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The formation of FePt nanoclusters via gas condensation has attracted a great deal of attention. The
clusters normally form with the magnetically soft A1 structure rather than the desired L10 structure
with high magnetocrystalline anisotropy. This work has examined the effects of plasma
characteristics on the early stages of order in the formation L10 FePt nanoclusters via inert gas
condensation. The plasma characteristics have been modified to control ion density in the
nanocluster condensation region. Increased ion density results in more cluster-ion collisions. The
energy imparted to the clusters as a result of these collisions allows atomic rearrangements to form
the ordered structure. The results indicate that controlled ion density directly impacts the early
stages of FePt nanocluster ordering, according to high-resolution electron microscopy structure
observations and coercivity measurements. © 2010 American Vacuum Society.
�DOI: 10.1116/1.3298888�

I. INTRODUCTION

Due to their large magnetocrystalline anisotropy,
L10-structure FePt nanoclusters are one of the more promis-
ing candidates for high density recording media.1,2 However,
most preparation methods produce the disordered, magneti-
cally soft A1 phase and require additional processing which
can introduce contaminants or result in particle
agglomeration.3 Additionally, experiments and simulations
indicate that phase transformation from A1 to L10 may be
kinetically inhibited in nanoclusters smaller than 4 nm.4 A
method that allows formation of nanoclusters already in the
L10 state, without the need for postformation thermal treat-
ments, would not only save significant processing cost, it

would increase information storage density for recording me-
dia, beyond what is currently projected.

Recently, formation of FePt nanoclusters via inert gas
condensation has yielded direct formation of the partially
ordered, magnetically hard L10 structure.5,6 This method
promises a high degree of cluster property control. To date,
efforts have not focused on control of specific plasma param-
eters, such as ion density and electron temperature. Rather,
control efforts have relied upon external “knobs” �e.g., target
power� that alter several unmeasured plasma conditions si-
multaneously �e.g., electron temperature, collision probabil-
ity, and ion density�. While it is not possible to alter only one
plasma parameter without affecting others, it is possible to
measure the effects of the alteration, with the goal of mini-
mizing them. Previous Langmuir probe measurements5 indi-
cated a two-order magnitude increase in ion density by alter-a�Electronic mail: marlann.patterson@gmail.com
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ing plasma processing parameters in a recipe known to
produce L10 precursors successfully. The higher ion density
created FePt clusters with a coercivity of 1.1 kOe compared
to a coercivity of a few oersted in clusters formed in the
low-density conditions. The higher coercivity suggests that
the clusters formed with at least partial L10 ordering in high
ion density conditions. A new experiment was needed to in-
vestigate early stage L10 structure formation as a function of
plasma ion density. The eventual goal of this research is to
discern causal mechanisms of direct L10 FePt nanocluster
formation so that it may be systematically controlled in
manufacturing applications.

II. EXPERIMENT

Inspired by the previous results, the current work was
performed to better understand the relationship between
plasma characteristics and FePt cluster formation. It is a step
toward specific plasma process control over direct FePt L10

cluster preparation. In particular, we have systematically
controlled ion density, while minimizing and measuring
other plasma parameters’ resulting changes. We were thus
able to determine the effect of ion density on cluster proper-
ties, early in the direct ordering process.

FePt clusters were created by inert gas
condensation1–3,7–13 from a composite sputtering target con-
sisting of Pt pieces in an Fe target, biased at 360 V with 150
W, drawing 330 mA of plasma current �Fig. 1�. Argon intro-
duced at 144–700 SCCM �SCCM denotes cubic centimeter
per minute at STP� into the source chamber created source
pressures of between 130 and 540 mTorr. The deposition
chamber pressures of between 2 and 7 mTorr were controlled
via argon flow rates between 25 and 200 SCCM. A quarter
inch, double-sided Langmuir probe,14 approximately 2 in.
from the target, collected electron temperature, current, and
ion density information. Electron temperatures remained be-
tween 0.1 and 1.1 eV during parameter variations. Samples
were analyzed for coercivity using a Micromag 2900 alter-
nating gradient force magnetometer at room temperature and
for structure with high-resolution transmission electron mi-
croscopy �HRTEM�. Imaging was accomplished on clusters
directly deposited onto carbon support TEM grids using a
Tecnai G2F20 operating at 200 kV.

III. RESULTS

Investigation of the causal mechanism for ordered struc-
ture evolution in situ led to the confirmation of the expected
trend: cluster coercivity �HC� varied proportionally with ion
density �ne� �Fig. 2�. An exponential relationship was ob-
served. Pressure differences ��p= pf − pd� between the for-
mation �pf� and deposition �pd� chambers were used to alter
the measured ion density. Lower pressure differences create
longer dwell times for particles in the formation chamber,
thereby increasing the ion density. Higher ion densities in the
formation chamber increase cluster-ion collision probability.
The mechanism for direct heating �and ordering� of clusters
is likely the cluster-ion collision. Cluster impact studies
show that cluster-ion collisions are responsible for charging
clusters and transferring heat.9 Therefore, increased ion den-
sity should promote ordering in forming FePt clusters. Be-
cause the L10 structure has a large magnetocrystalline aniso-
tropy compared to the A1 structure, coercivity is a good
indicator of the presence of L10 order. Thus, the observed
increases in coercivity with ion density suggest an increase
in L10 order.

HRTEM images revealed structural and morphological
differences as a function of plasma parameters, as has been
seen elsewhere. �A transition from nominally spherical clus-
ters to highly faceted clusters was observed as ion density
increased.� The HRTEM results suggest that the L10 struc-
ture may begin to form after initial cluster formation in the
A1 structure, as evidenced by twinning that arises from the
formation of multiple ordered variants �MOVs� from the par-
ent A1 structure. The images alone cannot distinguish the
L10 from the A1 structure, however, as they show early, not
final, stages of direct L10 structure formation. The MOV
structure was absent from the clusters that were formed with
lower ion density, where the HRTEM revealed essentially
single-crystalline clusters �Fig. 3�. Multiply twinned particles
of similar icosohedral structure have been seen elsewhere in
annealed FePt nanoclusters.15 Fourier transforms of the im-
ages revealed identical �100� plane spacings for all visible
plane orientations. Calculation of the cluster-cluster collision
frequency has been performed and compared to the cluster-
ion collision frequency to lend credence to the hypothesis
that the MOV structure is more likely formed from the A1
structure. Calculations estimate 103 cluster-cluster
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FIG. 1. �Color online� Schematic picture of nanocluster fabrication system.
The formation chamber is on the left, inside the cooled region; the deposi-
tion chamber is on the right, near the rotatable substrate. The FePt target is
the leftmost object in the chamber.
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FIG. 2. �HC� as a function of ion density �ne�. Confidence is �1
�107 cm−3 and �5 Oe.
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collisions/s and 1020 cluster-ion collisions/s. Since cluster-
cluster collisions are many orders of magnitude less frequent,
this suggests that the MOV structures are grown during ag-
glomeration. Since cluster-ion collisions are more frequent, it
suggests the MOV structures grew from disordered A1 struc-
tures, heated by collisions with energetic ions. Because of
the extreme difference in collision frequency, even if esti-
mates were off by a few orders of magnitude, we can still
confidently state that the MOV structure more likely forms
from ion heating. Thus ion density is an early indicator of
cluster ordering, and directly correlates with cluster coerciv-
ity.

IV. SUPPLEMENTAL INFORMATION: DETAILS
OF COLLISION FREQUENCY CALCULATION

An estimate of cluster density was necessary to complete
this calculation. The estimate was taken from the Langmuir
probe current measurements at high bias voltages, using the
same methods as those for calculating ion density from the
same curve at lower bias voltages.5,14 Using this method, the
cluster density was measured at roughly 1014 cm−3. To vali-
date the estimate, cluster density was calculated another way.
A two-dimensional TEM image of a 4 nm cluster film depos-
ited at a rate of 5 nm/s for 80 s was used to gain an upper

bound on the cluster density. The upper bound is on the order
of 1018 clusters cm−3. Since the cluster film represents the
most densely packed cluster scenario, and since it is used in
the calculation of both collision frequencies �and thus will
not alter the relative collision frequencies of ion-cluster ver-
sus cluster-ion collisions�, the lower estimate was taken.

The frequency ���, with which an object collides with a
cluster of density ncl, is given by

� = ncl�u ,

where � is the hard-sphere collision cross section �estimated
with the 3 nm radius of an FePt cluster� and u is the velocity
of the object colliding with the cluster. The average veloci-
ties for clusters �ucl� and argon ions �uAr� are estimated at
9�1015 and 2�1018 cm /s, respectively. This gives the es-
timated 103 cluster-cluster collisions/s and 1020 cluster-ion
collisions/s. Thus, the MOV structure more likely forms
from ion heating, thus an early indicator of cluster ordering,
and corresponds to low but increasing values of cluster co-
ercivity.

V. SUMMARY

We present two early indicators of ordering during direct
preparation of L10 FePt nanoclusters: �1� ion density and �2�
MOV structure observations. These findings demonstrate ion
density cluster property control during the early stages of
direct L10 FePt nanocluster formation. Ion heating is a con-
trollable mechanism to promote the evolution of FePt clus-
ters toward the L10 phase.
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