Toward a physical energy function for intra- and inter-protein interactions by combining structural knowledge with physical principles

Yaoqi Zhou
State University of New York at Buffalo, yqzhou@buffalo.edu

Hongyi Zhou
State University of New York at Buffalo

Chi Zhang
University of Nebraska-Lincoln, zhang.chi@unl.edu

Song Liu
State University of New York at Buffalo, song.liu@roswellpark.org

Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub
1587-Pos Board #B572
Toward a physical energy function for intra- and inter-protein
interactions by combining structural knowledge with physical principles
Yaoqi Zhou, Hongyi Zhou, Chi Zhang, Song Liu.
SUNY Buffalo, Buffalo, NY, USA.
Understanding of how proteins fold, bind, and/or function requires an accurate energy function to describe water-mediated interaction between amino acid residues. A simple, effective method to obtain an approximate energy function is to extract it from known structures of proteins (called knowledge-based statistical potential). One natural consequence of this commonly-used statistical approach is that the outcome (the energy function) is strongly dependent on input (the structural database used to extract the energy function). For example,
the structural database of single-chain proteins and the interface database of
dimeric proteins produced quantitatively different pair potentials for folding
and binding studies. This is due to significantly different compositions of
amino acid residues at the surface, core, and binding interface of proteins. In
another example, the potential extracted from all-alpha protein structures was
shown to be quantitatively different from that from all-beta protein structures.
The database dependence of statistical energy functions, however, is
unphysical. This is because the same physical interaction (water-mediated
interaction between amino-acid residues) is responsible for protein folding and
binding and for the formation of beta-strands and alpha helices. Here, we show
that this problem can be solved by using a simple physical principle for energy
extraction. The resulting physically more accurate energy function in turn leads
to a significant leap in the accuracy for selecting native structures of proteins
and protein-protein complexes from decoys and predicting loop conformation,
stability changes upon mutations, and binding free energy of protein-
protein/peptide complexes. Moreover, the new energy function provides a
quantitative understanding for the burial of hydrophobic residues in protein
interior. Results indicate that it is possible to extract the common physical
interaction masked under different "mixture" of amino acid residues in
different proteins and protein interfaces.