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Summary

 

1.

 

Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable
to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of
these disturbances using process-based models is critical to identifying the form and magnitude of
likely impacts. Here, we integrate a new biotic model with four previously developed physical
models (downscaled climate projections, stream hydrology, geomorphology, and water temperature)
to predict how stream fish growth and reproduction will most probably respond to shifts in climate
and urbanization over the next several decades.

 

2.

 

The biotic submodel couples dynamics in fish populations and habitat suitability to predict fish
assemblage composition, based on readily available biotic information (preferences for habitat,
temperature, and food, and characteristics of spawning) and day-to-day variability in stream conditions.

 

3.

 

We illustrate the model using Piedmont headwater streams in the Chesapeake Bay watershed of
the USA, projecting ten scenarios: Baseline (low urbanization; no on-going construction; and
present-day climate); one Urbanization scenario (higher impervious surface, lower forest cover,
significant construction activity); four future climate change scenarios [Hadley CM3 and Parallel
Climate Models under medium-high (A2) and medium-low (B2) emissions scenarios]; and the same
four climate change scenarios plus Urbanization.

 

4.

 

Urbanization alone depressed growth or reproduction of 8 of 39 species, while climate change
alone depressed 22 to 29 species. Almost every recreationally important species (i.e. trouts, basses,
sunfishes) and six of the ten currently most common species were predicted to be significantly
stressed. The combined effect of climate change and urbanization on adult growth was sometimes
large compared to the effect of either stressor alone. Thus, the model predicts considerable change
in fish assemblage composition, including loss of diversity.

 

5.

 

Synthesis and applications

 

. The interaction of  climate change and urban growth may entail
significant reconfiguring of headwater streams, including a loss of ecosystem structure and services,
which will be more costly than climate change alone. On local scales, stakeholders cannot control
climate drivers but they can mitigate stream impacts via careful land use. Therefore, to conserve
stream ecosystems, we recommend that proactive measures be taken to insure against species loss

 

*Correspondence author. E-mail: kanelson@umd.edu
Re-use of  this article is permitted in accordance with the Creative Commons Deed, Attribution 2·5, which does not permit commercial
exploitation.
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or severe population declines. Delays will inevitably exacerbate the impacts of both climate change
and urbanization on headwater systems.

 

Key-words:

 

multiple stressors, urbanization, fish assemblage, headwater stream; siltation, flow
regime, temperature regime, urban stream syndrome

 

Introduction

 

As topographical low points in the landscape, aquatic systems
collect and disperse water, sediment, and heat, integrating
changes occurring throughout watersheds. Urban develop-
ment near streams alters inputs (including nutrients, con-
taminants and sediment), flashiness of discharge, and
temperature (Paul & Meyer 2001; Morgan & Cushman 2005).
Climate change is also expected to have far-reaching impacts
on streams, from altering temperature and runoff  regimes
to increasing the frequency and intensity of droughts and
floods (Milly, Dunne & Vecchia 2005; Alcamo, Flörke &
Märker 2007). It is difficult to predict the combined effects of
climate change and urbanization from empirical data because
changes are occurring on broad spatial and temporal
scales, and typically, conditions cannot be replicated. Yet,
anticipating the combined environmental impacts of such
anthropogenic changes is critical to developing proactive
strategies to protect ecosystems and the services they provide
(Clark

 

 et al

 

. 2001; Walsh, Fletcher & Ladson 2005; Palmer

 

et al

 

. 2008a,b). Thus, process-based models are instructive
tools for investigating these complex stressors in a timely
manner. Here we present the results from models we
developed and parameterized to predict the separate and
combined effects of urbanization and climate change on
streams in small catchments in the mid-Atlantic USA (Fig. 1).

We ask how climate and urbanization-induced changes in
hydrology, geomorphology, and temperature affect entire
assemblages, integrating five submodels: downscaled climate
projections, hydrology, geomorphology, water temperature,
and fish growth and reproduction. The first four have been

described elsewhere (Dettinger

 

 et al

 

. 2004; Moglen

 

 et al

 

.
2004; Nelson & Palmer 2007; Hejazi & Moglen 2008; Pizzuto

 

et al

 

. 2008). The fifth, Forecasted Indices for Fish (FIF), uses
output from the other submodels to integrate with a matrix
of species traits to forecast conditions for fish growth and
reproduction under selected scenarios of urbanization and
climate change. We use the FIF model to predict impacts in
Piedmont headwater streams of  the Chesapeake Bay
watershed; these streams have been the subject of extensive
empirical work (e.g. Palmer 

 

et al

 

. 2002; Moglen 

 

et al

 

. 2004;
Moore & Palmer 2005; Allmendinger 

 

et al

 

. 2007; Nelson &
Palmer 2007) to develop and parameterize the physical
submodels.

We focus on fish because they are widely used indicators of
environmental quality (Karr 1981; Fausch 

 

et al

 

. 1990) and
because their life histories and habitat requirements are better
known than those of smaller stream biota such as macro-
invertebrates (Angermeier 1995). Modelling the entire
fish assemblage allows us to compare the vulnerability of
functional groups (e.g. feeding, spawning, temperature).
While there is a rich literature on stream fishes, the impacts of
climate change on their resource base are not well understood.
Changes in food availability (an indirect effect) may exert as
much control over fish growth and reproduction as do changes
in temperature or flow regimes (direct effects). Similarly, the
exact relationship between siltation and spawning could not
be parameterized from the literature, although the effect is
well-established. We felt it was imperative to include such
effects, and made reasonable assumptions and rules based
on the best available information; we explicate these
assumptions throughout the study.

 

Fig. 1. Drivers and stressors leading to indices
of impacts on fish growth and reproduction.
Arrows signify direct effects.
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Methods

 

The FIF model (Fig. 2) uses a daily time-step with inputs of  air
temperature, precipitation, and food availability; hydrologic, geomorphic,
and water temperature outputs are generated from their respective
submodels; and the impacts on fishes are predicted. We simulated
Baseline conditions and 9 future scenarios (Urbanization Alone, 4
Climate Change scenarios, 4 Urbanization with Climate Change
scenarios). Baseline conditions were based on data from first- to third-
order perennial streams in four watersheds currently dominated by
residential development, (Fig. 3, also Moglen 

 

et al

 

. 2004; Moore &
Palmer 2005).

 

URBANIZATION

 

Three land-use variables drive the hydrologic and geomorphic sub-
models (Table 1): (i) impervious surface [RESAC (2004); USGS
(2005) data bases], which affects infiltration capacity, (ii) % new con-
struction (average change in urban land use over the last 10 years),
which affects sediment input, and (iii) % of watershed forested (the

sum of deciduous, evergreen, and mixed-forest land), which affects
water temperature and organic input. We did not include agricultural
land use in our scenarios, despite its distinct sedimentation regimes,
for these two reasons: the output from the hydrologic submodel is
similar for agricultural versus residential land use (McCuen &
Snyder 1985; Hejazi & Moglen 2008); and the urbanizing watersheds
surrounding Washington D.C. have little remaining agricultural land.

Land use in our scenarios reflected conditions in our study sites:
10% impervious surface, intact riparian buffers, and no on-going
construction in the non-urbanized scenarios; 30% impervious cover,
deforested riparian buffers, and 2% new construction per year in the
urbanized scenarios.

 

CL IMATE

 

 

 

CHANGE

 

In order to obtain plausible, coherent descriptions of future climate,
we rely on simulations from two atmosphere–ocean general circulation
models – the Hadley Centre Model version 3 (HadCM3; Pope

 

 et al

 

.
2000), and the Parallel Climate Model (PCM; Washington

 

 et al

 

. 2000).
These were run under two sets of future emissions assumptions – the
A2 (mid-high) and B2 (mid-low), developed by the IPCC Special
Report on Emissions Scenarios (Naki

 

c

 

enovi

 

c

 

 

 

et al

 

. 2000). To project
future conditions, we used downscaled climate projections with a
daily timestep for the years 2085 to 2094, which allowed us to capture
reasonable predictions of day-to-day variability and covariance.
Further details on the climate projections are provided in Supporting
Information, Appendix S1.

 

PHYSICAL

 

 

 

SUBMODELS

 

The hydrologic submodel (Moglen 

 

et al

 

. 2004) is a continuous
streamflow model that is conceptually consistent with HSPF
(Crawford & Linsley 1966; Bicknell

 

 et al

 

. 1997). It predicts daily
streamflow over the course of the scenario, thus allowing us to quantify
flashiness. The geomorphic submodel (Pizzuto 

 

et al

 

. 2008) is a
sediment transport model with daily output including particle size
distribution, bed load and suspended material discharge, turbidity,
and interstitial clogging. The temperature submodel (Nelson &
Palmer 2007) predicts minimum and maximum in-stream temperature
based on daily air temperatures derived from the downscaled climate
projections, % deforestation, and watershed size. Calibrated models
that predict fish-food availability as a function of flow, temperature,
and geomorphic conditions do not exist, so we used data series to
represent reasonable estimates of food availability in each scenario
(Supporting Information, Appendix S2). These data series were
intentionally conservative in terms of predicting impacts of stressors.

 

MODELLING

 

 

 

F ISH

 

 

 

RESPONSE

 

Thirty-nine species of fish occur in our study watersheds, with small
minnows making up >60% of total individuals (Supporting Infor-
mation, Appendix S3; MBSS 2004). Information for each species
was collected from compilations and surveys listed in Supporting
Information, Appendix S3, and extrapolated from related species
when necessary. We identified guilds likely to be vulnerable to urban-
ization and climate change: (i) fish classified as cold or cool water (vs.
warm water or cool-to-warm water); (ii) fish breeding only at low
temperatures or over relatively short seasons (vs. those that breed at
a wider range of temperature or season): (iii) fish that use some sort
of breeding structure that could trap silt (versus fish that do not use
a breeding structure); (iv) fish that do not clean or aerate their eggs

Fig. 2. Overview of the FIF (Forecasted Indices for Fish) model.
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(versus cleaners/aerators); (v) fish that feed exclusively on invertebrates
and/or other fish (versus those that also feed on detritus or algae).
Except for (iii), these guilds are well accepted in the biomonitoring
literature (Karr 1981; Rowe

 

 et al

 

. 2003).
We developed four indices to summarize the impacts of urbanization

and climate change on fishes (Table 2; Supporting Information,
Appendix S4). Two indices focused on spawning (

 

I

 

SDA

 

, spawning day
availability; 

 

I

 

SS

 

, spawning substrate) and two focused on growth
(

 

I

 

JG

 

, juvenile growth; 

 

I

 

AG

 

, adult growth). Index values ranged from

0 (conditions unacceptable) to 1 (conditions acceptable). To demonstrate
the overall impact of  the anthropogenic stressors, we calculated
the percentage change between the index values for any given stressor
scenario vs. the Baseline scenario (hereafter, called impact score).
For example, an impact score of 

 

−

 

10 points means that the raw scores
for a stressor scenario decreased by 10% relative to the baseline scenario.

We used an independent data set on fish species assemblages
across urbanization gradients to validate the use of these indices
(Supporting Information, Appendix S5). A corresponding gradient

Fig. 3. Study site locations (five watersheds outlined, with specific sites indicated by black dots), gauging site, and weather station. Within the
watershed boundaries, dark grey represents urban land, light grey represents agricultural land, and white represents forested land.

Table 1. Summary of the ten land use × climate change scenarios used to predict impacts on stream fish assemblages

% 
impervious

% 
forested

Presence of 
riparian buffer

% watershed 
under construction Climate

Baseline 10 20 Yes 0 Present*
Climate Change only 10 20 Yes 0 Future†
Urbanization only 30 2 No 2 Present*
Urbanization + Climate Change 30 2 No 2 Future†

*Present climate is taken from the years 1995 to 2004 based on historical simulations by the HadCM3 model and statistically downscaled to 
match observed historical distributions (Supporting Information, Appendix S1). We used historical simulations to ensure uniformity among the 
climate drivers.
†Four different future climate change scenarios were used, as described in text and Table 3.
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for climate change does not exist, and hence, we could not validate
the indices with respect to climate change. Our validation exercise
revealed that three of our indices – 

 

I

 

AG

 

, 

 

I

 

JG

 

, and a composite score
averaging all four indices – produced rates of species loss that were
consistent with observed patterns across the gradient (i.e. index
scores were generally successful in identifying vulnerable species).
I

 

SDA

 

 produced no trend, perhaps because the number of spawning
days does not change much with urbanization, whereas we expect
this factor to be more sensitive to climate change scenarios. Since
our validation suggested that the fish growth indices (

 

I

 

JG

 

 and 

 

I

 

AG

 

)
best predicted vulnerable species, we only used these two indices in
the work reported here. To be conservative, we did not use the
composite score, although it exhibited significant trends in third-order
streams, because it contained non-significant individual index scores.

For each scenario, we counted the number of species that suffered
a loss of 10 points or greater for either or both of the growth indices.
This quantifies the overlap between those species stressed by each
pathway ( juvenile or adult growth) and is a rough estimate of the
composite effect of a given scenario.

 

Results

 

PHYSICAL

 

 

 

SUBMODELS

 

Overall, the climate change conditions could be characterized
by change in temperature and rainfall (Table 3). Here, we
use the HadCM3 B2 scenario to illustrate physical responses
to urbanization and climate change (Figs 4 and 5). Minimum
daily discharge did not vary under the HadCM3 B2 runs,
but maximum daily discharge did. High-flow days
moved about 17% more water under Urbanization com-
pared to Baseline, 27% more under Climate Change, and
45% more under simultaneous stressors. By contrast, median
discharge, which represents ‘normal’ levels, decreased about
7% compared to Baseline under Urbanization, reflecting
lower infiltration and groundwater levels, but increased
40% under Climate Change, reflecting higher annual
precipitation.

Table 2. Indices developed to summarize the impacts of urbanization and climate change on fish assemblages for the FIF model*

Indices Explanation
Environmental 
factors contributing

Species characteristics 
contributing

ISDA index of spawning day availability Effect of warming 
on days available 
for spawning 

Daily temperature Spawning times

(% days during the typical spawning period for 
each species when predicted water temperature 
falls within the spawning temperature range)

Spawning temperatures

ISS index of spawning substrate
(% spawning days impacted by siltation†)

Effect of siltation 
on spawning

Discharge
Siltation

Spawning care
Spawning mode
Spawning months

ISS index of juvenile growth Effect of warming and 
washout on development 
time for juveniles

Daily temperature Spawning times

(no of days required to grow to maturity given 
predicted temperature and likelihood of 
eggs/young being washed out by high flows‡)

Summer temperature surges Temperature group
Time to 40 mm length

IAG index of adult growth 
(% days on which ‘positive growth’ was possible§)

Days during which positive 
growth can occur for adults 

Daily temperature Temperature group
Food availability Adult food preferences
Summer temperature surges

*full details and assumption justifications in Supporting Information, Appendix S4.
†Siltation impedes flow of interstitial oxygen and depresses hatching rates of eggs (Soulsby et al. 2001; Lapointe et al. 2004). Species that clean 
and aerate their nests or position their eggs to avoid siltation were assumed less vulnerable (Johnston 1999). The index also reflected the 
availability of appropriately sized spawning substrate for species that build nests or redds.
‡We assumed that juveniles had high growth rates only in the middle half  of the ‘good growth’ range for adults (Rombough 1997).
§Positive growth was possible when water temperature was within ‘good growth’ range for the species’ temperature guild and at least one of the 
food types eaten by the species (detritus, algae, invertebrates, and/or small fishes) was above a non-limiting threshold.

Table 3. Climate change driver series used in the FIF model for baseline and future climate scenarios. P, precipitation. Full explanation in text
and in Supporting Information, Appendix S1

Statistic Baseline Hadley A2 Hadley B2 PCM A2 PCM B2

Mean temperature (ºC March–September) 17·2 20·5 21·7 15·5 15·3
No. of rainfall events in 10 years (>0·1 cm) 1107 1087 1093 1104 1047
Average annual P (cm) 112·9 132·9 119·9 116·9 94·1
Average P event–1 (cm) 1·02 1·22 1·10 1·05 0·90
No. of heavy P events year–1 (>10 cm) 5 13 10 3 0
Max 1-Day P (cm) 17·4 21·1 26·7 10·3 8·4
Summary compared to present:

Average summer temp. warmer warmer
Total P wetter drier
Heavy P events increased increased decreased decreased
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Minimum and median daily bed mobility (Fig. 4) were
each 0%, because flow was not strong enough to move the bed
most of the time. Maximum bed mobility was lowest under
Baseline conditions, and increased under both Climate
Change (due to increased storm size) and Urbanization (due
to increased flashiness and a greater influx of sand from soil
erosion associated with construction).

Turbidity (Fig. 4) exhibited similar patterns: both frequent
extreme precipitation events (Climate Change scenario) and
erosion from construction (Urbanization scenario) increased
the supply of  suspended sediment, and the effect was
approximately additive when the two stressors occurred
simultaneously. Siltation, or fine-sediment deposition, was
more complicated (Fig. 4). Storm flows and flashiness tend to
flush out silt; minimum siltation levels were lower than
Baseline under all three stressor scenarios, and median
siltation levels were mostly unaffected. Maximum siltation,
however, was very sensitive to stressors. Climate Change
scenarios exhibited less siltation than Baseline because more
episodic flows removed fine sediment from the streambed.
The Urbanization scenario had extremely high siltation levels
due to elevated inputs from construction. When stressors acted
simultaneously, maximum siltation levels were intermediate.

Water temperature was highest in the Simultaneous
scenario (Fig. 5). Inter-scenario differences were most apparent
in midsummer, when heated storm runoff made maximum

daily temperature much more variable in the Urbanization
scenarios. Temperature spikes in urban streams immediately
after rainstorms ranged from 3·5  to >7 

 

°

 

C, depending on
watershed size, amount of impervious surface, and immediately
preceding air temperatures (Nelson & Palmer 2007).

 

MODELLING

 

 

 

F ISH

 

 

 

RESPONSE

 

Across the 9 future scenarios, 8 to 29 of the 39 fish species were
negatively affected in terms of juvenile or adult growth
(Fig. 6). Urbanization alone stressed relatively few species (8
species exhibited reduced adult growth), while climate change
affected most species (22 to 29, depending on the scenario).
However, adding urbanization to climate change usually
increased the number of stressed species, sometimes quite dra-
matically, suggesting that considerable change in community
composition and loss of diversity could occur under future

Fig. 4. Hydrologic and geomorphic submodel outputs under four
scenarios: Baseline (B), Urbanization Alone (U), HadCM3-B2
Climate Change (C), and Urbanization plus HadCM3-B2 Climate
Change (U+C). Submodels were run for the years 2085–2094.
Whiskers represent minimum and maximum values, boxes represent
first and third quartiles, and dividing line represents median of Discharge,
Bed Mobility, Turbidity, and Siltation over the 10-year simulations.

Fig. 5. Maximum daily water temperature projected in the year 2090
using scenarios as in Fig. 4.

Fig. 6. Number of species adversely affected by land use change and/
or climate change (>10 point loss in impact score). Striped bars
represent species affected in only one of the two indices (indices of
adult growth or juvenile growth), while dark bars represent species
affected in both indices.
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scenarios. Among the 10 currently most common species, six
had at least one impact score of 10% or higher. Almost every
recreationally important species (including trouts, basses,
and sunfishes, all of which are currently rare), had impact
scores ranging from 40 to 90%.

Different scenarios produced distinctive patterns of stress;
in each scenario, disparate sets of species were affected by the
juvenile vs. adult stress pathways, and few were affected by
both pathways. Effects on adult growth dominated under
Urbanization and PCM-based Climate Change scenarios.
Effects on juvenile growth dominated under HadCM3-based
Climate Change scenarios. Adding urbanization to climate
change generally increased the number of species with reduced
adult growth, while it did not increase (and sometimes decreased)
the number of species with reduced juvenile growth.

 

Discussion

 

We developed and tested a model to explore the effects of
urbanization and climate change on stream fish assemblages
by focusing on the specific pathways by which these stressors
are likely to impact fish reproduction and growth. Each of the
four stressor pathways – spawning temperatures, spawning
substrate, juvenile growth, and adult growth (Fig. 3) –
integrated direct (e.g. thermal tolerance) and indirect (e.g.
food availability) effects of  changes in the hydrologic and
geomorphic regimes. We found that two of these pathways –
stress on juvenile growth arising from altered temperature
and hydrology, and stress on adult growth arising from
altered temperature, siltation, and food resources – are likely
to significantly influence species persistence under future land
development and climate scenarios. Our results suggest that
50–75% of the fish species in small Piedmont streams will be
highly stressed by future scenarios. Most of these species were
affected by climate change, but adding increased urbanization to
a warming climate exacerbated the number of stressed species
(Fig. 6). Declines in abundance are likely for almost all species
supporting recreational fisheries in these watersheds,
including trout, bass, and sunfish. These predictions are
probably conservative because we excluded impacts that we
could not validate with an independent data set (e.g. temperature
and siltation effects on spawning day availability, siltation
effects on spawning substrate).

General treatments of the ecological impacts expected
from climate change are now common (e.g., Eaton & Scheller
1996; Parmesan & Yohe 2003) and the impacts of urbanization
on streams are well documented (Power 1997; Bledsoe &
Watson 2001; Walsh

 

 et al

 

. 2005), but we believe our work is
the first to project stream impacts at the watershed scale most
relevant to management. Even so, our findings are likely to
have broad applicability because we studied species that are
common across much of the eastern USA, described these
fishes via traits that occur in many other species and regions,
and modelled pathways through which either climate or
land-use change may exert local ecological impacts. However,
we expect details regarding the magnitude of species-specific
effects to vary considerably among localities. Since climate

change forecasts and urbanizing trends are similar for most of
the coastal mid-Atlantic, our results are certainly applicable
to many mid-Atlantic watersheds. Extending these results to
other ecoregions could be done if  climate change predictions
are similar and watersheds are, like ours, moderately to
heavily urbanized.

 

MODEL

 

 

 

REALISM

 

 

 

AND

 

 

 

UNDERLYING

 

 

 

ASSUMPTIONS

 

Our findings are instructive only to the extent that our
assumptions regarding urbanization and climate change
are reasonable. Our Urbanization scenario is probably con-
servative, given that Maryland’s population is projected to
increase substantially, doubling in some localities, within the
next several decades (Freece 2006). Climate change projections
are less certain, which is why we used multiple sets of climate
change assumptions. The HadCM3 and PCM models used
here are both widely applied and accepted, and our emissions
scenarios are in the mid-range of accepted future scenarios
(IPCC 2007). Recent evaluations of these models for Maryland
agree on increases in average summer air temperature (up to
5 

 

°

 

C) and in frequencies of spring floods, summer droughts,
and summer heat waves, especially in urban areas (Boesch
2008). Given the potentially severe ecological impacts, we
believe that policies to protect people and ecosystems cannot
wait for uncertainties to be eliminated by additional research.
Instead, we have attempted to synthesize reasonable assumptions
and the best available scientific knowledge into projections
that can aid ecosystem managers.

Our findings are probably sensitive to our assumptions
about food availability. Lacking robust models to estimate
availability of  important foods, particularly stream
invertebrates (Morin 1997), we used data from our study sites,
literature-based values, and expert judgment to develop
reasonable but intentionally conservative estimates of abun-
dance for detritus, algae, and small invertebrates. Much of our
projected impact on adult fish growth stemmed from food
limitation for obligate invertivores. While it is well-established
that invertebrate abundance declines under urbanization,
effects of climate change are largely unknown (Poff, Brinson
& Day 2002). We assumed that flashier flow would deplete inver-
tebrates and their foods, and that high summer temperature
combined with low summer flow would exacerbate this effect.
However, it is also possible that warmer water temperatures
could increase invertebrate growth or maturation rates, resulting
in more smaller-bodied adults. Clearly, more empirical work
is needed to distinguish which effects will prevail.

Other knowledge gaps also impaired our forecasting. Both
urban stream ‘flashiness’ and summer droughts may cause
significant low flows and interact with altered sediment
regimes to cause severe siltation. However, despite the widely
recognized importance of low flow and siltation for streams
(Rabeni & Smale 1995; Waters 1995; Matthews & Marsh-
Matthews 2003; Roy

 

 et al

 

. 2003), models to predict siltation
have not been developed (Kondolf 2000). Likewise, despite
many studies of temperature-induced mortality for fishes
(Lutterschmidt & Hutchison 1997), sublethal effects of large
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temperature changes are not well understood. Temperature
surges have long been assumed to occur in urban streams
(e.g., Pluhowski 1970), but have only recently been documented
(Nelson & Palmer 2007). Temperature surges may dispropor-
tionately affect fish eggs and young, which have greater surface-
to-volume ratios and less ability to regulate body temperatures
or avoid unsuitable water temperatures compared to adults.
In our scenarios, shifts in maximum temperatures had little
impact because temperatures rarely exceeded critical thermal
maxima, but this may change as our understanding of
temperature surges improves.

Finally, our model simplifies reality in several ways that
tend to make our impact findings more conservative. First,
we ignore spatial relationships (e.g. habitat connectivity),
believing species reintroduction to be unimportant in small
drainages without significant north–south river systems (i.e.
our rivers do not extend across climatic gradients). We also
ignored non-native species introductions, which increase
with human occupation of  ecosystems but are not readily
predicted by changes in land use or climate, and we ignored
the myriad pollutants, associated with urbanization, that
adversely affect stream biota (Wheeler, Angermeier &
Rosenberger 2005). Finally, we do not include the effect of
channelization, a frequent alteration of urban streams. Clearly,
channelization would exacerbate temperature, lack of
spawning substrate, and flooding issues.

 

RELATIVE

 

 

 

EFFECTS

 

 

 

OF

 

 

 

URBANIZATION

 

 

 

AND CLIMATE 
CHANGE

Our results showed that only eight species were strongly affected
by urbanization alone; all are obligate invertivores that were
stressed by the decline in invertebrates due to siltation, urban
flashiness, and lack of leaf litter input. Our indices of spawning
day availability and spawning substrate predicted negative
impacts on many more species under urbanization, but we
excluded these indices because we could not validate them.
Additionally, our watersheds have already lost species due to
urbanization; impacts would be greater in a newly urbanizing
area. Nevertheless, the pattern of higher impacts on juvenile
vs. adult growth suggests that urbanization alone may allow
most species to persist regionally if they can move among non-
urbanized refugia. But without refugia, adding the impacts of
urbanization to climate change will probably drive more
species to regional extinction.

Our projected impacts on fishes varied among climate change
scenarios. In the HadCM3-based scenarios, average summer
temperature increased 3–4 °C and the number of scouring
extreme precipitation events doubled. Many species
experienced decreased juvenile growth, but food availability
for adults could remain unchanged or even increase due to
lower siltation and higher water temperature. In addition, strong
temperature changes associated with the HadCM3-based
climate change scenarios suggest significant stress on species
with brief  spawning periods, as shown in Moglen et al. (2004).
In contrast to the HadCM3 projections, the PCM-based
climate change scenarios projected little change in precipita-

tion, fewer scouring extreme precipitation events, and only
slight changes in temperature. Although juvenile growth rates
were largely unaffected in the PCM scenarios, high siltation
depressed growth of adult fishes. More precise predictions of
biotic impacts are not feasible until the inherent uncertainties
of climate projections are reduced.

When we combined effects of urbanization and climate
change, more species were predicted to experience depressed
adult growth (2 to 14 species, depending on the scenario). This
impact reflected increased siltation in the PCM-based climate
change scenarios and increased flashiness in the HadCM3-
based scenarios. However, fewer species were predicted to
experience depressed juvenile growth, which is surprising since
this impact reflects elevated water temperature and flood
frequency, both of which we expected to increase when urban-
ization was added to climate change. The observed decrease
in impact on juvenile growth appears to be due to changes in
the timing of reproduction and subsequent juvenile growth.
The PCM scenarios without urbanization involve little change
in water temperature, while the PCM scenarios with urbaniza-
tion project higher water temperature. This difference shifts
the timing of reproduction and decreases the time required
for juvenile development.

The strong impacts of climate change implied in our results
may seem surprising, given that water temperatures are
generally well-buffered. However, climate change also entails
changes in total precipitation and the distribution of  that
precipitation in terms of number of events. These hydrologic
changes alone will induce shifts in sediment loading,
interstitial siltation, primary productivity, and so on. In
addition, rather than a uniform increase of  a few degrees,
climate change will shift the seasonality of temperature
regimes, causing further ecological repercussions. Our results
do not point to definitive conclusions regarding the relative
magnitude of climate-change versus urbanization impacts on
streams, but they do indicate that both are severe and that
they may have synergistic impacts. This finding is significant
because it suggests that wise decisions regarding ecosystem
management must consider both stressors simultaneously.

IMPLICATIONS

Proactive and reactive management actions may enable soci-
ety to adapt to climate change, but reactive management may
cost more because of damage to infrastructure such as roads
or bridges (Palmer et al. 2008a,b). Therefore, many natural
resource managers prefer proactive approaches such as
increasing stormwater management to reduce peak flows and
temperature stress in developed basins, or preferably, acquiring
land near streams to free floodplains of infrastructure,
thereby allowing re-growth of riparian vegetation. Where
land is not already heavily developed, land preservation pro-
grammes could be used to protect headwater streams. More
aggressive efforts to reduce sediment and pollutant loads,
including the use of  staging during construction and
establishing vegetative buffers along streams and roads would
also reduce the stresses on stream biota.
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Continued degradation of  headwater streams poses a
serious loss of valuable public resources. Although hydroelectric
dams and major highways are unlikely to be damaged when
headwater streams deteriorate, our study suggests that other
less quantifiable costs will indeed be high. In particular,
impacts of urbanization or climate change are likely to reduce
local biodiversity (for which headwater streams are a hotspot;
Meyer et al. 2007) and provision of ecosystem services (e.g.
drinkable, swimmable, or fishable waters). Furthermore,
urbanization combined with climate change will be more
environmentally costly than either impact alone. Minimizing
these costs will require resource managers, policymakers,
and the public to collectively reassess the socioeconomic
importance of  urban streams, as well as the adequacy of
programmes to protect them under future stress.

The interactions between climate change and land-use change
are interesting because of the contrasting spatial grains over
which the two processes operate, and the concomitant differ-
ences in institutional scale needed to manage them. Impacts
of  land-use change are integrated across watersheds. Even if
management goals emphasize protecting receiving waters,
such as the Chesapeake Bay, jurisdiction over land use is shared
by, at most, a few states. Climate change, by contrast, results
from global emissions of greenhouse gases, and can only truly
be controlled by international agreement. Likewise, climate
change involves time lags of decades or centuries, while land
use is immediately manageable and has acute, immediate
ecological effects during transitions (e.g. during construction).
Finally, effects of  climate change are just beginning to be
recognized, while those of  urbanization have been well
documented in some areas for several decades, including
cycles of construction and riparian disturbance.

Clearly, the consequences of urbanization and climate
change for stream ecosystems have the potential to be quite
significant. Society must decide, deliberately or by default,
which of those consequences are acceptable. If  societal goals
favour conservation of stream ecosystems, our results suggest
that proactive policy and/or management actions to advance
conservation should have high priority in regions expected to
undergo further urbanization.
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