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Abstract—! Correct segmentation of a web table into its 
component regions is the essential first step to understanding 
tabular data. Our algorithmic solution to the segmentation 
problem relies on the property that strings defining row and 
column header paths uniquely index each data cell in the table. 
We segment the table using only “logical layout analysis” without 
resorting to any appearance features or natural language 
understanding. We start with a CSV table that preserves the 2-
dimensional structure and contents of the original source table 
(e.g., an HTML table) but not font size, font weight, and color. 
The indexing property of table headers implies a four-quadrant 
partitioning of the table about a minimum index point.  The 
algorithm finds the index point through an efficient guided 
search. Experimental results on a 200-table benchmark 
demonstrate the generality of the algorithm in handling a variety 
of table styles and forms. 

Keywords—! indexing by header strings; minimum indexing 
point; table segmentation 

I. INTRODUCTION 
Research on processing tables has moved from the earliest 

work on finding the underlying grid structure of scanned and 
ASCII tables [1, 6, 12] to locating and bounding HTML tables 
[17, 18], and more recently, to end-to-end conversion of 
visually meaningful web tables to relational databases and data 
stores amenable to online query and search [3, 5, 7, 13, 14, 15]. 

Our recent efforts focused on realizing and improving on 
the original conception of TANGO [14], an end-to-end system 
for generating ontology from tables. Grounding our analytical 
work on syntactical table analysis of X. Wang [16], we target 
the efficient extraction of the relations of row and column 
header cells to content cells. The two-dimensional indexing of 
each content cell by corresponding row and column header 
paths is essential for understanding individual tables as well as 
combining related facts from different tables.   

Fig. 1 shows the data flow of our overall system. We first 
convert a source table in HTML to a corresponding grid table 
in comma-separated-values (CSV) format using Excel/VBA 
programs. The spanning cells in the HTML table are divided 
into atomic cells in the CSV table, such that every row 
(column) has the same number of aligned cells, i.e., the CSV 
table is a rectangular array of atomic cells defined only by their 
grid coordinates and their content as a text string. Although

 

 

 

 

 

 

 

 

 
Fig. 1. Data flow of TANGO [14] 

almost all  format information is lost in the conversion, the 
CSV format serves  a broad range of applications and provides 
a standardized cell-based representation for downstream 
processing.  

The interpretation of the 2D grid table starts with its five-
way segmentation into stub head, row header, column header, 
data (or delta) region, and a composite auxiliary region at the 
top and bottom and occasionally between the column headers 
and data cells of the table, conveying such information as the 
title, units, and notes of various kinds. The segmentation of the 
table chosen as our running example is shown in Fig. 2. This 
example shows why the stub-head and the data-cell regions are 
sufficient to determine the other three parts of the 
segmentation. 

Four critical cells that bound the stub-head and data regions 
completely define the segmentation [10]: CC1 and CC2 
correspond to the top-left and bottom-right cells of the stub 
head; CC3 and CC4 correspond to the top-left and bottom-right 
cells of the data-cell region. If the stub head consists of a single 
cell, as in Fig. 2, then CC1 and CC2 coincide. 

From a segmented table, the row-header and column-
header paths can be extracted for indexing the cells in the data 
region. These paths can be factored into canonical expressions 
to recover the Wang category trees of the headers [2]. With the 
canonical expression and table’s data region indexed by the 
header paths, we can generate the corresponding relational 
table and populate it with data [10]. We can then query the 
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Fig. 2 The grid table, used as the running example. The color coding shows the five-part segmentation of the table into row & column headers, data cells, stub 
head, and auxiliary information. The stub-head and data-cell regions are sufficient to determine the segmentation. Also shown, is the coordinate system for the 
cells (e.g. R2C1 and x=2, y=1 for the stub head) of the grid table. The value “18” in cell R7C2 (x=7, y=2) is indexed by the header paths Services, total 10 - 19 
and Organizational innovations. 

 

table with SQL and otherwise manipulate it, along with other 
tables, in a standard relational database. 

Our current approach is a radical departure from our earlier 
work on segmentation of the grid table. Correct segmentation 
is critical as it impacts the performance of all the downstream 
steps. We presented Vericlick, an interactive program for 
segmentation in [9] and later incorporated it into the partially 
automated CC Recognizer [8]. The latter is based on seven 
heuristic appearance features of each cell and applies statistical 
pattern recognition methods to maximize the posterior 
probability of classifying each cell in the table. In contrast, the 
solution demonstrated here is essentially algorithmic and based 
on a fundamental property of all tables. As such, it is 
independent of the language, contents, and layout details. 
Vericlick can, of course, still be applied for interactive 
correction of residual segmentation errors. 

The rest of the paper is organized as follows. After 
presenting the background in Section 2 on indexing tables by 
tuples of strings in the row and column headers, in Section 3 
we describe the algorithm for finding the minimum index point 
and the post processing necessary to complete the 
segmentation of a table. The test dataset characteristics and 

segmentation results appear in Section 4. Section 5 summarizes 
our contribution. 

II. INDEXING OF TABLES 
We will find it convenient to refer to both individual cells 

and individual points in a grid table by using the two related 
coordinate systems illustrated in Fig. 2. In either case, we 
assume a counter-clockwise coordinate system with x pointing 
down from the origin in the top-left corner. However, to 
distinguish the two, we refer to the top-left cell, in Excel style, 
as R1C1 and the origin point as (0, 0).  

The content of each cell is cell string. An empty cell has the 
null-string as its value. The cell-string function is extended to a 
group of contiguous cells in a column or a row by the ordered 
list (tuple) of cell strings from top to bottom in a column or 
from left to right in a row.  

Consider the four-way partitioning of the table grid by 
point (x, y), as shown in Fig. 3. (x,y)  is a column-index point 
of the table if no two column tuples in part C are the same. In 
other words, point (x,y) indexes columns if the top x rows in 
columns y+1 through ymax index the columns below them. 
The row indexing is defined similarly in terms of the row   
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Fig. 3. Four-way partitioning defined by point (x, y) used in explaining the 

indexing of tables by rows in part A and columns in part C. 

tuples in part A. If point (x,y) indexes both the rows and 
columns, it is called an index point. 

It is easily verified that no index point exists in a table with 
two identical rows or columns. We call such tables non-
indexable. Non-indexable tables are rare: in our experiments 
with 200 tables, only two related tables from the same source 
were non-indexable (see [4] for an example).  

We note that row and column indexability of points may 
only increase (i.e., change from non-indexing to indexing) with 
increasing values of x or y.  This monotonicity arises because 
as x increases while y is kept fixed, more rows are available to 
column index a smaller region of the table. At the same time, 
the same number columns may be able to row index the 
smaller region. Hence, if (x, y) is an index point, so are all 
points (x’,y’), with x’ > x or y’ > y. However, this 
monotonicity does not guarantee the existence of a unique 
minimum index point (MIP) for an indexable table because, for 
example, it does not rule out (x’, y’), with x’ < x and y’ > y, as 
another MIP. For segmentation we are interested in a MIP 
nearest to the origin, which is found to be unique for real tables 
and represents the critical cell CC2.  

Such a MIP cannot always be found by pure indexing 
because table designers may use label alignment (e.g. 
indentation) or font attributes (e.g. size, style, or color) to 
denote header hierarchy in the source table. This is the case for 
column C1 in Fig. 2, where the headers “Manufacturing, total 
1)” and “Services, total” were in boldface in the source 
(HTML) table because they are meant to qualify the numerical 
ranges underneath them.  

Same-row and same-column hierarchies require prefixing 
duplicate labels with single labels in the same row or column, 
as explained in Section III. This makes all the row headers 
unique and yields the MIP (2, 1) for the table. A naïve 
approach, without prefixing, would select (2, 2) as the MIP for 
this table, mistakenly including the first column of data to 
construct unique row headers. About 12% of the tables in our 
collection require prefixing. 

III. INDEXING AND SEGMENTATION ALGORITHM 
Incorporating the minimum index point as the basis for 

table segmentation is the hallmark of our approach. We present 
a high-level description of the algorithm to find the critical 

 
Find Critical Cells 

1. Remove empty rows below and empty columns 
 to the right of the table.   

2. Find bottom of data region: Scan from bottom to top, 
exclude rows by applying the RowCheck condition:  

At least one of the last two, or the third or fourth cells  
(if the table has more than three columns), is empty.  

This yields the row (x-) coordinate x4 of CC4 = (x4, y4),  
where y4 is the y-coordinate of the last column of the table. 

3. Call Bi_Indexer to determine critical cells CC1 and CC2.  

4. Determine CC3: Skip over anomalous rows satisfying 
RowCheck below current header region, to find the row  
(x-) coordinate x3 of CC3 = (x3, y3), where y3 is y2+1.  

Bi_Indexer   

Prefix first column 
Prefix rows 
x = 0; y = 1 
while((x,y) does not index columns): x = x+1 
while((x,y) does not index both rows and columns): y = y+1 
while((x,y) indexes both rows and columns): x = x-1 
CC2 = (x2,y2) = MIP = (x+1,y) 
chr = reverse of the first R2 rows of the table; x = 1 
while((x,y) does not column index chr): x = x+1 
CC1 = (x1,y1) = (x2-x+1, 1) 
 

Prefix 
If the row (or column) has a repeated cell label and has to the 
left (above) a non-repeated cell label, prefix the row (column) 
label with the nearest non-repeated label. 

Fig. 4.  An High-level description of the algorithm to find the critical cells 
CC1–CC4 of a table. 

cells CC1–CC4 of a table in Fig. 4. The algorithm first 
eliminates any empty rows and columns beyond the table. 
Next, it finds CC4 at the bottom of the data region based on the 
property that data rows rarely have empty cells at both ends 
(cf. Fig. 6). The RowCheck test that verifies this condition is 
also used later in identifying CC3. Bi_Indexer is then called to 
determine CC2 and CC1. Bi-indexer distinguishes repeated 
labels from non-repeated labels in the first column and prefixes 
each repeated label with the nearest non-repeated label above 
it, if one exists. The rows of the table are similarly prefixed to 
disambiguate hierarchical relations in the column header that 
were often marked in the original table by appearance features 
like indentation and font weight.  

The search for the MIP is carried out in three successive 
while loops. Starting near the origin, the first while loop moves 
the search point down the first column until there are enough 
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rows to index the columns. The second while loops switches 
the direction of search to the right, until both the rows and 
columns are indexed, i.e., an index point is reached. This index 
point may not, however, be minimal, because, although the 
second loop assures a minimal row index, it may over-index 
the columns. The third while loop remedies this by moving the 
search point up until both rows and columns are no longer 
indexed. The search point reached just before this condition is 
met is the MIP, which is also CC2.  

Although CC2 corresponds to the MIP, the column header 
defined above often includes redundant rows at the top like the 
title row. Bi_indexer eliminates such redundant rows by 
traversing the column header in reverse until it reaches a row 
unnecessary for the column index. CC1, corresponding to the 
minimum-height column header, is then easily determined. 
Finally, RowCheck is applied to skip over any anomalous rows 
below the column header that do not belong to the data region. 
The x-coordinate of CC3 is the first row of the data region and 
its y-coordinate is one more than y2, the y-coordinate of CC2.  

With the exceptions noted below, indexing uses the tuples 
of row and column strings as the keys. 

1. Our algorithm does not assume that visual cues such as 
boldface type, indentation, color, or larger font size are 
preserved in Source Table to Grid Table (ST2GT) 
conversion. Instead, row indexing seeks a unique key 
consisting either of the contents of a single cell, or of the 
combination of that string with a unique prefix above it. 
Then a key is sought in the prefixed column. The 
minimum number of columns that constitutes an index is 
reported as the width of the row header candidate. Column 
indexing is performed identically, but on a transposed 
version of the table. 

2. Another situation, where tuples may be modified for 
indexing, is illustrated in Fig. 5: Column C1 shows State 
names, say, AZ in R6C1; next to and below AZ in column 
C2 are unique city names like Phoenix in R7C2, and 
Tempe in R8C2. Then, the key for row R6 will be (‘AZ’, 
‘’), and the keys for R7 and R8 will be (‘AZ’, ‘Phoenix’) 
and (‘AZ’, ‘Tempe’). The critical cells are CC1 = (R2, C1) 
and CC2 = (R2, C2). 

3. If all the cells in the data region of a header row or column 
are blank that row or column is ignored for indexing. Also, 
indexing fails if all the cells in a header row or column are 
blank 

 

 

 

 

 

Fig. 5. Prefixing. States names prefixed to the city names that they modfy.  

Locating CC1 and CC2 is completely algorithmic. The 
postprocessing necessary to ensure that CC3 and CC4 delimit 
only the data region and exclude superfluous rows above and 
below it, i.e., RowCheck, has a heuristic component based on 
table publishing conventions. 

IV.  EXPERIMENTAL RESULTS 
200 tables were randomly drawn from a set of tables 

collected earlier from large statistical websites in the US and 
abroad [11]. The geopolitical and research sources included 
Statistics Canada, Science Direct, The World Bank, Statistics 
Norway, Statistics Finland, US Department of Justice, 
Geohive, US Energy Information Administration, and US 
Census Bureau. On average the numbers of rows and columns 
in a table were 7 and 17; the corresponding maximum values 
were 20 and 64 (without counting footnote rows).  

As we aim here to achieve minimum indexing, the existing 
ground truth for these tables was adjusted as follows. The new 
ground truth does not modify the critical cell CC2 as it 
corresponds to the MIP. CC4, corresponding to the bottom-
right cell of the data region is also kept unchanged. However, 
CC1 and CC3 may change because the column header height is 
defined by only the bottom rows of the column header that are 
required for indexing. The original column header may include 
additional rows above this minimal column header. For 
example, a row spanning the width of the column header may 
include the table title or the label of the root-category.  

The performance of our Python program on the 200 tables 
can be summarized as follows:  

• 99% correct segmentation: (198/200)  

• 100% correct on stub heads  (correct CC1 and CC2)  

• Correct identification of the two non-indexable tables 

• Total execution time for 200 tables: 3 second 

Examples of correct segmentation where appearance-based 
methods might have trouble are shown in Figs. 6 through 8 that 
display the relevant parts of three web tables imported into 
Excel. In Fig. 6, our algorithm correctly identifies the three-
column row header by detecting the blank last-two row-header 
cells. Fig. 7 is a table with a complex row-header structure: 
there are repeated entries in the first two columns for 
Minnesota (‘MN’) and for several other states not shown in the 
figure. Unlike a casual human reader, our algorithm correctly 
recognizes this fact and finds the row header that extends to the 
third column. In Fig. 8 an appearance based method would 
have difficulty in including row R6 or excluding R7 from the 
column header. 

The table in Fig. 9 and another one similar to it are 
incorrectly segmented because the sparse top row of the data is 
attributed to the ancillary region. 

This method provides more than segmentation: the row and 
column indexes that are byproducts of this segmentation 
paradigm are useful for converting the contents of the table to a 
relational form. Our method also seems accurate enough for 
checking the integrity of web tables design. 



 

 

 

 

 

 

 

 
Fig. 6. A example of correct segmentation The ground truth for the stub head 

and data cell regions is shown by the color code.  

 

 

 

 

 

 

 

 
Fig. 7. Correct segmentaton in spite of the unusual three-column row header 

and the blank data rows. 

 
 
 
 
 
 
 

Fig. 8. Our segmentation algorithmfinds the correct segmentaton of this lopsided column header hierarchy. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Errors. The sparse top data row was assigned to the ancillary region 

in both incorrectly segmented tables ( that were from the same source). 

V. CONCLUSION 
The main contribution of this research is an accurate and 

algorithmic method of table segmentation based on the one 
essential property of tables, rather than on heuristics like all 
previous document segmentation methods. Although it cannot 
be used for most forms, it is equally useful for tables with 
textual, numerical, or foreign language content.  
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