-CON was constructed following the strategy described previously (45). 172 

Four DNA fragments (A-D) encompassing the whole PRRSV-CON genome was chemically 173 

synthesized by Genscript (Piscataway, NJ). Each DNA fragment was flanked by a pair of 174 

restriction enzyme sites to facilitate the cloning purposes. The restriction enzymes sites used for 175 

assembling the full genome cDNA clone include: NotI, SphI, PmeI, SacI and PacI. NotI and PacI 176 

are restriction enzyme sites that are added to 5’ and 3’ ends of the PRRSV-CON cDNA genome, 177 

respectively. SphI, PmeI and SacI are naturally occurring restriction enzyme sites that reside 178 

inside the PRRSV-CON cDNA genome. The T7 RNA polymerase promoter was incorporated 179 

into fragment D, preceding the viral 5’end, to facilitate the in vitro transcription of the viral 180 

genome. Individual DNA fragments were sequentially cloned into a pBR322 plasmid that was 181 

modified to carry the corresponding restriction enzyme sites. Once the full genome PRRSV-182 

CON cDNA clone was assembled, standard reverse genetics techniques were employed to 183 

recover an infectious PRRSV-CON virus (43, 45, 50). Briefly, the plasmid containing cDNA 184 

genome was digested with AclI for linearization. The purified, linear DNA fragment was used as 185 

the template for an in vitro transcription reaction using the mMESSAGE mMACHINE Ultra T7 186 

kit (Ambion, Austin, TX) to generate the 5’ capped viral RNA transcript. After that, 187 

approximately 5 µg of the full genome RNA transcripts was transfected into MARC-145 cells 188 

cultured in a 6-well plate, using the TransIT®-mRNA Transfection Kit (Mirus Bio, Madison, 189 

WI). Transfected cells were cultured in DMEM containing 10% FBS at 37oC, 5% CO2 for up to 190 

6 days. When clear cytopathic effect (CPE) was observed, culture supernatant containing the 191 
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rescued virus was collected and passed into naïve MARC-145 cells one more time to obtain 192 

enough virus stock for future studies.  193 

 194 

Indirect immuno-fluorescent assay 195 

To study the reactivity of the viruses to different PRRSV specific monoclonal antibodies, 196 

MARC-145 cells were mock-infected or infected with the PRRSV-CON virus and wild-type 197 

FL12. At 48h post-infection, cells were washed twice with phosphate buffer saline (PBS, pH 7.4) 198 

and then fixed with 4% paraformaldehyde for 20 minutes at room temperature. After two washes 199 

in PBS, the cells were permeabilized with PBS containing 0.1% Triton X-100 for 15 minutes at 200 

room temperature. Next, the cells were incubated with PRRSV-specific MAbs for 1h at room 201 

temperature, followed by 3 washes in PBS. Finally, the cells were incubated with anti-mouse, 202 

Alexa fluor® 488-conjugated antibody for 1 hour at room temperature. After 3 washes in PBS, 203 

cells were observed under an inverted fluorescent microscope.  204 

Virus-neutralization assay 205 

Virus neutralization assay was done in MARC-145 cells, using a fluorescent focus 206 

neutralization assay described previously (51). Neutralization titers were expressed as the 207 

reciprocal of the highest dilution that showed 90% or greater reduction in the number of 208 

fluorescent foci presenting in the control wells. 209 

In vitro Infectivity assay 210 

Immortalized PAM 3D4/31 (40), PK-15, BHK-21 and Hela cells were separately plated 211 

in 24-well plates. At approximately 24h later, cells in each well were infected with 2 X 104.0 212 

TCID50 of PRRSV-CON or PRRSV strain FL12. Forty eight hours after infection, the expression 213 



11 
 

of viral nucleocapsid protein was examined by using an indirect immuno-fluorescent assay 214 

described above. 215 

Multiple step growth curve and plaque assay 216 

To study the growth kinetics of the viruses in cell culture, MARC-145 cells were infected 217 

with the PRRSV-CON or FL12 at multiplicity of infection (MOI) 0.01. At different time-points 218 

post infection, culture supernatant was collected and virus titers were determined by titration in 219 

MARC-145 cells. Plaque morphology was examined in MARC-145 cells as previously described 220 

(52). 221 

 222 

Assessment of the viral virulence in pigs 223 

A total of 18 PRRSV-seronegative, 3 week-old pigs were purchased from the UNL’s 224 

research farm. The pigs were randomly assigned into 3 treatment groups, 6 pigs per group. Each 225 

treatment group was housed in a separate room in the biosecurity level 2 (BL-2) animal research 226 

facilities at UNL. After 1 week of acclimation, pigs in group 1 were injected with PBS to serve 227 

as normal control. Pigs in group 2 and 3 were inoculated intramuscularly with 105.0TCID50 of 228 

PRRSV-CON and PRRSV strain FL12, respectively. Rectal temperature was measure daily from 229 

-1 to 13 days p.i.. Pigs were weighed right before challenge infection and on 15 days p.i.. Body 230 

weight was recorded. Average daily weight gain (ADWG) was calculated for the period of 15 231 

days p.i.. Blood samples were collected periodically and serum samples were extracted and 232 

stored at -80oC for evaluation of viremia levels and seroconversion. Viremia levels were 233 

quantitated by the Animal Disease Research and Diagnostic Laboratory, South Dakota State 234 

University, by using a commercial RT-PCR kit (Tetracore Inc., Rockville, MD). Results were 235 

reported as log10 copy/mL. For statistical purposes, samples that had undetected level of viral 236 
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RNA were assigned a value of 0 log10 copy/mL. Seroconversion was evaluated using the 237 

IDEXX PRRS X3 Ab test (IDEXX Laboratories, Inc. Westbrook, ME). At 14 day p.i., pigs were 238 

humanely sacrificed and necropsied. Gross and microscopic lung lesions were blindly evaluated 239 

by a pathologist, following a method described previously (53).    240 

 241 

Assessment of heterologous protection in pigs 242 

Two sets of immunization/challenge experiment were conducted. Three-week old, 243 

PRRSV seronegative pigs were obtained from UNL’s research farm and were accommodated in 244 

BL-2 animal facilities at UNL. Each set of experiments consisted of 3 groups of 6 weaning pigs. 245 

Pigs in group 1 served as non-immunization control whereas those in groups 2 and 3 were 246 

immunized by infection either with the PRRSV-CON virus or with the PRRSV strain FL12 at 247 

the dose of 104.0 TCID50 per pig, intramuscularly. At day 52 post-immunization, all control and 248 

immunized animals were challenged with a selected heterologous PRRSV field isolates at the 249 

challenge dose of 105.0 TCID50 per pig, intramuscularly. Parameters of protection include: growth 250 

performance; viremia and viral load in tissues. To measure growth performance, each pig was 251 

weighed right before challenge infection and at 15 days post-challenge (days p.c.) and average 252 

daily weigh gain (ADWG) was calculated for the period of 15 days p.c.. To quantitate levels of 253 

viremia after challenge infection, blood samples were taken periodically and serum samples were 254 

extracted and stored at -80oC. Viremia levels were quantitated by the Animal Disease Research 255 

and Diagnostic Laboratory, South Dakota State University, by using a commercial RT-PCR kit 256 

(Tetracore Inc., Rockville, MD). Results were reported as log10 copy/mL. For statistical 257 

purposes, samples that had undetected level of viral RNA were assigned a value of 0 log10 258 

copy/mL. To quantitate levels of viral load in tissues, pigs were humanely sacrificed and 259 
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necropsied at 15 day p.c..  Samples of tonsil, lung, mediastinal lymph node and inguinal lymph 260 

node were were snap-frozen in liquid nitrogen right after collected and stored in a -80oC freezer. 261 

Tissue samples were homogenized in Trizol reagent (Life technologies, Carlsbad, CA) with the 262 

ratio of 300 mg tissue in 3mL Trizol reagent. Total RNA was extracted using the RNeasy Mini 263 

Kit (Qiagen, Valencia, CA) following the manufacturer’s instruction. RNA concentration was 264 

quantified by the NanoDrop®ND-1000 (NanoDrop Technologies, Wilmington, DE) and 265 

adjusted to the final concentration of 200 ng/µL. Two different types of RT-PCR kits were used 266 

for quantitation of the viral load in tissues: (i) the commercial RT-qPCR kit (Tetracore, 267 

Rockville, MD) that detects total viral RNA resulting from primary infection and from challenge 268 

infection, and (ii) the differential RT-PCR kits developed in-house that selectively detects only 269 

the viral RNA from challenge infection. Design and validation of the differential RT-PCR kit is 270 

presented in the Appendix.   Five µL of each RNA sample (equivalent to 1 µg RNA) was used 271 

for each RT-PCR reaction. Results were reported as log10 copy/µg of total RNA. For statistical 272 

purposes, samples that had undetected viral RNA level were assigned a value of 0 log RNA 273 

copy/1 µg of total RNA. 274 

 275 

Statistical analysis 276 

Each pig was considered an experimental unit and a random effect. Data was analyzed as 277 

a completely randomized design using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC). 278 

All means are presented as least-squares means and standard error of means (S.E.M.). Data was 279 

considered significant when P ≤ 0.05. Viremia data was analyzed with repeated measures using 280 

the statistical model included treatment, time, and their interaction as fixed effects. 281 

 282 
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 283 

Results 284 

Design of a consensus genome of type-2 PRRSV  285 

We were able to obtain a set of 59 non-redundant, full genome sequences of type-2 286 

PRRSV. Pairwise genetic distances among these 59 PRRSV genome sequences range from 0.1% 287 

to 17.8%.  Phylogenetic analysis reveals that these 59 PRRSV full genome sequences can be 288 

divided into 4 subgroups (Fig. 1A), with the mean nucleotide distances between any 2 subgroups 289 

ranging from 8.0% to 15.7%. From this set of 59 full genome sequences, we created a consensus 290 

PRRSV genome (PRRSV-CON) by aligning these 59 PRRSV full genome sequences and 291 

selecting the most common nucleotide found at each position of the alignment. The PRRSV-292 

CON genome is located precisely at the center of the phylogenetic tree (Fig 1A). Consequently, 293 

the PRRSV-CON genome has a balanced genetic distance to the wild-type PRRSV strains. As 294 

shown in Fig. 1B, the pairwise genetic distances between the PRRSV-CON and wild-type 295 

PRRSV strains are significantly shorter than the distances between each pair of wild-type 296 

PRRSV strains. Importantly, the distances between the PRRSV-CON and wild-type PRRSV are 297 

also significantly shorter than the distances between the type-2 PRRS vaccine strains and the 298 

wild-type PRRSV (Fig. 1B). Based on this data, we hypothesized that a vaccine formulated 299 

based on the PRRSV-CON virus would confer broader levels of heterologous protection than a 300 

conventional vaccine formulated based on a naturally occurring PRRSV strain.   301 

The synthetic PRRSV-CON genome is fully infectious 302 

The PRRSV-CON genome was chemically synthesized and assembled into a bacterial plasmid to 303 

produce a full genome cDNA clone (Fig. 2A). Standard reverse genetics techniques were 304 

employed to recover an infectious PRRSV-CON virus (43, 45, 50). Visible cytopathic effect 305 
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(CPE) was readily observed at approximately 4 days after MARC-145 cells were transfected 306 

with the RNA transcripts generated from the PRRSV-CON cDNA clone. The resultant PRRSV-307 

CON virus reacted with different PRRSV-specific monoclonal antibodies including antibodies 308 

against GP5, M and N proteins (Fig. 2B). Importantly, the PRRSV-CON virus was neutralized 309 

by a PRRSV-specific hyper-immune antibody with an end-point titer equivalent to the PRRSV 310 

strain FL12 (Fig. 2C).  The PRRSV-CON virus replicated efficiently in cell culture when 311 

compared with the reference wild-type PRRSV strain FL12 (45). As shown in Fig. 2D, no 312 

significant difference in growth kinetics was observed between the PRRSV-CON virus and the 313 

FL12. Further, the PRRSV-CON virus produced larger plaques than did the FL12 (Fig. 2E). 314 

Naturally occurring PRRSV has a very restricted cell tropism. Inside its natural host the virus 315 

mainly replicates in macrophages residing in lung and lymphoid organs (54). In vitro, the virus is 316 

mainly propagated in primary PAMs and (40) the monkey kidney cell MA-104 and its 317 

derivatives MARC-145 and CL-2621 (39). Interestingly, the virus does not infect immortalized 318 

cell lines derived from pigs such as PK-15 and the immortalized PAM 3D4/31, presumably due 319 

to the absence of the CD163 receptor (40, 55, 56). We asked if the synthetic PRRSV-CON virus 320 

shows any alterations on cell tropism. To address this question, we investigate the virus 321 

infectivity in different cell lines including immortalized PAM 3D4/31 (40), PK-15, BHK-21 and 322 

Hela cells. Similar to PRRSV strain FL12, the PRRSV-CON virus does not infect any of the cell 323 

lines tested (data not shown), indicating that the synthetic virus maintains the same cell tropism 324 

as the naturally occurring PRRSV.  325 

The synthetic PRRSV-CON virus is highly virulent 326 

To characterize the pathogenicity of the PRRSV-CON virus in pigs, an animal 327 

experimental comprising 3 groups of weaned (3 week-old) pigs. Pigs in group 1 were injected 328 
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with PBS to serve as normal control. Pigs in group 2 and 3 were inoculated intramuscularly with 329 

105.0 TCID50 of PRRSV-CON and FL12, respectively. The PRRSV strain FL12 was included in 330 

this study for comparative purposes because its pathogenicity in pigs has been extensively 331 

characterized in our laboratories (45). After infection, the PRRSV-CON and FL12-groups 332 

displayed significantly higher rectal temperature than the PBS-group (Fig. 3A). There was no 333 

difference in rectal temperature between the PRRSV-CON group and the FL12-group. Pigs 334 

infected with the PRRSV-CON virus had the same kinetics and magnitude of viremia as those 335 

infected with the PRRSV strain FL12 (Fig. 3B). All pigs in PRRSV-CON and FL12 groups 336 

seroconverted by 10 days post infection (days p.i.). The level of antibody response in the 337 

PRRSV-CON group was slightly lower than in the FL12-group (Fig. 3C). At necropsy (14 days 338 

p.i.), pigs in the PRRSV-CON group displayed a similar level of lung lesions to those in the 339 

FL12-group (Fig. 3D and 3E). Collectively, the results of this experiment indicate that the 340 

synthetic PRRSV-CON virus displays the same level of virulence as the PRRSV strain FL12. 341 

 342 

The PRRSV-CON virus confers exceptional levels of heterologous protection 343 

Two sets of immunization (by infection)/challenge experiments were conducted to 344 

evaluate the cross-protective capacity of the PRRSV-CON virus. The experimental design to 345 

evaluate levels of cross-protection is presented in Fig. 4. In the first immunization/challenge 346 

experiment, we evaluated the level of cross-protection against the PRRSV strain MN184C which 347 

belongs to sub-group 1 in the phylogenetic tree (see Fig. 1A). During the period of 15 days post-348 

challenge infection (days p.c.), pigs in the PRRSV-CON and FL12-groups had better average 349 

daily weight gain (ADWG) than those in the PBS-group (Fig. 5A). There was no statistical 350 

difference between the PRRSV-CON and the FL12 groups in regard to their growth 351 
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performance. The viremia levels after challenge infection are presented in Fig. 5B and Table 1. 352 

After challenge infection, all pigs in the PBS-group were viremic at all time-points tested. The 353 

PRRSV-CON group had only 3 viremic pigs, of which, 1 pig was viremic at 2 time-points (e.g. 354 

pig # 494 at 4 and 7 days p.c.) and 2 pigs were viremic at only one time-point (e.g. pigs # 394 355 

and 495 at 15 days p.c.). The remaining 3 pigs in this group (pigs # 345, 410 and 459) were not 356 

viremic after challenge infection (Table 1). By contrast, 5 out of 6 pigs in the FL12-group were 357 

viremic at two time-points or more after challenge infection. There was only 1 pig in this group 358 

(pig # 440) that was not viremic at any time-point tested. Overall, the viremia level of the 359 

PRRSV-CON group was significantly lower than that of the FL12-group (p<0.05) and the PBS-360 

group (p<0.0001) (Fig. 5B). To quantitate the levels of viral load in tissues, we first used a 361 

commercial RT-PCR kit (Tetracore, Rockville, MD) that detects total viral RNA resulting from 362 

primary infection (immunization) and from challenge infection. The results of total viral RNA 363 

are presented in Fig. 5C. The PRRSV-CON and FL12-groups contained significantly lower 364 

levels of total viral RNA than the PBS-group, regardless of the types of tissue tested. There was 365 

no difference between the PRRSV-CON and FL12 groups in terms of the total viral load in 366 

tissues (Fig. 5C). Next, we used a differential RT-PCR kit to specifically quantitate the levels of 367 

challenge virus-specific RNA (e.g. MN184C-specific RT-PCR kit). As shown in Fig. 5D, all pigs 368 

in the PBS-group carried the MN184C-specific RNA in their tissues. Four pigs in FL12-group 369 

had the MN184C-specific RNA in their tonsil and mediastinal lymph node whereas 5 pigs in this 370 

group had the MN184C-specific RNA in their inguinal lymph node (Fig. 5D). Remarkably, none 371 

of the pigs in PRRSV-CON group had detectable levels of the MN184C-specific RNA in any of 372 

the tissue samples tested (Fig. 5D). Collectively, the results of this immunization/challenge 373 
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experiment demonstrate that the PRRSV-CON conferred significantly better level of cross 374 

protection against challenge with the PRRSV strain MN184C than did the PRRSV strain FL12.  375 

In the second immunization/challenge experiment, we evaluated the level of cross-376 

protection against the PRRSV strain 16244B, which falls within the sub-group 2 in the 377 

phylogenetic tree (see Fig. 1A). During the period of 15 days p.c., the PRRSV-CON group had 378 

greater ADWG than the PBS- and FL12-groups (Fig 6A). In contrast, the FL12-group did not 379 

exhibit statistical difference in the growth performance compared with the PBS-group. The 380 

viremia levels after challenge infection are presented in Fig. 6B and Table 2. After challenge 381 

infection, all pigs in the PBS-group were viremic at all time-points tested. Two out of 5 pigs in 382 

the PRRSV-CON group (pigs # 442 and 445) did not resolve viremia at 50 day after primary 383 

infection (2 days before challenge infection), as low levels of viral RNA were still detected in 384 

their serum samples collected at this time-point (Table 2). After challenge infection, 3 pigs in the 385 

PRRSV-CON group were viremic at only 1 time-point. The remaining 2 pigs in this group (pigs 386 

# 436 and 438) were not viremic throughout the entire period of 15 days p.c. (Table 2). By 387 

contrast, all pigs in the FL12-group resolved viremia by 50 days post-primary infection. After 388 

challenge infection, all pigs in this group became viremic. Overall, the viremia level of the 389 

PRRSV-CON group was significantly lower than that of the FL12-group (p<0.0001) and the 390 

PBS-group (p<0.0001) (Fig. 6B). Similar to the first immunization/challenge experiment, we 391 

first used a commercial RT-PCR kit (Tetracore, Rockville, MD) to quantitate the total viral RNA 392 

in tissues of pigs. Both the PRRSV-CON and FL12-groups contained significantly lower levels 393 

of total viral RNA than the PBS-group in all of the tissues tested (Fig. 6C). However, there was 394 

no difference between the PRRSV-CON group and the FL12-group in regard to the levels of 395 

total viral RNA in tissues (Fig. 6C). Next, we used a differential PRT-PCR kit to specifically 396 
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quantify the levels of 16244B-specific RNA in tissues. Design and validation of the 16244B-397 

specific RT-PCR kit is presented in supplementary section (S1 File). All pigs in the PBS- and 398 

FL12-groups carried the 16244B-specific RNA in their tissues (Fig. 6D). By contrast, only 1 pig 399 

in the PRRSV-CON group carried the 16244B -specific RNA in its inguinal lymph node while 400 

the remaining 4 pigs in this group did not carry the 16244B - specific RNA in any of the tissues 401 

tested. Collectively, the results of this immunization/challenge experiment demonstrate that the 402 

synthetic PRRSV-CON conferred better protection against challenge infection with the PRRSV 403 

strain 16244B than did the PRRSV strain FL12. 404 

Genetic stability of the PRRSV-CON virus in pigs 405 

To determine the stability of the PRRSV-CON genome, we isolated the virus from a 406 

serum sample collected at 21 days p.i. and sequenced its structural genes. Totally, there were 5 407 

nucleotides changes in the structural genes of the virus: 1 in ORF3, 1 in the overlapping region 408 

between ORF3 and ORF4, 2 in ORF5 and 1 in ORF6 (Table 3). Two of these 5 nucleotides 409 

changes resulted in amino acid changes. The nucleotide change in the overlapping region 410 

between ORF3 and ORF4 led to amino acid change in ORF3 but not in ORF4.  411 

 412 

Discussion 413 

Advances in DNA synthesis have provided opportunities to manipulate viral genomes on 414 

a scale that otherwise cannot be done by the traditional molecular engineering approaches. This 415 

leads to the emergence of a new branch in the field of virus research termed synthetic virology 416 

(57). A number of synthetic viruses have been generated by de novo synthesis of the viral 417 

genomes in the absence of natural viral templates (58-64). These synthetic viruses provide 418 

powerful tools for studying viral biology and pathogenesis as well as for rational design novel 419 
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vaccines (58, 62, 65-67). In this study, we describe the generation of a synthetic PRRSV strain 420 

that can be used to develop a broadly protective vaccine. 421 

Currently, all licensed PRRS vaccines are derived from naturally occurring PRRSV 422 

strains. The major limitation of the current PRRS vaccines is that they do not confer adequate 423 

levels of heterologous protection against divergent PRRSV strains circulating in the field, largely 424 

due to the substantially variable nature of the viral genome. Therefore, there is a need for a novel 425 

vaccine design to overcome the pronounced genetic variation of PRRSV. “Centralized” vaccine 426 

immunogen has been proven an effective method to reduce the genetic distances between the 427 

vaccine immunogen and the contemporary virus strains circulating in the field, thereby 428 

expanding the vaccine coverage (31, 32). Thus far, “centralized” vaccine immunogens are 429 

commonly generated based on amino acid sequence of selected viral proteins (34-37, 68). In the 430 

case of PRRSV, the viral proteins that are involved in eliciting protective immunity are not fully 431 

understood. None of the PRRSV encoded proteins are known to be able to elicit complete 432 

immune protection. The protective efficacy is best when the pigs are immunized by infection 433 

with a replicating PRRSV strain (10). Therefore, we aimed to generate a fully infectious PRRSV 434 

strain based on a “centralized” whole genome sequence. We demonstrated that the PRRSV-CON 435 

genome is biologically functional. Infectious virus is readily generated when the PRRSV-CON 436 

genome is transfected into a permissive cell line. Importantly, the PRRSV-CON virus confers 437 

significantly broader levels of heterologous protection against divergent PRRSV strains than 438 

does a wild-type PRRSV strain.  439 

Globally, type-2 PRRSV can be classified into 9 different lineages, based on 440 

phylogenetic analysis of a large number of ORF5 nucleotide sequences collected from GenBank 441 

(23). The pairwise genetic distances among these 9 lineages vary from 10.1% to 18% (23). The 442 
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set of 59 PRRSV full genome sequences used for generation of the PRRSV-CON genome 443 

originates exclusively in USA. At the full genome level, the pairwise genetic distances among 444 

these 59 PRRSV genome sequences can be as large as 17.8%, which is the same order of 445 

magnitude as the genetic distances among ORF5 nucleotide sequences of type-2 PRRSV 446 

deposited on GenBank. We postulate that our set of 59 PRRSV full genome sequences would 447 

represent the breadth of genetic diversity of type-2 PRRSV. We therefore expect that the 448 

synthetic PRRSV-CON might be able to confer cross-protection against type-2 PRRSV strains 449 

that are currently circulating worldwide.   450 

As has been observed for HIV-1, genetic distances between 2 clades of the group M 451 

envelope proteins can be up to 30%. A vaccine based on a single consensus envelope sequence 452 

can elicit significantly broader cross-clade cellular immune responses than could a vaccine based 453 

on a naturally occurring envelope sequence (34, 37). PRRSV is classified into 2 major types: 454 

type-1 and type-2. There is very limited cross-protection between type-1 and type-2 PRRSV 455 

strains (17, 18, 69). Genetically, type-1 and type-2 PRRSV share approximately 65% sequence 456 

identity (20, 21). It is possible that a synthetic PRRSV strain whose genome is centralized 457 

between type-1 and type-2 would be able to provide equal protection against both types of 458 

PRRSV. The availability of such a PRRS vaccine would be extremely beneficial to the control 459 

and eradication of the disease, especially in the areas where both types of PRRSV co-circulate.  460 

Viral load in tissue samples collected after challenge infection is an important parameter 461 

to evaluate the protective efficacy of a PRRS vaccine candidate. Currently, the tissue viral load is 462 

usually quantified through the use of a commercial RT-PCR kit or through titration on a 463 

permissive cell line such as MARC-145 cells. The use of these 2 methods will not allow 464 

precisely quantifying the level of tissue viral load resulting from challenge infection in the case 465 
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that the pigs are immunized with a replicating vaccine (either with MLV vaccines or with 466 

virulent PRRSV strains) (70). This is because PRRSV can persist in the infected animals for an 467 

extended period of time (71, 72). At the time of tissue collection for evaluation of viral load, the 468 

pigs that are immunized by infection with a live PRRSV may still carry in their lymphoid tissues 469 

the PRRSV strain that is used from immunization. Consequently, the tissue samples will possibly 470 

contain 2 populations of PRRSV: one from immunization and the other from challenge infection. 471 

Neither the commercial RT-PCR kit nor titration on MARC-145 cells can differentiate the viral 472 

strain used for primary infection from the PRRSV strain used for challenge infection. In the 473 

present study, we used differential RT-PCR kits to specifically quantitate the viral RNA resulting 474 

from challenge infection. Through the use of these differential RT-PCR kits, we demonstrate that 475 

pigs previously infected with the PRRSV-CON virus contained undetectable levels of challenge 476 

PRRSV strains while those infected with FL12 can only lower the level of challenge viral RNA 477 

(Figs. 5D and 6D).  478 

Of the 59 full genome sequences that were used in this study to design the PRRSV-CON 479 

genome, only 3 sequences were of the live-attenuated PRRSV strains. The remaining 56 480 

sequences were of the wild-type PRRSV strains/isolates. Therefore, it is expected that the 481 

PRRSV-CON virus should display a virulent phenotype of wild-type PRRSV strains. Obviously, 482 

the PRRSV-CON virus must be inactivated or attenuated before it can be used as a vaccine in 483 

pigs. Both KV vaccines and MLV vaccines are being used in the field. MLV vaccines are 484 

commonly developed by successively passaging virulent PRRSV strains in a non-natural host 485 

cell lines. Recently, molecular approaches have been used to attenuate virulent PRRSV strains 486 

(73, 74). Several studies have demonstrated that MLV vaccines are far more effective than KV 487 

vaccines (10, 11). Even so, there are swine producers who prefer to use KV vaccines rather than 488 
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MLV vaccines because of the concern that MLV vaccines might revert to virulence. It is highly 489 

possible that the killed PRRSV-CON virus vaccine may confer better levels of cross-protection 490 

than the KV made of naturally occurring PRRSV strains.  491 

The mechanisms by which PRRS vaccines confer protection remain poorly understood 492 

(75). Passive immunization studies using both reproductive model and respiratory model have 493 

demonstrated that neutralizing antibodies (NAbs) can protect pigs against infection with a 494 

virulent PRRSV strain, providing that sufficient amounts of NAbs are present in the pigs prior to 495 

challenge infection (41, 76). However, pigs infected with virulent PRRSV strains or vaccinated 496 

with MLV vaccines often develop weak and delayed NAb responses (10, 77, 78). Several 497 

vaccine studies have demonstrated that vaccinated pigs are protected from challenge infection in 498 

the absence of NAbs (10, 19, 79). Virus-specific IFN-γ producing cell has been suggested to be 499 

the correlate of vaccine-induced protection (10). However, the degrees of correlation between the 500 

frequencies of virus-specific IFN-γ producing cells and levels of protection are highly variable 501 

(80, 81). There exists a notion that the phenotype of IFN-γ producing cells as well as the 502 

magnitude of cytokine produced could affect the levels of protection (10). Since the PRRSV-503 

CON virus confers outstanding levels of cross-protection, this virus may be a unique tool to 504 

elucidate the immune correlates of cross-protection. In addition, this synthetic virus will also 505 

provide us a tool to identify viral proteins involves in eliciting immune protection. 506 

In summary, we describe here the generation and characterization of a synthetic PRRSV 507 

strain based on a synthetic genome that was computationally designed based on a large number 508 

of PRRSV full genome sequences. We demonstrate that this synthetic PRRSV strain confers 509 

outstanding levels of heterologous protection. This synthetic PRRSV strain could be an excellent 510 

candidate for the formulation of the next generation of PRRS vaccine with improved levels of 511 
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heterologous protection. In addition, this synthetic PRRSV strain will provide us a unique tool 512 

and gold standard to investigate the mechanisms of cross-protection. 513 

 514 

Acknowledgments 515 

This study was funded primarily by the U.S. National Pork Board (grant # NPB 13-155 to 516 

HLXV) and by the PRRS CAP, USDA NIFA (grant # 2008-55620-19132 to WWL). Partial 517 

funding for development of the differential RT-PCR kits was from USDA NIFA (grant # 2013-518 

01035 to FAO). We thank Dr. Huyen Tran, Department of Animal Sciences, UNL, for her advice 519 

on statistical analysis and Vicky Samek, Sara Fendric, Brittany Smola, Bayliegh Murphy, Molly 520 

Johnson and Clinton Berg for their assistance in the animal experiments. 521 

  522 



25 
 

Appendix  523 

Design and validation of the differential RT-PCR kits for quantification of the challenge 524 

virus- RNA in tissue samples 525 

Two differential real-time RT-PCR kits for specific detection and quantification of the 526 

MN184C-specific and 16244B-speficic viral RNA in tissue samples were developed following 527 

the Taqman hydrolysis probe method. Specific primers and probes used in the differential RT-528 

PCR are presented in Tables A1 and A2.  All primers and probes were synthesized by Sigma-529 

Aldrich (Woodland, TX). Real-time RT-PCR reactions were performed in 25µL reaction 530 

mixtures containing 4.475 µL distilled water, 12.5 µL One-step qRT-PCR master mix 531 

(Affymetrix), 1 µL of each primer (final concentration 400 nM), 0.625 µL probe (final 532 

concentration 250 nM) and 5 µL template. The thermal conditions were as followed: one cycle at 533 

50oC for 10 minutes, one cycle at 95oC for 2 minutes and 40 cycles at 95oC for 15 seconds and 534 

60oC for 60 seconds. Two sets of viral RNA templates with known copies number were used to 535 

establish the standard curves from which the RNA copy number in the test samples were 536 

calculated.  537 

To evaluate the specificity of the differential RT-PCR kits, RNA samples were extracted 538 

from MN184C, FL12 and PRRSV-CON virus stocks using the QIAamp viral RNA mini kit 539 

(Qiagen, Valencia, CA). Viral genome copies in each of these RNA samples were quantified 540 

using a commercial RT-PCR kit (Tetracore), following the manufacturer’s instruction. After that, 541 

these viral RNA samples were diluted to different concentration, ranging from 101 copies per µL 542 

to 105 copies per µL. Five µL of each dilution of these viral RNA samples were used in the 543 

differential RT-PCR reactions. Data demonstrating the specificity of the differential RT-PCR kits 544 

are presented in Tables A3 and A4. 545 
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To validate the compatibility of the differential RT-PCR kits, we compared the 546 

performance of the differential RT-PCR kits with that of the commercial RT-PCR kit, using the 547 

RNA samples extracted from tissue samples collected from the PBS-groups because these pigs 548 

should only carry viral RNA of the viral strains used for challenge infection. In general, the viral 549 

RNA copy numbers quantitated by the differential RT-PCR kits were approximately 0.2 – 0.3 550 

log lower than the copy numbers quantitated by the commercial RT-PCR kits (Tables A5 and 551 

A6).  552 

Table A1: Primers and probes used in the differential RT-PCR kit for quantitation of the 553 

PRRSV strain MN184C-specific RNA (GenBank accession no. EF488739) 554 

 Sequence (5’ -> 3’) Binding sites 
Forward primer (sense) AGCTGGCATTCTTGAGACAT 14871 - 14891 
Reverse primer (antisense) AGGTGACTTAGAGGCACAATATC 14935 - 14957 
Probe (sense) AGGATGTGTGGTGAATGGCACTGA 14908 - 14932 
 555 

Table A2: Primers and probes used in the differential RT-PCR kit for quantitation of the 556 

PRRSV strain 16244B-specific RNA (GenBank accession no. AF046869) 557 

 Sequence (5’ -> 3’) Binding sites 
Forward primer (sense) GGCTGGCATTCTTGAGGCAT 15262 - 15282 
Reverse primer (antisense) CACGGTCGCCCTAATTGAATA  15348 - 15369 
Probe (antisense) CAGTGCCATTCACCACACATTCTTCC 15297 - 15323 
 558 

  559 
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Table A3: Specificity of the MN184-specific RT-PCR kit 560 

                 561 

RNA copies per 
reaction 

Crossing point (CP) 
MN184C FL12 PRRSV-CON 

5x101 38.93 nd Nd 
5x102 34.68 nd Nd 
5x103 31.54 nd Nd 
5x104 28.05 nd Nd 
5x105 24.67 nd Nd 

nd: not detected 562 

 563 

Table A4: Specificity of the 16244B-specific RT-PCR kit 564 

RNA copies per 
reaction 

Crossing point (CP) 
16244B FL12 PRRSV-CON 

5x101 40.00 nd nd 
5x102 36.27 nd nd 
5x103 33.92 nd nd 
5x104 29.99 nd nd 
5x105 26.55 nd nd 

nd: not detected 565 

  566 
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Table A5: Comparison between the MN184C-specific RT-PCR kit and the commercial RT-567 

PCR kit 568 

Tissue types Pig ID 
Copies per µg total RNA (log10) 

Commercial RT-PCR kit MN184C-specific RT-PCR kit 

Tonsil 

365 6.08 6.00 
389 6.70 6.50 
407 6.94 6.80 
416 Not done Not done 
417 4.44 4.60 
435 6.34 6.50 

Inguinal LN 

365 6.21 5.64 
389 6.20 5.90 
407 6.99 6.49 
416 5.71 5.38 
417 5.51 5.26 
435 5.97 5.73 

Mediastinal 
LN 

365 4.78 4.52 
389 5.04 4.87 
407 6.40 6.28 
416 4.71 4.53 
417 4.73 4.34 
435 5.34 5.19 

 Means ± SD 5.77 ± 0.82 5.56 ± 0.80  
 569 

 570 

  571 
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Table A6: Comparison between the 16244B-specific RT-PCR kit and the commercial RT-572 

PCR kit 573 

Tissue types Pig ID Copies per µg total RNA (log10) 
Commercial RT-PCR kit 16244B-specific RT-PCR kit 

Tonsil 

440 4.92 4.76 
441 4.91 4.79 
544 5.92 5.76 
545 6.72 6.39 
546 6.33 5.33 
547 5.63 6.14 

Mediastinal 
LN 

440 4.41 3.83 
441 4.53 4.08 
544 5.37 5.05 
545 5.20 4.93 
546 4.85 4.54 
547 5.09 4.78 

Inguinal LN 

440 4.28 3.93 
441 5.21 4.96 
544 5.55 5.16 
545 5.33 4.82 
546 5.04 4.64 
547 5.15 4.72 

   Mean ± SD 5.25 ± 0.63 4.92 ± 0.68 
 574 

 575 

 576 

 577 

  578 
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Tables 833 

Table 1: Levels of viremia after challenge infection with MN184C (log10 copy/mL of 834 

serum) 835 

Treatment groups Pig ID Day post-challenge infection  
0 1 4 7 10 15 

Group  1 
(Injected with 
PBS) 

365 0.00 4.94 5.43 5.45 6.79 6.32 
389 0.00 6.26 6.08 5.40 7.60 6.93 
407 0.00 4.91 6.00 5.86 7.56 6.75 
416 0.00 6.20 6.04 5.20 7.18 6.78 
417 0.00 5.18 5.59 4.86 5.90 6.45 
435 0.00 5.83 5.08 5.94 5.57 5.36 

Mean 0.00 5.55 5.70 5.45 6.77 6.43 
SD 0.00 0.62 0.40 0.40 0.86 0.57 

Group  2 
(Immunized by 
infection  with 
PRRSV-CON) 

345 0.00 0.00 0.00 0.00 0.00 0.00 
394 0.00 0.00 0.00 0.00 0.00 2.58 
410 0.00 0.00 0.00 0.00 0.00 0.00 
459 0.00 0.00 0.00 0.00 0.00 0.00 
494 0.00 0.00 3.58 5.98 0.00 0.00 
495 0.00 0.00 0.00 0.00 0.00 2.98 

Mean 0.00 0.00 0.60 1.00 0.00 0.93 
SD 0.00 0.00 1.46 2.44 0.00 1.44 

Group  3 
(Immunized by 
infection with 
FL12) 

349 0.00 0.00 2.81 2.92 0.00 0.00 
381 0.00 0.00 0.00 3.04 2.86 0.00 
440 0.00 0.00 0.00 0.00 0.00 0.00 
455 0.00 0.00 4.18 4.34 0.00 0.00 
487 0.00 3.59 5.28 2.40 5.60 2.68 
507 0.00 2.32 5.56 3.70 0.00 0.00 

Mean 0.00 0.99 2.97 2.73 1.41 0.45 
SD 0.00 1.58 2.50 1.50 2.35 1.09 

Samples that contained undetected levels of viral RNA are assigned a value of 0 log10 copies/ 836 

mL of serum. 837 

 838 

 839 

 840 

 841 
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 842 

Table 2: Levels of viremia after challenge infection with 16244B (log10 copy/mL) 843 

Treatment groups Pig ID Day post-challenge infection 
0 1 4 7 11 14 

Group 1 
(Injected with 
PBS)  
  
  

440 0.00 6.62 6.99 6.79 6.15 4.67 
441 0.00 6.61 6.93 7.11 5.79 4.81 
544 0.00 6.85 6.82 6.96 3.91 5.68 
545 0.00 7.11 7.41 7.11 6.81 5.93 
546 0.00 6.74 7.45 7.30 5.67 5.40 
547 0.00 6.77 7.51 7.36 6.73 5.52 

Mean 0.00 6.78 7.18 7.11 5.84 5.34 
SD 0.00 0.18 0.30 0.21 1.06 0.50 

Group 2 
(immunized by 
infection with  
PRRSV-CON)  
  
  

435 Removed from experiment on  day 23rd after primary infection 
436 0.00 0.00 0.00 0.00 0.00 0.00 
437 0.00 2.48 0.00 0.00 0.00 0.00 
438 0.00 0.00 0.00 0.00 0.00 0.00 
442 2.81 0.00 0.00 0.00 0.00 2.93 
445 3.00 3.32 0.00 0.00 0.00 0.00 

Mean 1.16 1.16 0.00 0.00 0.00 0.59 
SD 1.59 1.62 0.00 0.00 0.00 1.31 

Group 3 
(immunized by 
infection with 
FL12) 

439 0.00 4.34 6.78 3.54 2.48 0.00 
444 0.00 3.04 6.58 0.00 0.00 0.00 
446 0.00 5.26 4.84 0.00 0.00 0.00 
526 0.00 2.98 4.40 4.15 0.00 0.00 
540 0.00 3.90 4.18 5.08 3.95 0.00 
543 Removed from experiment on day 14th after primary infection 

Mean 0.00 3.90 5.35 2.55 1.29 0.00 
SD 0.00 0.95 1.23 2.39 1.84 0.00 

Samples that contained undetected levels of viral RNA are assigned a value of 0 log10 copies/ 844 

mL of serum. 845 

Pigs # 435 (group 2) and 543 (group 3) were removed from the experiment due to lameness in 846 

their limbs. 847 

 848 

  849 
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Table 3: Genetic stability of the PRRSV-CON virus at 21 days p.i.  850 

Nucleotide 
position 

Open reading frame 
(ORF) 

Nucleotide change Amino acid change 

12883 3 A->G Synonymous 

13440 3 & 4 C->T ORF3:  Ala -> Val 
ORF4: Synonymous 

14280 5 G->A Arg - > Lys 
14311 5 C->T Synonymous 
14703 6 T->C Synonymous 

 851 

  852 



40 
 

Figure Legends 853 

Fig. 1: Phylogenetic analysis of full genome sequences of type-2 PRRSV.  854 

(A) Phylogenetic tree constructed from a set of 59 type-2 PRRSV full genome sequences, 855 

together with a consensus sequence (PRRSV-CON) derived from these 59 PRRSV genomes. 856 

Scale bare represents the nucleotide substitution per site. Locations of the PRRSV strains 857 

involved in the cross-protection experiments are indicated by the arrows. The phylogenetic tree 858 

with tip labels is presented in Fig. S1.  (B) Pairwise nucleotide distances between wild-type 859 

PRRSV; between wild-type and the PRRSV-CON; and between wild-type and different PRRS 860 

vaccine strains. The lower and upper boundaries of the box indicate the 25th and 75th percentile, 861 

respectively. The solid line within the box represents the median. Whiskers above and below the 862 

box indicate the minimum and maximum of the data. Letters on top of the whiskers indicate the 863 

statistical difference. 864 

 865 

Fig. 2: Generation and in vitro characterization of the synthetic PRRSV-CON virus. 866 

(A) Strategy to construct the PRRSV-CON full genome cDNA clone. The upper part of 867 

the figure depicts the schematic representation of the PRRSV genome, together with the 868 

restriction enzyme sites used for cloning purposes. The horizontal black lines, with the letters A-869 

D on top, represent the DNA fragments that were synthesized. The numbers inside the 870 

parenthesis below the lines indicate the length (in nucleotides) of each corresponding fragments. 871 

ΦT7 represents the T7 RNA polymerase promoter. Individual DNA fragments of the genome 872 

were sequentially inserted into the shuttle vector (shown in the bottom) in the order from 873 

fragment A to fragment D. (B) Reactivity of the indicated PRRSV strains with different PRRSV-874 

specific monoclonal antibodies. ISU-25: anti-GP5; MAb-201: Anti-M protein and SDOW-17: 875 
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Anti-N protein. (C) Susceptibility to neutralization by a hyper-immune antibody. (D) Multiple 876 

step growth curves of the indicated PRRSV strains in MARC-145 cells. (E) Plaque morphology 877 

of the indicated PRRSV strains in MARC-145 cells. 878 

 879 

Fig. 3: The PRRSV-CON virus is highly virulent.  880 

(A) Rectal temperature measured daily from -1 to 13 days p.i.. (B) Viremia levels 881 

determined by a commercial, universal RT-qPCR (Tetracore Inc., Rockville, MD).  (C) Levels of 882 

antibody response after inoculation, determined by IDEXX ELISA.  The horizontal dotted line 883 

indicates the cut-off of the assay. (D) Gross lung lesion evaluated at necrosy. (E) Micro-scopic 884 

lung lesion.  885 

 886 

Fig. 4: Experimental design to evaluate levels of cross-protection. (A) Treatment 887 

groups, together with the corresponding PRRSV strains used for primary infection and challenge 888 

infection. (B) Chronology of cross-protection experiments. Triangles indicate blood sampling 889 

dates. 890 

Fig. 5: Cross-protection against PRRSV strain MN184C.  (A) Average daily weight 891 

gain (ADWG) within 15 days p.c.. (B) Viremia levels after challenge infection determined by a 892 

commercial RT-PCR (Tetracore, Rockville, MD). (C) Total viral RNA levels in different tissues 893 

collected at 15 days p.c. as determined by a commercial RT-PCR kit (Tetracore, Rockville, MD). 894 

(D) MN184C-specific RNA levels as determined by a differential RT-PCR developed in-house.  895 

 896 

Fig. 6: Cross-protection against PRRSV strain 16244B. (A) Average daily weight gain 897 

(ADWG) within 15 days p.c.. (B) Viremia levels after challenge infection determined by a 898 
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commercial RT-PCR (Tetracore, Rockville, MD). (C) Total viral RNA levels in different tissues 899 

collected at 15 days p.c. as determined by a commercial RT-PCR kit (Tetracore, Rockville, MD). 900 

(D) 16244B-specific RNA levels as determined by a differential RT-PCR developed in-house.  901 

 902 















Table S1: List of type-2 PRRSV full genomes used in this study 

No Identity GenBank assession number 

1 NADC30 JN654459 

2 18565-01 Pending 

3 NADC31 JN660150 

4 Hawkeye-2 EF532811 

5 Hawkeye-7 EF532815 

6 Biss EF532803 

7 Lewis EF532818 

8 MN184C EF488739 

9 18066-04 Pending 

10 MFF EF532819 

11 MN184B DQ176020 

12 MN184A Pending 

13 VR-2385 JX044140 

14 3805-00 Pending 

15 PrimPac DQ779791 

16 ISU-P EF532816 

17 43807-00 Pending 

18 9974-97 Pending 

19 16244B AF046869 

20 12711-01 Pending 

21 67516A-01 Pending 

22 10277-97 Pending 

23 3283-98 Pending 

24 4190-01 Pending 

25 16480-97 Pending 

26 16138-96 Pending 

27 Ingelvac MLV AF066183 

28 VR-2332 AY150564 

29 P129 AF494042 

30 4684-98 Pending 

31 1648-01 Pending 

32 12697-01 Pending 

33 13867-00 Pending 

34 MN30100 EF536000 

35 1692-98 Pending 

36 19248-01 Pending 

37 SDSU-73 JN654458 

38 21599-00 Pending 

39 6527-00 Pending 



40 58219C-00 Pending 

41 FL12 (97-7895) AF325691 

42 Ingelvac-ATP DQ988090 

43 11604-05 Pending 

44 2330-03 Pending 

45 FF3 EF532808 

46 13392-01 Pending 

47 5564-04 Pending 

48 5424-00 Pending 

49 15571-00 Pending 

50 46517-00 Pending 

51 12120-01 Pending 

52 51220-00 Pending 

53 26078-00 Pending 

54 15286-99 Pending 

55 55406A-00 Pending 

56 12817-01 Pending 

57 25617-00 Pending 

58 3232B-02 Pending 

59 6258B-01 Pending 

 

  



Fig. S1: Phylogenetic tree constructed from a set of 59 type-2 PRRSV full genome 

sequences, together with a consensus sequence (PRRSV-CON) derived from these 59 

PRRSV genomes 
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