
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Papers and Publications in Animal 
Science Animal Science Department 

November 2004 

A large-sample QTL study in mice: III. Reproduction A large-sample QTL study in mice: III. Reproduction 

Joao L. Rocha 
Published in Mammalian Genome: Genes and Phenotypes 

Eugene J. Eisen 
North Carolina State University, Raleigh, North Carolina 

Frank Siewerdt 
North Carolina State University, Raleigh, North Carolina 

L. Dale Van Vleck 
University of Nebraska-Lincoln, dvan-vleck1@unl.edu 

Daniel Pomp 
University of Nebraska-Lincoln, dpomp1@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/animalscifacpub 

 Part of the Animal Sciences Commons 

Rocha, Joao L.; Eisen, Eugene J.; Siewerdt, Frank; Van Vleck, L. Dale; and Pomp, Daniel, "A large-sample 
QTL study in mice: III. Reproduction" (2004). Faculty Papers and Publications in Animal Science. 236. 
https://digitalcommons.unl.edu/animalscifacpub/236 

This Article is brought to you for free and open access by the Animal Science Department at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Papers and 
Publications in Animal Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/animalscifacpub
https://digitalcommons.unl.edu/animalscifacpub
https://digitalcommons.unl.edu/ag_animal
https://digitalcommons.unl.edu/animalscifacpub?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/76?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/animalscifacpub/236?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages


A large-sample QTL study in mice: III. Reproduction

Joao L. Rocha,1* Eugene J. Eisen,2 Frank Siewerdt,2� L. Dale Van Vleck,3 Daniel Pomp1

1Department of Animal Science, University of Nebraska, Lincoln, Nebraska, 68583-0908, USA
2Department of Animal Science, North Carolina State University, Raleigh, North Carolina, 27695-7621, USA
3U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Lincoln,
Nebraska 68583-0908, USA

Received: 19 December 2003 / Accepted: 9 July 2004

Abstract

Using lines of mice having undergone long-term
selection for high and low growth, a large-sample
(n � 1000 F2) experiment was conducted to gain
further understanding of the genetic architecture of
complex polygenic traits. Composite interval map-
ping on data from 10-week-old F2 females (n = 439)
detected 15 quantitative trait loci (QTLs) on 5
chromosomes that influence reproduction traits
characterized at day 16 of gestation. These QTL are
broadly categorized into two groups: those where
effects on the number of live fetuses (LF) were
accompanied by parallel effects on the number of
dead fetuses (DF), and those free of such undesir-
able effects. QTL for ovulation rate (OR) did not
overlap with QTL for litter size, potentially indi-
cating the importance of uterine capacity. Large
dominance effects were identified for most QTL
detected, and overdominance was also present. The
QTL of largest effects were detected in regions of
Chromosome 2, where large QTL effects for growth
and fatness have also been found and where cor-
roborating evidence from other studies exists.
Considerable overlap between locations of QTL for
reproductive traits and for growth traits corre-
sponds well with the positive correlations usually
observed among these sets of phenotypes. Some
support for the relevance of QTL · genetic back-
ground interactions in reproduction was detected.
Traits with low heritability demand considerably
larger sample sizes to achieve effective power of

QTL detection. This is unfortunate as traits with
low heritability are among those that could most
benefit from QTL-complemented breeding and
selection strategies in food animal production.

Reproductive efficiency is a major component of
food production systems, and its improvement leads
to economic benefits of large impact (e.g., Lush 1945;
Bonsma 1965; Lasater 1972; Neumann and Lusby
1986; Beef Improvement Federation 1990). Unfortu-
nately, reproductive phenotypes normally have low
heritabilities and are difficult to improve genetically.
Identification of individual genetic effects in the
form of quantitative trait locus (QTL) detection
would be relevant to eventual development of DNA-
assisted genetic improvement paradigms. QTL
studies targeting female reproductive traits have,
however, been scarce (e.g., Rothschild et al. 1996;
Kirkpatrick et al. 1998; Rohrer et al. 1999; Spearow
et al. 1999) relative to those for traits such as growth
and body composition. This is partly due to the
intrinsic difficulties in measuring female reproduc-
tion, requiring production of one additional genera-
tion. In addition, the relatively low heritabilities of
female reproductive characters also pose challenges
for QTL analyses in terms of reduced power of
detection.

Mice provide a powerful experimental model that
facilitates enhanced genetic dissection of complex
traits, often, as is the case for female reproductive
traits, with potentially important biomedical impli-
cations for related traits in humans (Frankel 1995;
Avner 1998; Moore and Nagle 2000; Lee 2002). In the
context of a large experiment to evaluate the genetic
architecture of complex traits using lines selected
long-term for high and low growth (Rocha et al.
2004a,b), we now report QTL results obtained for
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correlated female reproductive traits such as litter
size and its component traits ovulation rate and
embryonic survival.

Materials and methods

Relevant information pertaining to the parental
high-growth (M16i) and low-body-weight (L6) selec-
tion lines, development of the F2 intercross popula-
tion and marker genotyping have been presented in a
companion paper (Rocha et al. 2004a). Only methods
relevant to the specific female reproduction pheno-
types evaluated and their statistical data analysis are
described here.

Phenotypes. Ten-week-old F2 females, of a cross
between the high-growth M16i line and the low-
body-weight L6 line, were exposed to unrelated F1

males (B6C3F1/J) until a copulatory plug was de-
tected. Pregnant females (n = 439) were subse-
quently euthanized at day 16 of gestation to obtain
counts of the number of corpora lutea (OR) and
numbers of live (LF) and dead (DF) fetuses. Three
estimates of embryonic survival rates were subse-
quently computed: preimplantation survival
{PRES = [(LF+DF)/OR]*100}, post-implantation sur-
vival {POSTS = [LF/(LF+DF)]*100}, and total survival
(TOTS = [LF/OR]*100). In a preliminary study to
evaluate correlated responses to selection for growth
on reproductive phenotypes, least-squares means for
the M16i and L6 selection lines (n = 10 females per
line) were, respectively, 14.4 vs. 6.8 for OR, 11.5 vs.
6.2 for LF, and 79.5% vs. 90.6% for TOTS.

Marker linkage map. Recombination frequen-
cies and genetic distances of the marker linkage map
constructed with data only from the pregnant fe-
males used in this study exhibited small fluctua-
tions relative to the marker map constructed for the
full population (Rocha et al. 2004a). However, the
overall agreement between the two correlated maps
was reasonable and the female-specific map (not
shown) was used for all QTL analyses for reproduc-
tive traits.

Data analyses. Descriptive statistics for the six
reproductive traits measured in this study are pre-
sented in Table 1. Pairwise phenotypic correlations
are shown in Table 2. Appropriate statistical models
were identified for each trait by fitting generalized
liner models (PROC GLM; SAS Institute Inc. 1985)
including fixed effects of replicate/parity, full-sib
family/litter, and respective interactions, if signifi-
cant.

With the exception of LF, all reproductive traits
required data transformations to stabilize and nor-
malize their variances, although the subsequent
implementation of a permutation approach for QTL
significance threshold determinations (Churchill
and Doerge 1994) somewhat minimized the rele-
vance of the need for these transformations. A log-
arithmic transformation was adopted for OR, a
square-root transformation for DF, while a weighted
arc sine transformation (Freeman and Tukey 1950)
was utilized for embryo survival traits. With the
exception of that for DF, all transformations were
fairly successful. The necessity for these transfor-
mations and the relative inadequacy of that for DF
reflect the fact that all these traits conform to
binomial or ordinal distributions. However, studies
addressing this issue (Hackett and Weller 1995;
Visscher et al. 1996; Rebai 1997; Rao and Li 2000;
Kadarmideen and Dekkers 2001) agree that more
sophisticated statistical approaches to these types of
traits, like threshold and logistic models, offer only
minor advantages relative to linear models based on
normal distributions like those adopted in this
study.

For QTL analyses, besides unadjusted-trait
models, three sets of covariate adjustments were
implemented: (1) 6-week body weight, (2) OR, and (3)
both 6-week body weight and OR. These statistical
adjustments respectively represent attempts to
identify QTLs possibly impacting reproductive traits
through pathways other than those contributing to
overall growth and body size, and QTLs involved in
specific mechanisms of uterine capacity (Christen-
son et al. 1987). For composite interval mapping
(CIM; Zeng 1993, 1994; Basten et al. 2001), a 0.01
threshold was adopted in the forward–backward
stepwise regression procedure utilized to select
background factors.

Table 1. Descriptive statistics for reproductive traits in this
studya

Traitsb l r Range

OR 12.3 2.1 7–21
LF 9.2 2.8 1–17
DF 1.2 1.5 0–11
PRES (%) 84.5 17.2 11.1–100
POSTS (%) 88.4 14.3 21.4–100
TOTS (%) 74.8 20.0 11.1–100
aAll traits measured at day 16 of gestation in 439 F2 females ex-
posed to mating at 10 weeks of age.
bOR, LF, DF, PRES, POSTS, and TOTS are ovulation rate (number
of corpora lutea), Number of live fetuses, number of dead fetuses,
preimplantation embryo survival {[(LF + DF)/OR]*10}, postim-
plantation fetal survival {[(LF/(LF + DF)]*100}, and total embryo
and fetal survival [(LF/OR)*100].
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An initial set of 100 permutations (Churchill and
Doerge 1994) for each trait revealed considerable
trait differences with respect to estimated genome-
wide significance thresholds. Hence, these repro-
ductive traits were divided into four sets for this
particular purpose. One thousand permutations were
separately conducted for DF, PRES, and POSTS
(including the respective covariate adjustments),
yielding 0.05 genomewide significance threshold
logarithm of odds (LOD) scores of 4.1, 4.3, and 4.4,
respectively. The remaining characters (OR, LF,
TOTS) were treated as a composite trait for which a
joint total of 1000 permutations were also con-
ducted, resulting in a permutation-derived 0.05 ge-
nomewide significance threshold LOD score of 3.3
that was adopted for all of these three traits. These
significance thresholds do not reflect adjustments
that account for the fact that multiple traits were
analyzed, but these are usually never adopted in
exploratory QTL studies of this type due to the
consequences that would then result for the statis-
tical power of the experiments.

Results

Although F2 females were mated at 10 weeks of age,
correlations obtained between the reproductive
traits measured in this study and 6-week weight
(WT6) were slightly higher than those for 10-week
weight (Table 2). Thus, WT6 was used to adjust
reproductive traits in some of the exploratory QTL
models that were evaluated. Relationships between
the reproductive traits and WT6 fit the expected

linear trend with a positive regression coefficient
(e.g., Kirkpatrick et al. 1998), with heavier females
displaying better reproductive performance. Only
the relationship between OR and WT6 displayed a
curvilinear nature, but even this was only a slight
departure from the linear trend. The relationships
between the embryo survival traits and OR also fit a
linear trend, with a negative regression coefficient as
expected.

QTL analyses. Consideration of the covariate
adjustments for WT6 and OR in the context of the
models fitted for some of the traits yielded QTL re-
sults that were in general very similar to those ob-
tained from models without such adjustments.
Therefore, only QTL results from unadjusted models
are presented here. These results are detailed in Ta-
bles 3, 4, and 5. The QTL congruencies among these
reproductive traits and among these and selected
growth traits presented in Table 2.

A total of 15 QTLs were detected on 5 chromo-
somes and attributed locus symbols following the
Mouse Genome Database (MGD; www.informat-
ics.jax.org/) guidelines: 3 QTLs were detected for OR
and for LF, 1 QTL was detected for DF, 4 QTLs were
detected for PRES and for TOTS, and no QTLs were
detected for POSTS. With a single exception (QTL
for TOTS on MMU1), M16i alleles had additive ef-
fects that increased numerical values of the repro-
ductive traits studied (Table 3). This was also true for
the QTL detected for DF, for which the M16i-
inherited allele increased the number of dead
fetuses.

Table 2. Phenotypic correlations (top row) and QTL congruenciesa (bottom row) among the reproduction and growth traits

Traitsb OR LF DF PRES POSTS TOTS WT6 WT10

OR 1.0 0.48 0.06ns �0.13 0.08ns �0.06ns 0.42 0.38
0.0 0.0 0.0 NE 0.0 0.11 0.11

LF — 1.0 �0.41 0.63 0.56 0.83 0.33 0.28
0.33 0.75 NE 0.40 0.11 0.11

DF — — 1.0 0.10 �0.94 �0.50 0.03ns 0.07ns

0.25 NE 0.25 0.06 0.06
PRES — — — 1.0 0.03ns 0.80 0.11 0.08ns

NE 0.60 0.17 0.17
POSTS — — — — 1.0 0.61 0.04ns �0.01ns

NE NE NE
TOTS — — — — — 1.0 0.11 0.05ns

0.24 0.22
WT6 — — — — — — 1.0 0.69

0.67
WT10 — — — — — — — 1.0
aQTLs common to both traits (overlapping confidence intervals) as a proportion of the total number of QTLs detected for the two traits.
Comparisons between correlations and congruencies should be made using absolute values.
bOR, LF, DF, PRES, POSTS, TOTS, WT6, and WT10 are ovulation rate (number of corpora lutea), number of live fetuses, number of dead
fetuses, preimplantation embryo survival {[(LF + DF)/OR]*100}, postimplantation fetal survival {[(LF/(LF + DF)]*100}, total embryo and
fetal survival [(LF/OR)*100], body weight (females only) at 6 weeks, and body weight (females only) at 10 weeks. Correlations were
significant (p < 0.05) unless otherwise noted (ns). No QTLs were detected for POSTS so congruencies were not estimated (NE).
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Large dominance effects were evident for most
QTL, and evidence for significant overdominance
effects was also present (Tables 3 and 4). Reproduc-
tive traits, primarily of low heritability, and im-
portant components of overall fitness exhibit
appreciable heterosis, which, under classical and
prevailing quantitative genetics theory, implies rel-
evance of dominant gene action in their genetic
architecture (Falconer and Mackay 1996; Merila and
Sheldon 1999). These concepts are validated by the
average, maximum, and minimum values reported
for the degrees of relative dominance of the QTL
effects detected for the different reproductive traits
(Table 4). The strong overdominance effect of the

QTL for DF (Dfq1) explains the large apparent dis-
crepancy between the percentage of variation ac-
counted for by the QTL and the percentage of the F2

range that is accounted for by its additive effects (2a;
Table 5).

Similar to results for growth and body composi-
tion (Rocha et al. 2004a,b), genomic regions of
Chromosome 2 exhibited particularly strong and
potentially biologically relevant effects on repro-
ductive phenotypes (Table 3). Chromosomal likeli-
hood plots for MMU2 are presented in Figure 1.
Highly significant evidence of transmission ratio
distortion was observed along this chromosome
(Table 6), possibly reflecting QTL effects detected for

Table 3. QTLs detected and respective statistics by chromosome

MMU Symbola Flanking markersb Positionc (cM) ad de %Vf LOD Other studiesg

1 Estq4 180–72 41.0 �0.07 �3.8 4.2 3.5 R
29.8–49.5

2 Lfq2 6–133 38.4 0.57 0.27 13.2 7.7 K, S
37.1–40.9

2 Dfq1 6–133 41.6 0.12 11.5 51.5 4.4 K, S, R
32.2–49.2

2 Espq1 6–133 44.1 0.86 0.51 43.2 6.7 K, S, R
36.6–49.8

2 Estq1 6–133 50.1 0.07 �15.2 39.2 6.4 R
44.4–62.7

2 Espq2 133–224 66.8 0.18 �1.8 6.3 6.0 R
53.4–74.0

2 Lfq1 133–224 70.2 0.29 �0.99 8.4 8.2 R
56.5–77.2

2 Estq2 133–224 70.2 0.23 �1.3 6.7 6.4 R
62.7–78.9

32 Espq4 224–22 77.3 0.29 �0.57 5.9 5.3 R
74.0–83.0

8 Orq3 4–31 24.9 0.25 0.09 3.4 3.4 R
14.0–33.0

8 Orq1 31–121 46.3 0.33 �0.02 6.7 3.5 R
33.0–55.5

10 Espq3 65–35 48.9 0.28 1.0 11.0 5.5 C, R
28.5–55.9

10 Lfq3 65–35 50.2 0.23 1.1 8.0 3.7 C, R
26.5–58.5

10 Estq3 65–35 52.7 0.29 1.2 11.2 4.8 C, R
32.5–58.5

11 Orq2 2–4 16.1 0.21 0.67 3.9 3.5 R
?–37.0

aOrq, Lfq, Dfq, Espq, and Estq are symbols attributed to QTLs detected for OR, LF, DF, PRES, and TOTS, respectively, representing the
traits: ovulation rate (number of corpora lutea), number of live fetuses, number of dead fetuses, preimplantation embryo survival {[(LF +
DF)/OR]*100}, and total embryo and fetal survival [(LF/OR)*100]. Numeric indices of QTLs reflect a descending rank of their maximum
LOD scores within trait.
bMIT markers (e.g., within MMU1, 180 represents D1Mit180).
cApproximate positions (Mouse Genome Database) of maximum likelihood peaks (top) and respective one LOD confidence intervals
(bottom). A ‘‘?’’ indicates that a confidence interval extends to the beginning or end of a chromosome.
dAdditive effect (Falconer and Mackay 1996) in phenotypic SD units (transformed scale). Negative values indicate increasing effect of the
L6 allele.
eDegree of relative dominance: 0 indicates additivity, 1 indicates full dominance of the M16i allele, and �1 indicates full dominance of the
L6 allele. Values outside of this range indicate overdominance.
fPercentage of phenotypic variance accounted for by QTL.
gStudies detecting QTLs for similar traits in the same genomic region, listed in order of location on each chromosome (from proximal to
distal). C, Collins et al. (1993); K, Kirkpatrick et al. (1998); and S, Spearow et al. (1999). QTL for growth traits detected in the same genomic
region in this study (Rocha et al. 2004a) are also referenced here (R).
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embryonic survival in this region. The transmission
ratio distortion is represented by a considerable ex-
cess of M16i allele homozygotes, in agreement with
QTL results showing that M16i alleles increase
embryo and fetal survival. Interestingly, Siracusa
et al. (1989, 1991) and Montagutelli et al. (1996) have

also reported deviations from Mendelian inheritance
for this central region of MMU2.

An interaction involving the QTL for PRES on
MMU10 (Espq3; Table 3) and the effect of family/
litter was significant (p = 0.017), suggesting the
presence of QTL· environment effects, or alterna-
tively, QTL· genetic background effects on repro-
duction. A possible representation of this interaction
is graphically provided in Figure 2, where families/
litters exhibiting the same mode of gene action for
this QTL were clustered, their QTL genotypic values
averaged, and represented together.

Discussion

The search for QTLs influencing female reproduc-
tive characteristics was part of a large experiment to
understand the genetic architecture of many com-
plex traits. For the growth traits in this study (Rocha
et al. 2004a), a total of 89 QTL were detected for 9
characteristics. In contrast, only 15 QTLs were de-

Table 5. Summary of magnitudes of QTL effects across
reproduction traits

Traita
Avg.
%Varb

Max.
%Var

Min.
%Var

Total
%Varc

Avg.
CId

OR 4.7 6.7 3.4 9.9 20.8
(10.1) (22.5–19.0)

LF 9.9 13.2 8.0 32.0 18.8
(37.8) (32.0–3.8)

DF 51.5 — — 51.5 17.0
(5.2) —

PRES 16.6 43.2 5.9 51.6 17.6
(79.0) (27.4–9.0)

POSTS — — — — —
— —

TOTS 15.3 39.2 4.2 40.7 20.1
(33.6) (26.0–16.2)

aOR, LF, DF, PRES, POSTS, and TOTS are ovulation rate (number
of corpora lutea) number of live fetuses, number of dead fetuses,
preimplantation embryo survival {[(LF + DF)/OR]*100}, postim-
plantation fetal survival {[LF/(LF + DF)]*100}, and total embryo and
fetal survival [(LF/OR)*100].
b%Var refers to percentage of phenotypic variance accounted for by
QTLs detected for the trait.
cTotal percentage of phenotypic variance accounted for by all
QTLs detected for the trait. In parenthesis is the percentage of the
F2 range accounted for when additive effects (2a) of all QTLs de-
tected for the trait are summed (transformed scale).
dAverage length (range) of the one LOD confidence intervals (CIs)
defined for the trait QTLs (situations where one of the CI
boundaries could not be defined are excluded from this average). In
parenthesis are the corresponding maximum and minimum
lengths of such CIs.

Table 4. Summary of estimates of QTL effects and gene
action across reproduction traits

Traita
No.

QTLb
No.
Chrb

Avg.
ac

Max.
a

Min.
a

Avg.
dd Max.d

Min.
d

OR 3 2 0.26 0.33 0.21 0.25 0.67 �0.02
LF 3 2 0.36 0.57 0.23 0.13 1.1 �0.99
DF 1 1 0.12 — — 11.5 — —
PRES 4 2 0.40 0.86 0.18 �0.22 1.0 �1.8
POSTS 0 0 — — — — — —
TOTS 4 3 0.17 0.29 �0.07 �2.9 1.2 �15.2
aOR, LF, DF, PRES, POSTS, and TOTS are ovulation rate (number
of corpora lutea), number of live fetuses, number of dead fetuses,
preimplantation embryo survival {[(LF + DF)/OR]*100}, postim-
plantation fetal survival {[LF/(LF + DF)]*100}, and total embryo and
fetal survival [(LF/OR)*100].
bNumber of QTLs and number of chromosomes in which QTLs
were detected for the trait.
cAverage of absolute values of additive effects (Falconer and
Mackay 1996) in phenotypic SD units (transformed scale).
dAverage of degree of directional dominance (not average of
absolute values of d).

Table 6. Evidence for transmission ratio distortion on
Chromosome 2

Marker Locationa
M16i/
M16ib

M16i/
L6b

L6/
L6b Chi-square

251c 501c 251c

D2Mit6 12.5 262 525 216 6.4*
D2Mit133 77.8 324 541 138 75.2***
D2Mit224 83.2 326 537 140 74.0***
D2Mit22 97.6 293 539 171 35.3***
D2Mit49 107.1 267 528 208 9.7**
D2Mit148 126.2 255 504 244 0.3
aBased on linkage map (cM) calculated from this population.
bM16i/M16i, number of F2 mice homozygous for M16i allele;
M16i/L6, number of F2 mice heterozygous for M16i and L6 alleles;
L6/L6, number of F2 mice homozygous for L6 allele.
*p < 0.05, **p < 0.01, ***p < 0.001.
cValues based on Mendelian (1:2:1) expectations.

Fig. 1. Likelihood plots for Chromosome 2 from applica-
tion of composite interval mapping for OR, LF, TOTS, and
WT6.
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tected for the six reproduction traits. Part of this
difference is due to sample size since more than
twice as many records were available for growth-re-
lated phenotypes that were measured in both sexes.
However, the lower heritability of reproduction is
likely to be another important component of this
difference, indicating that considerably larger sam-
ple sizes will be necessary if the same effective
power is to be accomplished in QTL detection
studies that target traits with low heritability. This
is a challenging aspect of QTL analysis, since low-
heritability traits would be among those that could
most benefit from QTL-complemented breeding and
selection strategies in livestock production systems.
Other studies have produced similar results with
respect to the scarcity of QTLs detected for repro-
ductive traits (e.g., Kirkpatrick et al. 1998; Spearow
et al. 1999), but it is possible that, with proportion-
ally larger sample sizes, numbers and distributions
of QTL effects for reproduction would approach
those found for growth traits (Rocha et al. 2004a).

Instances of linked QTLs in MMU2 and MMU8
(Table 3) may represent artifacts of composite
interval mapping, requiring the implementation of
multiple-QTL models (Kao et al. 1999) to adequately
resolve whether one or more QTLs are present.
These issues will also be the subject of future
experimental studies, including fine-mapping. Min-
imum values for additive and variance effects of the
QTLs detected for reproductive traits are consider-
ably larger than those corresponding minima re-
ported for growth QTLs (Rocha et al. 2004a) in this
study. This may reflect the characteristic potential
for upward bias that has been attributed to QTL
studies of less-than-ideal sample sizes (Beavis 1998;
Melchinger et al. 1998; Utz et al. 2000).

Large dominance effects were evident for most
reproductive QTLs detected, matching theoretical
expectations for these traits, which usually exhibit
considerable heterosis (Falconer and Mackay 1996).
Some large overdominance effects were also ob-
served, corroborating the relevance of this mode of

Fig. 2. Graphical representation of the interaction detected between the QTL for PRES on MMU10 (Espq3) and the effect of
F2 family/litter, as evaluated from the linked-marker effect for D10Mit65. Families/litters exhibiting the same mode of
gene action for this QTL are clustered, their QTL genotypic values averaged, and represented together. The symbols +
and � indicate, respectively, an increasing or decreasing additive effect of the M16i allele on the phenotypic measure-
ments for PRES. Numbers of families/litters for each cluster are in parentheses.
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gene action for traits related to overall fitness, as has
also been noted by Kirkpatrick et al. (1998) and
Brunsch et al. (1999). Also matching expectations
were the variance components results, with litter
(family of dam) effects being considerably less
important as sources of variation for these repro-
ductive traits than they were for early growth traits
(data not shown; Rocha et al. 2004a).

Interestingly, there was no congruency between
QTLs detected for OR and those detected for the
other reproductive traits, despite the significant
phenotypic correlations present especially between
ovulation rate and numbers of live fetuses. Although
we have not estimated the genetic correlations be-
tween traits, this result may indicate that QTL de-
tected for litter size and for embryonic survival
reflect components of uterine capacity (Christenson
et al. 1987). Detected QTLs for live fetuses (as a
proxy for litter size) were either associated with
QTLs for dead fetuses (e.g., MMU2 QTL for Lfq2) or
appeared in the absence of such an association (e.g.,
MMU2 and MMU10 QTLs for Lfq1 and Lfq3).
However, no QTLs were found for postimplantation
embryo survival. A QTL study that specifically tar-
geted components of uterine capacity in mice was
that of Moce et al. (2004), but no overlap between
QTL detected in their study and the present study
was identified.

Almost all genomic regions where QTLs were
identified for reproductive traits also harbored QTLs
for growth traits (Rocha et al. 2004a), agreeing well
with the positive correlations usually observed be-
tween these two sets of traits (Collins et al. 1993;
Kirkpatrick et al. 1998). Previous studies have found
that a region of MMU2 plays the most significant
role in the selection response for growth and body
composition of the M16 line (Pomp et al. 1994;
Drudik et al. 1995). Thus, it is not surprising that
QTLs in this region also exert the greatest influence
on reproductive phenotypes in the context of this
M16i · L6 cross. Reproduction QTLs on MMU2 are
similar in location and large magnitude to those
found for growth and body composition traits (Rocha
et al. 2004a,b), re-emphasizing the remarkable
influence of this genomic region on the control of
economically and biomedically relevant complex
traits (Lembertas et al. 1997; Pomp 1997; Mehrabian
et al. 1998). The most proximal of these QTLs (Lfq2
and Espq1) are specifically corroborated by findings
from other reproductive QTL studies (Kirkpatrick
et al. 1998; Spearow et al. 1999), which identified
QTLs for litter size and hormone-induced ovulation
rate, respectively.

Alternative interpretations of the transmission
ratio distortion, such as potential maintenance of

parental line heterozygosity in this genomic region,
are possible. However, Siracusa et al. (1989, 1991) and
Montagutelli et al. (1996) have also identified some-
what similar situations of deviations from Mendelian
inheritance associated with this same region of
MMU2, in the context of mouse interspecific crosses.
A more thorough investigation of these common and
intriguing findings in different mouse crosses is
warranted. Future QTL analyses should also make an
effort to model and account for this transmission
ratio distortion effect to prevent biases that may de-
rive from it, even if such biases are expected to be of
relatively minor significance and to have little im-
pact on the overall validity of reported QTL.

The interaction detected with the effect of fam-
ily/litter for one of the QTLs in MMU10 (Fig. 2)
suggests the possible relevance of epistatic (or,

alternatively, QTL · maternal environment) effects
for these reproductive traits, perhaps underlying
their low heritabilities, and illustrating how expec-
tations of additivity can sometimes be unwarranted
with respect to the interpretation and utilization of
QTL data and results (Rocha et al. 1995). Moce et al.
(2004) also report QTLs with large dominance effects
affecting components of litter size on Chromosomes
1 and 10, but their estimated map locations are ei-
ther considerably more proximal (MMU1) or more
distal (MMU10) than those for QTLs detected in this
study. Spearow et al. (1999) report yet another
reproductive QTL on Chromosome 10, but the map
location reported is considerably more proximal than
that for the QTL detected on MMU10 in this study.
A marginally significant QTL for litter size reported
by Collins et al. (1993) on MMU10, however, falls in
the same genomic location as that harboring the
Lfq3 QTL detected in this study.
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