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Unexpected estimates of variance components with a true model
containing genetic competition effects1

L. D. Van Vleck*2 and J. P. Cassady†

*ARS, USDA, Roman L. Hruska U.S. Meat Animal Research Center, Lincoln 68583-0908;
and †North Carolina State University, Raleigh 27695-7627

ABSTRACT: Simulation of a model containing ge-
netic competition effects was initiated to determine how
well REML could untangle variances due to direct and
competition genetic effects and pen effects. A two-gener-
ation data set was generated with six unrelated males
that were each mated to five unrelated females to pro-
duce 300 progeny, from which 30 females (one per mat-
ing in previous generation) were mated to six unrelated
males to produce 300 more progeny. Progeny were ran-
domly assigned, six per pen, to 50 pens per generation.
Parameters were Vg, Vc, Cgc, Vp, and Ve, representing
direct and competition genetic variance with covari-
ance, and pen and residual variance. Eight statistical
models were used to analyze each of 400 replicates of
16 sets of parameters. Both Vg and Ve were fixed at
16.0. Values of Cgc were −2.0, −1.0, 0.1, 1.0, and 2.0.
Values of Vc were 1.0 and 4.0, and values of Vp were 0.1,
1.0, and 10.0. With the full model, average estimates
resembled true parameters, except that Vp was consis-
tently overestimated when small (0.1 and 1.0), which
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Introduction

Competition among animals in the same pen or group
may decrease performance. Federer (1955) briefly dis-
cussed competition effects specifically for plants and
also more generally for animals. Griffing (1967) devel-
oped a theory for plants to account for direct and asso-
ciative effects. Muir and Schinkel (2002) introduced
the idea of predicting both direct genetic effects and
competition (associative) genetic effects for animals.
Muir (2004) reviewed previous analyses of competition
effects with plants. He also contrasted whole pen
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in turn slightly changed other estimates. The most un-
expected result was overestimation of Vp when Vc and
Cgc were ignored. Overestimation depended on Vc and
the number of competitors in common between records
in a pen. Upward bias was somewhat greater when Cgc

was positive than when it was negative. For example,
with Cgc = 2, Vc = 4, and Vp = 0.1, the mean estimate
of Vp was 20.4 when Cgc and Vc were dropped from the
model and 15.3 when Cgc = −2.0. When Vp was ignored,
estimates of both Cgc and Vc increased in proportion
with Vp. Also Vg increased more with greater Vp. An-
other unexpected result occurred when pen was consid-
ered fixed. Empirical sampling standard errors of esti-
mates of Cgc and Vc were decreased generally by factors
of 2 to 30. Based on these results, we conclude a high
estimate of pen variance may indicate genetic competi-
tion effects are important, and ignoring either the pen
or competition effects will bias estimates of other com-
ponents.

(group) selection with selection on an index of direct
and competition genetic effects for both a simulation
study and an experiment with quail. Muir (2004) also
presented the mixed model equations for analyses of
plant data with competition effects proportional to dis-
tances and for animals interacting in a pen.

The first goal of this simulation study was to deter-
mine whether REML procedures with relationships
could untangle the covariance structure of direct and
competition genetic variances (with covariance) and
variance due to pen (contemporary management ef-
fects) from samples of relatively limited size and a rela-
tively simple numerator relationship structure. The
second goal was to determine the effect of dropping
various effects from the statistical model, such as com-
petition effects or pen effects. A third goal was to deter-
mine empirical sampling standard deviations for esti-
mates of components of (co)variance and for correspond-
ing genetic parameters. The fourth goal was to compare 
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estimates of other (co)variances with pens considered
fixed or random.

Materials and Methods

A model with direct genetic effects and the direct
phenotype containing competition effects of pen mates
is similar to the model for direct-maternal effects. In
both models, the phenotype of one trait is embedded in
the phenotypic measure of the other trait: maternal in
direct and competition in direct. The differences are as
follows: 1) several animals can contribute competition
effects compared with only the dam contributing a ma-
ternal effect; 2) in the absence of inbreeding, the numer-
ator relationship between a dam and her progeny with
the record is one-half, whereas the relationship between
the animal and its competitors can range from zero to
one-half (if full sibs); 3) in the absence of inbreeding,
relationships among competitors generally would also
range from zero to one-half; and 4) phenotypic variance
for the direct trait will depend on number of competi-
tors, direct-competition genetic covariance, and rela-
tionships among pen mates.

These differences need to be considered for simula-
tion of genetic values for direct and competition effects,
as well as for statistical analyses of models with compe-
tition effects.

Simulation Model

For this simulation, only one fixed factor, �, was con-
sidered; thus, the model for simulation of the direct
phenotype (yik) of animal i in pen k is:

yik = � + ai + Σcj + pk + ei, where;

ai is the direct genetic value of animal i; Σcj is the sum
of competition genetic values for penmates of animal i
(in this simulation i had five penmates); pk is an inde-
pendent random pen effect; and ei is an independent
residual effect, which is actually the direct environmen-
tal effect associated with animal i plus the sum of com-
petition environmental effects of the pen mates (all as-
sumed to be uncorrelated). This model will be used
later to explain some unexpected estimates of variance
components when competition effects are ignored.

The simulation requires a vector, a, for direct genetic
values of animals with records; a vector, c, with compe-
tition genetic values for animals with records; a vector,
p, for pen effects; and a vector, e, of residual effects
for each animal with a record. A simple design of two
generations was chosen; for this design, the simulation
and analysis is easier if a and c are augmented by
genetic values for foundation sires and dams that do
not have records.

What is needed for simulation of (a c)′ is that sam-
pling be from a distribution with:

E




a
c





=




0
0





and V




a
c





=




Aσ2
a Aσac

Aσac Aσ2
c





where

A is the numerator relationship matrix augmented for
foundation sires and dams, σ2

a is the direct genetic vari-
ance, σ2

c is the competition genetic variance, and σac is
the direct-competition genetic covariance.

The mating design for the first generation was to
mate each of six unrelated males to five unrelated fe-
males. Each of the 30 matings produced 10 progeny.
For the second generation, each of another six unrelated
males was mated to five females with one female ran-
domly chosen (the first one) from each litter of Genera-
tion 1. The first male was mated to females from the
first five litters of generation one; the second male to
females from the next five litters, etc. Thus, the rela-
tionship structure was always the same for each simu-
lated data set, which allowed for simulation of a and c
as follows. Total number of animals was 6 + 6 + 30 + 300
+ 300 = 642, with 600 having records. The numerator
relationship matrix, A, was calculated once for this de-
sign. For the simulation, let LA be the lower Cholesky
factor of A (see Van Vleck, 1994).

Let

V =




σ2
a σac

σac σ2
c





with

LV = lower Cholesky factor of V. Let v be a vector of
order 1,284 (2 × 642) of randomly generated values from
a pseudonormal distribution with a mean of zero and

a variance of one. Then, calculate




a
c




= (LA ⊗ LA)v with

θ = the right direct product operator.
The Cholesky factor of A needs to be calculated only

once. The Cholesky factor of V needs to be calculated
only once for each set of parameters.

Note that V




a
c





= E[(LA ⊗ LV)vv′(LA ⊗ LV)′]

= (LA ⊗ LV) E[vv′](LA ⊗ LV)′]
= (LA ⊗ LV) (LA ⊗ LV)′
= (LAL′

A) ⊗ (LVL′
v)

= A ⊗ V as needed

Uncorrelated pen and residual effects were also gen-
erated from a pseudonormal distribution, [N(0,1)], with
each pseudonormal value multiplied by the appropriate
standard deviation, either σp or σe.

Table 1 shows 16 combinations of parameters used
for simulation. The pattern was to fix σ2

a and σ2
e and to

vary the other three (co)variances. Rather than attempt
a simulation with zero variances or a zero covariance,
a small value was used in an attempt to avoid conver-
gence to boundaries of the parameter space. Instead of
zero, 0.1 was used for small values of σac and σ2

p. No  
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Table 1. Combinations of parameters (1 to 16) used for
simulation of direct, competition, pen, and residual ef-
fectsa

Parameter
set σ2

a σac σ2
c σ2

p σ2
e

1 16 −2.0 4 10.0 16
2 16 2.0 4 10.0 16
3 16 −2.0 4 1.0 16
4 16 2.0 4 1.0 16
5 16 −1.0 1 10.0 16
6 16 1.0 1 10.0 16
7 16 0.1 4 10.0 16
8 16 0.1 4 1.0 16
9 16 0.1 1 10.0 16
10 16 0.1 1 1.0 16
11 16 −1.0 1 1.0 16
12 16 1.0 1 1.0 16
13 16 −2.0 4 0.1 16
14 16 2.0 4 0.1 16
15 16 0.1 4 0.1 16
16 16 0.1 1 0.1 16

aσ2
a = direct genetic variance, σac = direct-competition genetic covari-

ance, σ2
c = competition genetic variance, σ2

p = variance due to pen
effects, and σ2

e = residual variance.

attempt was made to simulate a broad range of direct
heritabilities. Thus, as with any simulation, the results
may not apply to other combinations of parameters.

For each set of variance parameters, 400 replicates
were generated and analyzed. Table 2 summarizes the
eight statistical models used. The model in matrix nota-
tion corresponding to the full model used in calculating
the mixed model equations, which in turn were used
in calculating the restricted likelihood to obtain deriva-
tive-free REML estimates, was:

y = 1� + Za + Wc + Sp + e

where 1 is a vector of 600 ones, � is a constant (100),
Z is a matrix of order 600 × 642 augmented for the 42
sires and dams without records, which associates direct

Table 2. Assumptions for eight statistical models used
for REML analyses of simulated dataa,b

Analysis model σ2
a σac σ2

c σ2
p σ2

e

1 ✓ ✓ ✓ ✓ ✓

2 ✓ 0 ✓ ✓ ✓

3 ✓ 0 0 ✓ ✓

4 ✓ ✓ ✓ 0 ✓

5 ✓ 0 0 0 ✓

6 ✓ ✓ ✓ Fix ✓

7 ✓ 0 ✓ Fix ✓

8 ✓ 0 0 Fix ✓

a✓ indicates included, 0 indicates not included, and Fix indicates
treated as a fixed factor.

bσ2
a = direct genetic variance, σac = direct-competition genetic covari-

ance, σ2
c = competition genetic variance, σ2

p = variance due to pen
effects, and σ2

e = residual variance.

genetic effects with records (will have a single 1 in
column i of the ith row corresponding to a record of
animal i), W is an augmented matrix of order 600 ×
642, which associates competition genetic effects with
records (will have five ones in the ith row corresponding
to columns of pen mates associated with the record of
animal i), S is a matrix of order 600 × 100, which associ-
ates records to pens. Within each of the two generations,
six progeny were allocated randomly to a pen.

With G0 =




σ2
a σac

σac σ2
c





and σ2
eG−1

0 =




gaa gac

gac gcc





and with λ =

σ2
e/σ2

p, the mixed model equations, multiplied by σ2
e, are









X′X X′Z X′W X′S
Z′X Z′Z + A−1gaa Z′W + A−1gac Z′S
W′X W′Z + A−1gac W′W + A−1gcc W′S
S′X S′Z S′W S′S + Iλ


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
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
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






These equations are also the basis for derivative-free
REML. To obtain natural logarithms of the likelihoods
given the data and to obtain estimates for each replicate
to accommodate the statistical models shown in Table
2, equations were modified appropriately: 1) when the
direct-genetic competition correlation was dropped, σac
was fixed at zero; 2) when the competition effect was
dropped (σ2

c = 0 and σac = 0), parts with W were dropped
out; 3) when the pen effect was dropped (σ2

p = 0), parts
with S were dropped out; 4) when both competition and
pen effects were dropped, both 2) and 3) applied; and
5) when statistical models 6 to 8 were used, pen effects
were treated as fixed (λ = 0).

Derivative-free REML estimates were obtained for
each of the eight statistical models with the
MTDFREML programs (Boldman et al., 1995) modified
to include competition effects (Van Vleck and Cassady,
2004). After REML estimates were obtained for each
of the 400 replicates for a parameter set, means and
empirical standard deviations were calculated for esti-
mates of parameters included in the statistical model
used, including the genetic correlation, direct and com-
petition heritabilities, and fraction of variance due to
pen effects. For calculation of the latter three parame-
ters, phenotypic variance was calculated with estimates
of variance components as σ̂2

a + σ̂2
p + σ̂2

e + 5σ̂2
c, which

ignores relationships among animals in a pen that may
change from pen to pen and that generally would have
little effect on the phenotypic variance.

Results and Discussion

Means of estimates of variances and covariance with
eight statistical models are given in Tables 3 through
6 for Parameter Sets 1 to 16. Rather than discuss each
table separately, an attempt will be made to demon-
strate patterns. Patterns may be similar for several
tables, but all tables will be shown here. Estimates of
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Table 3. True parameters and means of estimates from
400 replications with eight statistical models for Parame-
ter Sets 1 to 4a

Analysis σ2
a σac σ2

c σ2
p σ2

e

True Set 1 16.0 −2.0 4.0 10.0 16.0
1 15.9 −2.1 4.0 10.0 16.0
2 17.6 – 4.4 6.5 17.0
3 22.6 – – 25.5 16.9
4 17.4 0.1 6.5 – 16.3
5 18.7 – – – 43.2
6 15.3 −2.3 4.2 Fix 16.0
7 19.5 – 4.6 Fix 16.0
8 24.1 – – Fix 16.0
True Set 2 16.0 2.0 4.0 10.0 16.0
1 15.4 1.7 3.9 10.6 16.1
2 13.9 – 3.5 13.8 15.4
3 16.2 – – 30.7 16.0
4 18.2 4.4 6.5 – 16.2
5 19.0 – – – 48.2
6 16.0 2.2 4.3 Fix 16.1
7 11.2 – 4.8 Fix 16.1
8 16.0 – – Fix 16.1
True Set 3 16.0 −2.0 4.0 1.0 16.0
1 16.3 −2.5 3.8 2.3 15.4
2 18.0 – 3.5 0.6 17.1
3 22.7 – – 16.5 16.9
4 16.4 −2.0 4.3 – 15.6
5 19.2 – – – 34.2
6 16.0 −2.3 4.2 Fix 15.5
7 20.2 – 4.6 Fix 15.5
8 24.8 – – Fix 15.5
True Set 4 16.0 2.0 4.0 1.0 16.0
1 15.4 1.5 3.5 3.0 16.1
2 14.3 – 3.4 4.8 15.2
3 16.2 – – 21.1 16.1
4 16.1 2.3 4.2 – 16.2
5 19.0 – – – 34.1
6 15.8 2.1 4.4 Fix 16.1
7 11.1 – 4.8 Fix 16.1
8 15.9 – – Fix 16.1

aσ2
a = direct genetic variance, σac = direct-competition genetic covari-

ance, σ2
c = competition genetic variance, σ2

p = variance due to pen
effects, and σ2

e = residual variance.

genetic correlations and heritabilities will not be dis-
cussed, although patterns for estimates of those param-
eters will follow patterns for estimates of the (co)-
variances.

With the full model, the REML algorithm with rela-
tionships for the two generations generally did well for
these parameter sets in partitioning total variance into
variances due to direct and competition genetic effects,
their covariance, and pen and residual variances. The
full model, with pen effects treated as fixed, also did well
in partitioning the other variances and covariances.
Exceptions were made for the full model when the true
pen variance was small (1.0) and very small (0.1). In
those cases, means of estimates of pen variance were
consistently larger than the true variance. The magni-
tude of overestimation seemed to depend on the magni-
tude and sign of σac and the magnitude of σ2

c with greater
overestimation with larger σ2

c, which corresponded with

Table 4. True parameters and means of estimates from
400 replications with eight statistical models for Parame-
ter Sets 5 to 8a

Analysis σ2
a σac σ2

c σ2
p σ2

e

True Set 5 16.0 −1.0 1.0 10.0 16.0
1 15.8 −1.0 1.0 9.9 16.1
2 16.9 – 1.1 8.5 16.6
3 18.0 – – 13.1 16.7
4 18.6 1.7 3.2 – 16.6
5 16.4 – – – 30.4
6 15.7 −1.1 1.1 Fix 16.1
7 17.8 – 1.2 Fix 16.1
8 18.9 – – Fix 16.1
True Set 6 16.0 1.0 1.0 10.0 16.0
1 16.0 1.1 1.1 9.8 16.0
2 14.9 – 0.9 11.5 15.6
3 15.5 – – 15.8 15.8
4 19.9 4.0 3.1 – 16.1
5 17.3 – – – 30.0
6 16.0 1.1 1.1 Fix 16.0
7 13.8 – 1.2 Fix 16.0
8 15.0 – – Fix 16.0
True Set 7 16.0 0.1 4.0 10.0 16.0
1 15.8 0.1 4.0 9.9 16.1
2 15.8 – 4.0 10.0 16.1
3 19.3 – – 28.1 16.5
4 17.9 2.4 6.5 – 16.2
5 18.9 – – – 43.1
6 15.5 0.1 4.3 Fix 16.1
7 15.0 – 4.6 Fix 16.1
8 19.6 – – Fix 16.1
True Set 8 16.0 0.1 4.0 1.0 16.0
1 15.8 −0.2 3.6 2.8 16.0
2 16.0 – 3.6 2.6 16.1
3 19.3 – – 18.9 16.4
4 16.3 0.5 4.2 – 16.1
5 19.2 – – – 34.0
6 15.5 0.1 4.4 Fix 16.0
7 15.1 – 4.6 Fix 16.0
8 19.7 – – Fix 16.0

aσ2
a = direct genetic variance, σac = direct-competition genetic covari-

ance, σ2
c = competition genetic variance, σ2

p = variance due to pen
effects, and σ2

e = residual variance.

some decrease in estimates of σ2
c. The overestimation

of σ2
p may be due partially to negative estimates not

being allowed for REML, which will bias upward esti-
mates of variances at or near zero.

When σac was fixed at zero, estimates of σ2
c and σ2

a
tended to increase if the true covariance was negative
and decrease if the true covariance was positive.

The most unexpected result (to the authors) was the
large overestimation of pen variance when competition
effects were dropped from the model. Overestimation
was greater when the true direct-competition covari-
ance was positive. When the true direct-competition
covariance was negative, σ2

a was also overestimated,
but not nearly as much as σ2

p. Examination of the sire
model may help to explain the overestimation of σ2

p,
although the analogy is not perfect. With the intraclass
correlation model, the assumption is usually that the
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Table 5. True parameters and means of estimates from
400 replications with eight statistical models for Parame-
ter Sets 9 to 12a

Analysis σ2
a σac σ2

c σ2
p σ2

e

True Set 9 16.0 0.1 1.0 10.0 16.0
1 16.1 0.1 1.1 9.6 16.0
2 16.0 – 1.0 9.9 16.0
3 16.8 – – 14.4 16.1
4 19.3 2.8 3.2 – 16.2
5 17.1 – – – 29.9
6 16.1 0.1 1.1 Fix 16.0
7 15.8 – 1.2 Fix 16.0
8 16.9 – – Fix 16.0
True Set 10 16.0 0.1 1.0 1.0 16.0
1 16.1 −0.1 0.9 1.4 15.8
2 16.1 – 0.9 1.4 15.8
3 16.9 – – 5.3 16.1
4 16.4 0.4 1.2 – 16.0
5 17.1 – – – 21.1
6 16.1 0.1 1.1 Fix 15.9
7 15.8 – 1.2 Fix 15.9
8 17.0 – – Fix 15.9
True Set 11 16.0 −0.1 1.0 1.0 16.0
1 15.8 −1.1 0.9 1.4 16.1
2 16.3 – 0.8 0.7 17.0
3 17.1 – – 3.9 17.3
4 15.8 −0.6 1.1 – 16.6
5 16.2 – – – 16.3
6 15.3 −1.1 1.1 Fix 16.3
7 17.4 – 1.2 Fix 16.3
8 18.6 – – Fix 16.3
True Set 12 16.0 1.0 1.0 1.0 16.0
1 15.5 0.8 0.9 1.7 16.1
2 15.1 – 0.9 2.4 15.5
3 15.5 – – 6.4 15.9
4 16.0 1.3 1.2 – 16.3
5 16.5 – – – 21.5
6 15.9 1.1 1.1 Fix 16.1
7 13.6 – 1.2 Fix 16.1
8 14.8 – – Fix 16.1

aσ2
a = direct genetic variance, σac = direct-competition genetic covari-

ance, σ2
c = competition genetic variance, σ2

p = variance due to pen
effects, and σ̂2

e = residual variance.

variance component for the class effect is equivalent to
the covariance between any pair of records in a level
of the class (e.g., a record of one progeny with a record
of another progeny of the same sire). With pens being
the class of effects, pen variance would be the same
as the covariance between records of any pair of animals
in the same pen. If the relationship matrix accounts for
covariances due to direct genetic effects, then competi-
tion effects, as well as the pen effect itself, will be left
in the records of pen mates.

For this situation with six penmates (five competitors
for each animal), let y1 and y2 be a representative pair
of records from the same pen after adjustment for
fixed effects:

y1 = a1 + c2 + c3 + c4 + c5 + c6 + p + e1

y2 = a2 + c1 + c3 + c4 + c5 + c6 + p + e2

Table 6. True parameters and means of estimates from
400 replications with eight statistical models for Parame-
ter Sets 13 to 16

Analysis σ2
a σac σ2

c σ2
p σ2

e

True Set 13 16.0 −2.0 4.0 0.1 16.0
1 16.5 −2.5 3.6 2.3 15.8
2 18.0 – 3.4 4.3 15.0
3 22.7 – – 20.4 15.9
4 16.6 −2.1 4.1 – 15.9
5 19.0 – – – 33.4
6 16.0 −2.3 4.3 Fix 15.9
7 20.3 – 4.8 Fix 15.9
8 24.9 – – Fix 15.9
True Set 14 16.0 2.0 1.0 1.0 16.0
1 15.5 1.4 0.9 1.7 16.1
2 14.5 – 0.9 2.4 15.5
3 16.4 – – 6.4 15.9
4 16.0 2.0 1.2 – 16.3
5 18.8 – – – 21.5
6 16.2 2.2 1.1 Fix 16.1
7 11.4 – 1.2 Fix 16.1
8 16.2 – – Fix 16.1
True Set 15 16.0 0.1 4.0 0.1 16.0
1 15.7 −0.5 3.5 2.4 15.7
2 16.2 – 3.5 1.9 16.0
3 19.5 – – 18.1 16.4
4 16.2 0.1 4.1 – 15.8
5 18.9 – – – 33.5
6 16.0 0.1 4.4 Fix 15.8
7 15.6 – 4.6 Fix 15.8
8 20.2 – – Fix 15.8
True Set 16 16.0 0.1 1.0 0.1 16.0
1 16.2 −0.3 0.9 1.1 15.6
2 16.3 – 0.8 0.8 15.7
3 17.0 – – 4.4 16.1
4 16.4 0.1 1.0 – 15.8
5 17.0 – – – 20.3
6 16.4 0.1 1.1 Fix 15.8
7 16.1 – 1.2 Fix 15.8
8 17.2 – – Fix 15.8

aσ2
a = direct genetic variance, σac = direct-competition genetic covari-

ance, σ2
c = competition genetic variance, σ2

p = variance due to pen
effects, and σ2

e = residual variance.

If competition effects are ignored and the animals
are unrelated:

COV(y1,y2) = 4 σ2
c + σ2

p + 2 σac

Thus the “expected” bias would be 4 σ2
c + 2 σac. If this

equation is used to model the expected estimate of σ2
p

when σ2
c and σac are ignored, general agreement can be

seen with means of the estimates. For example, for
Parameter Sets 1 to 4,

1) 4(4) + 10 + 2 (−2) = 22 vs. the mean estimate of 25.5

2) 4(4) + 10 + 2 (2) = 30 vs. the mean estimate of 30.6

3) 4(4) + 1 + 2 (−2) = 13 vs. the mean estimate of 16.5
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4) 4(4) + 1 + 2 (2) = 21 vs. the mean estimate of 21.1

The analogy may become more tenuous when only σac

is ignored. If both σ2
a and σ2

c are accounted for:

COV(y1,y2) = σ2
p + 2σac

Now, the bias will be 2σac. Comparisons with means for
Parameter Sets 1, 2, 3, 4, 13, and 14 are as follows:

1) 10 + 2(−2) = 6.0 vs. the mean estimate of 6.5

3) 1 + 2(−2) =−3.0 vs. the mean estimate of 0.6

13) 0.1 + 2(−2) = −3.9 vs. the mean estimate of 0.5

2) 10 + 2(2) =14.0 vs. the mean estimate of 13.8

4) 1 + 2(2) = 5.0 vs. the mean estimate of 3.4

14) 0.1 + 2(2) = 4.1 vs. the mean estimate of 4.3

The covariance between records of pen members
seems to explain much of the bias when the genetic
covariance is ignored. Parameter Sets 3 and 13 lead to
a negative expectation of pen variance, which is out of
the parameter space for REML, and in those two cases,
the estimates of pen variance were small. In the other
cases, agreement is quite good between the estimate of
pen variance and the theoretical covariance between a
pair of records in the pen after adjustment for competi-
tion genetic values. Although the true situation is more
complex, the simple expectations between records of
pairs of animals in the same pen do explain most of
the bias.

If pen effects were ignored and true pen variance was
relatively large (σ2

p = 10), the estimate of residual vari-
ance was not affected much, but the other three compo-
nents were greatly inflated except for Model 5, which
also ignored σ2

c and σac. With the true covariance being
negative or near zero, estimates became positive or
were substantially greater than zero when pen effects
were ignored.

If both pen and competition effects were ignored, esti-
mates of direct genetic variance increased with the in-
crease associated more with the magnitude of the com-
petition variance than with the magnitude of the pen
variance. Most of the ignored variance went to increase
estimates of residual variance by approximately 4 σ2

c

+ σ2
p.

A few minor surprises showed up when σac or both
σac and σ2

c were dropped from the model with pens con-
sidered to be fixed. In both these cases, estimates of
residual variance were more similar to the true residual
variance than when pens were considered to be random.
With σac ignored in the statistical analysis and having a
true negative value, estimates of direct and competition
genetic variances increased and the increase was more

Table 7. Empirical standard deviations of estimates of
direct-competition genetic covariance, σac, and competi-
tion genetic variance, σ2

c, with pen random or pen fixed
from 400 replicates for each of 16 parameter sets

Pen random Pen fixed
Parameter
set σac σ2

c σac σ2
c

1 2.1 1.7 0.4 0.7
2 2.3 1.9 0.4 0.6
3 1.7 1.1 0.3 0.7
4 1.9 1.3 0.4 0.6
5 1.4 0.7 0.2 0.1
6 1.6 0.8 0.2 0.2
7 2.3 1.9 0.03 0.8
8 1.8 1.2 0.03 0.8
9 1.5 0.8 0.03 0.2
10 1.0 0.5 0.03 0.2
11 1.1 0.5 0.2 0.1
12 1.0 0.5 0.2 0.2
13 1.7 1.1 0.4 0.8
14 2.0 1.2 0.4 0.6
15 1.7 1.2 0.03 0.9
16 1.0 0.4 0.03 0.2

when pen effects were considered fixed effects than
when pens were considered to be random effects. With
a positive true genetic covariance, estimates of direct
genetic variance decreased and the decrease was more
than when pens were considered as fixed effects. In-
creases in the estimates of variance of competition ge-
netic effects were slight.

When pens were considered to be fixed effects and
competition genetic effects were dropped from the
model (no variance or covariance in model), with a true
negative genetic covariance, the estimate of direct ge-
netic variance was inflated more than when pens were
considered as random effects. With a positive true co-
variance, estimates of direct genetic variance were simi-
lar whether pens were considered random or fixed.

A next step would be to compare predictions of breed-
ing values for statistical analyses that account for or
ignore competition effects when competition effects are
in the simulation model. Such a study, while limited to
parameters used in the simulation, would indicate the
importance of considering competition effects in selec-
tion for both direct and competition breeding values.

The results from this study are conditioned on the
model used for the simulation. Other more complicated
models for competitive interactions among animals, as
well as methods of analysis, may lead to different con-
clusions.

The second major unexpected result came from a com-
parison of the empirical standard deviations (which
would correspond to standard errors for estimates with
a single data set) for full models with pens as fixed or
random effects. Standard deviations for estimates of
genetic and residual variances were similar whether
pens were considered fixed or random. For estimates
of genetic variance, standard deviations ranged from 
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4.8 to 6.1 with pens random and from 3.9 to 6.4 with
pens fixed. For estimates of residual variance, standard
deviations ranged from 2.8 to 3.8 with pens as random
and also with pens as fixed effects.

The surprise was that standard deviations for esti-
mates of the competition genetic variance and espe-
cially for estimates of genetic covariance were smaller
when pens were considered to be fixed rather than ran-
dom effects. For all sets of parameters as shown in
Table 7, empirical standard deviations were smaller
when pens were treated as fixed effects.

For estimates of genetic covariance, standard devia-
tions were from 5 to 63 times smaller when pens were
considered fixed. Standard deviations were similar
when pens were considered random, no matter the size
of the true genetic covariance (range of 1.0 to 2.3), but
with pens considered fixed, standard deviations scaled
more to the magnitude of the true covariance (0.03 for
σac = 0.1; approximately 0.4 for σac = −2.0 or 2.0; and
approximately 0.2 for σac = −1.0 or 1.0).

For estimates of competition genetic variance, the
disparity in empirical standard deviations was not as
great as with estimates of the genetic covariance. The
standard deviations of estimates of competition genetic
variance ranged from 0.4 to 1.9, with pens considered
to be random effects, and from 0.1 to 0.9 with pens
considered to be fixed.

Larger standard deviations with pens considered to
be random may reflect the difficulty the REML algo-
rithm has, even with the required relationship matrix,
of partitioning the pen and competition variances and
the direct-competition genetic covariance. That diffi-
culty seems to be much less when pens are considered
fixed effects. Similar standard deviations for direct ge-
netic and residual variances indicate that those compo-
nents of variance are partitioned similarly, whether
pens are considered fixed or random.

Implications

Variance due to direct and competition genetic effects
and pen effects can be partitioned. When effects were

dropped from the model, changes in estimates for com-
ponents left in the model were generally small, except
when competition effects were ignored, in which case,
estimates of pen variance increased greatly because of
the covariance between records of pen mates due to
competition effects. Thus, a large variance due to pen
effects from an analysis not including competition ef-
fects may indicate that competition effects should be
included in the analysis. Not including pen effects in
the model may bias estimation of direct-competition
genetic covariance needed to calculate indexes of overall
genetic value and expected responses due to selection.
A result with possible implications for other models
is that treating pen effects as fixed greatly decreased
standard errors of estimates of genetic covariance be-
tween the direct and embedded competition effects and
estimates of genetic variance for competition effects.
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