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Segmenting Tables via Indexing
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Abstract— Correct segmentation of a web table into its
component regions is the essential first step to understanding
tabular data. Our algorithmic solution to the segmentation
problem relies on the property that strings defining row and
column header paths uniquely index each data cell in the table.
We segment the table using only “logical layout analysis” without
resorting to any appearance features or natural language
understanding. We start with a CSV table that preserves the 2-
dimensional structure and contents of the original source table
(e.g., an HTML table) but not font size, font weight, and color.
The indexing property of table headers implies a four-quadrant
partitioning of the table about a minimum index point. The
algorithm finds the index point through an efficient guided
search. Experimental results on a 200-table benchmark
demonstrate the generality of the algorithm in handling a variety
of table styles and forms.

Keywords— indexing by header strings; minimum indexing
point; table segmentation

I. INTRODUCTION

Research on processing tables has moved from the earliest
work on finding the underlying grid structure of scanned and
ASCII tables [1, 6, 12] to locating and bounding HTML tables
[17, 18], and more recently, to end-to-end conversion of
visually meaningful web tables to relational databases and data
stores amenable to online query and search [3, 5, 7, 13, 14, 15].

Our recent efforts focused on realizing and improving on
the original conception of TANGO [14], an end-to-end system
for generating ontology from tables. Grounding our analytical
work on syntactical table analysis of X. Wang [16], we target
the efficient extraction of the relations of row and column
header cells to content cells. The two-dimensional indexing of
each content cell by corresponding row and column header
paths is essential for understanding individual tables as well as
combining related facts from different tables.

Fig. 1 shows the data flow of our overall system. We first
convert a source table in HTML to a corresponding grid table
in comma-separated-values (CSV) format using Excel/VBA
programs. The spanning cells in the HTML table are divided
into atomic cells in the CSV table, such that every row
(column) has the same number of aligned cells, i.e., the CSV
table is a rectangular array of atomic cells defined only by their
grid coordinates and their content as a text string. Although
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Source Table (HTML)
ST2GT (Excel/VBA)
Grid Table (CSV)
Segmentation (Python)
Path Extraction (Python)
Header Paths (Text)
Factoring (SIS)
Canonical Expression (Text)
Constructor (Java)
Relational Tables
Query (SQL)
Answer to Query

Fig. 1. Data flow of TANGO [14]

almost all format information is lost in the conversion, the
CSV format serves a broad range of applications and provides
a standardized cell-based representation for downstream
processing.

The interpretation of the 2D grid table starts with its five-
way segmentation into stub head, row header, column header,
data (or delta) region, and a composite auxiliary region at the
top and bottom and occasionally between the column headers
and data cells of the table, conveying such information as the
title, units, and notes of various kinds. The segmentation of the
table chosen as our running example is shown in Fig. 2. This
example shows why the stub-head and the data-cell regions are
sufficient to determine the other three parts of the
segmentation.

Four critical cells that bound the stub-head and data regions
completely define the segmentation [10]: CCl1 and CC2
correspond to the top-left and bottom-right cells of the stub
head; CC3 and CC4 correspond to the top-left and bottom-right
cells of the data-cell region. If the stub head consists of a single
cell, as in Fig. 2, then CC1 and CC2 coincide.

From a segmented table, the row-header and column-
header paths can be extracted for indexing the cells in the data
region. These paths can be factored into canonical expressions
to recover the Wang category trees of the headers [2]. With the
canonical expression and table’s data region indexed by the
header paths, we can generate the corresponding relational
table and populate it with data [10]. We can then query the
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Table 7. Prevalence of
organisational innovations by size

R1 category of personnel, 2006-2008,

share of enterprises

0

Row/Column Headers
Data Cells
Stub Head

Auxiliary Information

, @B 5, ¢ , G

1 Organisational New business New methods of [New methods of
R2 innovations % practices % organising work |organising
responsibilities  [external relations

2 Sotal 25 19 18 10
Manufacturing, total 1) 22 17 16 9
10-19 13 9 9 6
20-49 19 14 13 8
Services, total 28 20 21 10
10-19 18 13 14 6
20-49 35 25 25 12

1) Including mining and quarrying
(05-09), electricity, gas, steam ...

Source: Innovation 2008, Statistics
Finland

R13 Inguiries: Mervi Niemi (09) 1734
13 3263, tiede.teknologia@stat.fi

R14 Director in charge: Leena
14 Storgdrds

Fig. 2 The grid table, used as the running example. The color coding shows the five-part segmentation of the table into row & column headers, data cells, stub
head, and auxiliary information. The stub-head and data-cell regions are sufficient to determine the segmentation. Also shown, is the coordinate system for the
cells (e.g. R2C1 and x=2, y=1 for the stub head) of the grid table. The value “18” in cell R7C2 (x=7, y=2) is indexed by the header paths Services, total 10 - 19

and Organizational innovations.

table with SQL and otherwise manipulate it, along with other
tables, in a standard relational database.

Our current approach is a radical departure from our earlier
work on segmentation of the grid table. Correct segmentation
is critical as it impacts the performance of all the downstream
steps. We presented Vericlick, an interactive program for
segmentation in [9] and later incorporated it into the partially
automated CC Recognizer [8]. The latter is based on seven
heuristic appearance features of each cell and applies statistical
pattern recognition methods to maximize the posterior
probability of classifying each cell in the table. In contrast, the
solution demonstrated here is essentially algorithmic and based
on a fundamental property of all tables. As such, it is
independent of the language, contents, and layout details.
Vericlick can, of course, still be applied for interactive
correction of residual segmentation errors.

The rest of the paper is organized as follows. After
presenting the background in Section 2 on indexing tables by
tuples of strings in the row and column headers, in Section 3
we describe the algorithm for finding the minimum index point
and the post processing necessary to complete the
segmentation of a table. The test dataset characteristics and

segmentation results appear in Section 4. Section 5 summarizes
our contribution.

II. INDEXING OF TABLES

We will find it convenient to refer to both individual cells
and individual points in a grid table by using the two related
coordinate systems illustrated in Fig. 2. In either case, we
assume a counter-clockwise coordinate system with x pointing
down from the origin in the top-left corner. However, to
distinguish the two, we refer to the top-left cell, in Excel style,
as R1C1 and the origin point as (0, 0).

The content of each cell is cell string. An empty cell has the
null-string as its value. The cell-string function is extended to a
group of contiguous cells in a column or a row by the ordered
list (tuple) of cell strings from top to bottom in a column or
from left to right in a row.

Consider the four-way partitioning of the table grid by
point (x, y), as shown in Fig. 3. (x,y) is a column-index point
of the table if no two column tuples in part C are the same. In
other words, point (X,y) indexes columns if the top X rows in
columns y+1 through ymax index the columns below them.
The row indexing is defined similarly in terms of the row
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Fig. 3. Four-way partitioning defined by point (x, y) used in explaining the
indexing of tables by rows in part A and columns in part C.

tuples in part A. If point (x,y) indexes both the rows and
columns, it is called an index point.

It is easily verified that no index point exists in a table with
two identical rows or columns. We call such tables non-
indexable. Non-indexable tables are rare: in our experiments
with 200 tables, only two related tables from the same source
were non-indexable (see [4] for an example).

We note that row and column indexability of points may
only increase (i.e., change from non-indexing to indexing) with
increasing values of x or y. This monotonicity arises because
as X increases while y is kept fixed, more rows are available to
column index a smaller region of the table. At the same time,
the same number columns may be able to row index the
smaller region. Hence, if (x, y) is an index point, so are all
points (x’,y’), with x> > x or y’ > y. However, this
monotonicity does not guarantee the existence of a unique
minimum index point (MIP) for an indexable table because, for
example, it does not rule out (x’, y’), with X’ <x and y’ >y, as
another MIP. For segmentation we are interested in a MIP
nearest to the origin, which is found to be unique for real tables
and represents the critical cell CC2.

Such a MIP cannot always be found by pure indexing
because table designers may use label alignment (e.g.
indentation) or font attributes (e.g. size, style, or color) to
denote header hierarchy in the source table. This is the case for
column C1 in Fig. 2, where the headers “Manufacturing, total
1)” and “Services, total” were in boldface in the source
(HTML) table because they are meant to qualify the numerical
ranges underneath them.

Same-row and same-column hierarchies require prefixing
duplicate labels with single labels in the same row or column,
as explained in Section IIl. This makes all the row headers
unique and yields the MIP (2, 1) for the table. A naive
approach, without prefixing, would select (2, 2) as the MIP for
this table, mistakenly including the first column of data to
construct unique row headers. About 12% of the tables in our
collection require prefixing.

III. INDEXING AND SEGMENTATION ALGORITHM

Incorporating the minimum index point as the basis for
table segmentation is the hallmark of our approach. We present
a high-level description of the algorithm to find the critical

Find Critical Cells

1. Remove empty rows below and empty columns
to the right of the table.

2. Find bottom of data region: Scan from bottom to top,
exclude rows by applying the RowCheck condition:

At least one of the last two, or the third or fourth cells
(if the table has more than three columns), is empty.

This yields the row (x-) coordinate x4 of CC4 = (x4, y4),
where y4 is the y-coordinate of the last column of the table.

3. Call Bi_Indexer to determine critical cells CC1 and CC2.

4. Determine CC3: Skip over anomalous rows satisfying
RowCheck below current header region, to find the row
(x-) coordinate x3 of CC3 = (x3, y3), where y3 is y2+1.

Bi_Indexer

Prefix first column

Prefix rows

x=0y=1

while((x,y) does not index columns): x = x+1

while((x,y) does not index both rows and columns): y = y+1
while((x,y) indexes both rows and columns): x = x-1

CC2 = (x2,y2) = MIP = (x+1,y)

chr = reverse of the first R2 rows of the table; x = 1
while((x,y) does not column index chr): x = x+1

CCl = (xl,yl)=(x2-x+1, 1)

Prefix

If the row (or column) has a repeated cell label and has to the
left (above) a non-repeated cell label, prefix the row (column)
label with the nearest non-repeated label.

Fig. 4. An High-level description of the algorithm to find the critical cells
CC1-CC4 of a table.

cells CC1-CC4 of a table in Fig. 4. The algorithm first
eliminates any empty rows and columns beyond the table.
Next, it finds CC4 at the bottom of the data region based on the
property that data rows rarely have empty cells at both ends
(cf. Fig. 6). The RowCheck test that verifies this condition is
also used later in identifying CC3. Bi_Indexer is then called to
determine CC2 and CCI1. Bi-indexer distinguishes repeated
labels from non-repeated labels in the first column and prefixes
each repeated label with the nearest non-repeated label above
it, if one exists. The rows of the table are similarly prefixed to
disambiguate hierarchical relations in the column header that
were often marked in the original table by appearance features
like indentation and font weight.

The search for the MIP is carried out in three successive
while loops. Starting near the origin, the first while loop moves
the search point down the first column until there are enough



1.

rows to index the columns. The second while loops switches
the direction of search to the right, until both the rows and
columns are indexed, i.e., an index point is reached. This index
point may not, however, be minimal, because, although the
second loop assures a minimal row index, it may over-index
the columns. The third while loop remedies this by moving the
search point up until both rows and columns are no longer
indexed. The search point reached just before this condition is
met is the MIP, which is also CC2.

Although CC2 corresponds to the MIP, the column header
defined above often includes redundant rows at the top like the
title row. Bi indexer eliminates such redundant rows by
traversing the column header in reverse until it reaches a row
unnecessary for the column index. CC1, corresponding to the
minimum-height column header, is then easily determined.
Finally, RowCheck is applied to skip over any anomalous rows
below the column header that do not belong to the data region.
The x-coordinate of CC3 is the first row of the data region and
its y-coordinate is one more than y2, the y-coordinate of CC2.

With the exceptions noted below, indexing uses the tuples
of row and column strings as the keys.

Our algorithm does not assume that visual cues such as
boldface type, indentation, color, or larger font size are
preserved in Source Table to Grid Table (ST2GT)
conversion. Instead, row indexing seeks a unique key
consisting either of the contents of a single cell, or of the
combination of that string with a unique prefix above it.
Then a key is sought in the prefixed column. The
minimum number of columns that constitutes an index is
reported as the width of the row header candidate. Column
indexing is performed identically, but on a transposed
version of the table.

2. Another situation, where tuples may be modified for

indexing, is illustrated in Fig. 5: Column C1 shows State
names, say, AZ in R6C1; next to and below AZ in column
C2 are unique city names like Phoenix in R7C2, and
Tempe in R8C2. Then, the key for row R6 will be (‘AZ’,
), and the keys for R7 and R8 will be (‘AZ’, ‘Phoenix’)
and (‘AZ’, ‘Tempe’). The critical cells are CC1 = (R2, C1)
and CC2 = (R2, C2).

3. [If all the cells in the data region of a header row or column

are blank that row or column is ignored for indexing. Also,
indexing fails if all the cells in a header row or column are
blank

1 2 3 4 5

1 Maximum temperature

2 2010 2011 2012
3 AL 109 116 115
4 BIRMINGHAM 104 108 107
5 MBILE 104 110 108
6 AZ 102 99 104
7 PHOENIX 99 97 101
8 TEMPE 95 96 98

Fig. 5. Prefixing. States names prefixed to the city names that they modfy.

Locating CC1 and CC2 is completely algorithmic. The
postprocessing necessary to ensure that CC3 and CC4 delimit
only the data region and exclude superfluous rows above and
below it, i.e., RowCheck, has a heuristic component based on
table publishing conventions.

IV.  EXPERIMENTAL RESULTS

200 tables were randomly drawn from a set of tables
collected earlier from large statistical websites in the US and
abroad [11]. The geopolitical and research sources included
Statistics Canada, Science Direct, The World Bank, Statistics
Norway, Statistics Finland, US Department of Justice,
Geohive, US Energy Information Administration, and US
Census Bureau. On average the numbers of rows and columns
in a table were 7 and 17; the corresponding maximum values
were 20 and 64 (without counting footnote rows).

As we aim here to achieve minimum indexing, the existing
ground truth for these tables was adjusted as follows. The new
ground truth does not modify the critical cell CC2 as it
corresponds to the MIP. CC4, corresponding to the bottom-
right cell of the data region is also kept unchanged. However,
CC1 and CC3 may change because the column header height is
defined by only the bottom rows of the column header that are
required for indexing. The original column header may include
additional rows above this minimal column header. For
example, a row spanning the width of the column header may
include the table title or the label of the root-category.

The performance of our Python program on the 200 tables
can be summarized as follows:

*  99% correct segmentation: (198/200)

*  100% correct on stub heads (correct CC1 and CC2)
¢  Correct identification of the two non-indexable tables
* Total execution time for 200 tables: 3 second

Examples of correct segmentation where appearance-based
methods might have trouble are shown in Figs. 6 through 8 that
display the relevant parts of three web tables imported into
Excel. In Fig. 6, our algorithm correctly identifies the three-
column row header by detecting the blank last-two row-header
cells. Fig. 7 is a table with a complex row-header structure:
there are repeated entries in the first two columns for
Minnesota (‘MN”) and for several other states not shown in the
figure. Unlike a casual human reader, our algorithm correctly
recognizes this fact and finds the row header that extends to the
third column. In Fig. 8 an appearance based method would
have difficulty in including row R6 or excluding R7 from the
column header.

The table in Fig. 9 and another one similar to it are
incorrectly segmented because the sparse top row of the data is
attributed to the ancillary region.

This method provides more than segmentation: the row and
column indexes that are byproducts of this segmentation
paradigm are useful for converting the contents of the table to a
relational form. Our method also seems accurate enough for
checking the integrity of web tables design.
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: U.5-North American Trade

R3 _|Rank Commoedity ¢ Description Total Exports Imports Percent of total
R4 1 87 Motor vehicl 132,154 49,670 82,484 20.9
| 2 84 *Nuclear rea 83,300 47,654 35,606 131

3 85 Electrical ma 79,987 36,362 43,625 126

| 4 27 Mineral fuels 46,074 4,775 41,295 73

5 39 Plastics and ¢ 27,292 16,375 10,917 43

| 6 98 **Special cla 21,531 9,255 12,276 34

7 44 Wood and ar 16,772 2,565 14,207 26

| 8 48 Paper and pz 16,725 6,497 10,228 2.6

| 9 90 Measuring ai 15,119 7,997 7,122 24
R13 10 94 Furniture, La 14,717 4,061 10,655 23
N Total, top tet 453,670 185,251 268,419 716

R 1 5_ Total, all corr 633,563 269,182 364,381 100

Fig. 6. A example of correct segmentation The ground truth for the stub head
and data cell regions is shown by the color code.

c1 . a . . i a7

R1 Renewable Energy Trends in Consumption and Electricity, 2007
Release Date: April 2009 |

Next Release Date: April 2010

Table 1.9 Net Summer Capacity of Plants Cofiring Biomass and Coal, 2007

m

R7 Biomass/ Coal  [Total Plant
State Company Na|Plant I.D. Plant Name |County Cofiring Capacity |Capacity
AL DTE Energy § 50407 [Mobile Energ Mobile 91 91
AL Georgia-Paci 10699 |Georgia Paci{ Choctaw 31 78
AL International 52140 |International Autauga 49 90
MN i P 10686 | Rapids EnerglItasca 27 28
MN Minnesota Py 1897 |M L Hibbard |St Louis 73 123

Fig. 7. Correct segmentaton in spite of the unusual three-column row header
and the blank data rows.

C1 c7
4 £ 1 = L = 1 = = | 2 1 —
R1 TABLE 3. Percentage Change in the Value of Merchandise Trade Handled by the Top 25 U.S. Freight Gateways: 1999 and 2003
ExcelE|ECSV 3
R5 [Rankin 1999 Rank in 2003 Port name Mode Percent change, 1999-2003
R6 Total trade |Exports Imports
R7 4 1|Port of Los Angele§ Water 19.6 52.2

46.7,

Fig. 8. Our segmentation algorithmfinds the correct segmentaton of this lopsided column header hierarchy.

/€ statistics Finland - - Windows Internet Explorer provided by ECSE Technical Support Group =1
ol
&= [ Stat.fVti/tvie/ 2008/ tv 5_2C » " P (=] 2 EIA oA
i statstcsFnand- X
5 0| EXCHANGE | Respte [T Calendar & |ECSE 5| GN Homepage *4)iGoogle 2] VPN | Dropbox (g DIA handbook % Tanimoto
y Etusivu | Forstasidan Index| Site map| Feedback| Contactinformation |
iy Statistics Finland
Search
e TR i | o coecions | Pt e | Vo | i rnd | —— |
Home » Statistics > Science, Technology and Information Society > Telecommunications > 2008 > Tabie 9. Numbers of outgoing
short messages from in 2002-2008 Suomeksi
Pé svenska
Print version
Statistics. Slink
These statistics have been discontinued. LR
Science, Technology
“s’;:i'e"l;""““""" No new data will be produced from these statistics.
Changes in these Table 9. Numbers of outgoing short messages and
statisics Al ¥ 9
Future releases multimedia messages from mobile phones in 2002-2008
Releases
Reviews Short She Multimedia
Tables Year |[messages, [Change, % |messages/ |messages, | Change, %
Figures thousands subscription | thousands
2002] 1324668 293
2003| 1647218 23 347 2314)
2004 2193 498 332 439 7386 2192
o 2005 2728230 24 s07| 15993 1165
de: s 2006|3087 9% 132 54| 21668, 349
Cor ind definitions
Cla ns 2007 3182362 31 524 28 682 33,0
Further information 2008] 3566523 121 517] 37801 318
1) Including service requests in short message format, i.e. special SMS services subject to
charge, such as ring tones, screen logos or news updates. )|
=) Source: Telecommunications 2008, Statistics Finlend
1734 3263, Kari-Pekka Niemi (09) 1734 3399,
Director in charge: Leena Storgérds
Updated 9.6.2009
Contents (Telecommunications 2008) =

Fig. 9. Errors. The sparse top data row was assigned to the ancillary region
in both incorrectly segmented tables ( that were from the same source).

V. CONCLUSION

The main contribution of this research is an accurate and
algorithmic method of table segmentation based on the one
essential property of tables, rather than on heuristics like all
previous document segmentation methods. Although it cannot
be used for most forms, it is equally useful for tables with
textual, numerical, or foreign language content.
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