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Abstract

The full coding sequence for porcine erythropoietin receptor (EPOR) was elucidated using reverse
transcription polymerase chain reaction (PCR) (rtPCR) and 39 and 59 rapid amplification of cDNA
ends (RACE) procedures. Total RNA collected from Day 30 fetal liver was used as starting material.
A 1843 bp sequence was obtained from which could be inferred a 509 amino acid protein which was
79–85% identical to the amino acid sequence of erythropoietin receptor from other species. Total
RNA samples collected from white crossbred intact, white crossbred UHO and Meishan gilts on Days
24, 30 and 40 of gestation were subjected to Northern blotting using porcine EPOR cDNA as probe.
Results indicated that (1) a major and two minor forms of mRNA are present, (2) fetal liver mRNA
concentrations for EPOR are low on Day 24 of gestation and increase dramatically by Day 30 and (3)
mRNA concentrations for EPOR tended to be decreased by intrauterine crowding. © 2000 Elsevier
Science Inc. All rights reserved.

1. Introduction

Investigations into uterine crowding and fetal survival in swine indicate an approximate
20–40% loss of fetuses between Day 25 and Day 50 of gestation [1–3]. Previous work from
our laboratory indicates that this time period corresponds to a period of rapid expansion and
maturation of the blood supply. It was further demonstrated that intrauterine crowding
decreased hematocrit and hemoglobin on Day 40 [4]. Thus, investigations of the erythro-
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poiesis process will not only increase our knowledge of fetal development and physiology,
but may lead to intervention strategies designed to decrease losses due to intrauterine
crowding and increase litter size in swine.

In adults, the concentration of circulating red blood cells is controlled by the hormone
erythropoietin (EPO). Acting through the EPO receptor (EPOR), EPO stimulates erythro-
poiesis by promoting the development of committed erythroid cells, either through inhibition
of apoptosis or increased cell division (reviewed in Fisher [5]). The erythropoietin receptor
(EPOR) is a 66 Kd, type I transmembrane protein in the cytokine receptor super family,
which includes the receptors for IL-2, IL-6 and leptin [6]. The cDNA sequences for human,
rat and mouse EPOR have been reported [7–9]. Studies in these species have investigated the
role of EPOR in blood production and its intracellular signal transduction (reviewed in 5, 10).
Genetic knockouts of EPOR [11] or EPO itself [12] in mice lead to embryonic death due to
anemia by approximately Day 13.5 of gestation. Thus, EPOR, because of its central role in
controlling erythropoiesis, may be an important factor in embryonic/fetal survival in swine.

We previously reported that the process of erythropoiesis may be accelerated in Meishan
fetuses. The Meishan breed is highly prolific [13], making it useful for examination of factors
that might influence factors affecting litter size. Thus, comparisons between white crossbred
gilts and Meishan gilts may provide clues to adaptations in the Meishan that lead to increased
litter size.

The objectives of this study were to: 1) clone the cDNA for porcine (p) EPOR, 2)
characterize the expression of EPOR mRNA in embryonic and fetal porcine liver tissue and
3) compare erythropoietin receptor expression in fetal liver collected from normal white
crossbred embryos, crowded white crossbred embryos and Meishan embryos. Unilateral
hysterectomy ovariectomy (UHO) was used to induce intrauterine crowding [14].

2. Materials and methods

2.1. Partial clones 1 and 2

Primers (Table 1) were generated against a consensus EPOR sequence after aligning the
known cattle (GenBank Acc. Numbers U61398 and U61399), human [7], mouse [9] and rat
[8] sequences. Fetal pig liver was obtained at Day 30 of gestation, rapidly frozen in liquid
N2 and stored at280°C until processed to extract total RNA. Total RNA was isolated using
the column method (RNAeasy; Qiagen, Valencia, CA). Total RNA (1mg) was reverse
transcribed using 1mM oligo dT18 primer, 1mM dNTPs and reverse transcriptase (Promega,
Madison, WI) for 1 hr at 37°C. The resulting cDNA was used as template in 20ml PCR
reactions containing 10 U Taq polymerase, 1.5 mM MgCl2, 0.1% Triton-X, 0.1 mM DTT,
50 mM KCl, 0.25 mM dNTP’s, and 2mM of primers (F1 and R2, Table 1). Samples were
amplified using 1 cycle of 95°C, 4 min incubation to denature followed by 30 cycles of the
following steps: 95°C 1 min; 58°C for 1 min., and 72°C for 1 min. This was followed by a
72°C incubation for 10 min. The resulting product was cloned into the PCRII vector
according to the instructions included with the PCRII kit (Invitrogen, Carlsbad CA). Colo-
nies containing the cloned insert (clone 1) were then sequenced using automated sequencing
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(ABI 377, Perkin Elmer, Norwalk, CT). To generate clone 2, the cDNA resulting from
reverse transcription was amplified using primers Epor 3F2 and Epor 3R2 (Table 1) using the
above conditions. The resulting product was then cloned and sequenced.

2.2. 39 race (clone 3)

Total RNA (1mg) from Day 30 fetal liver was reverse transcribed using Primer 2-1 (Table
1). The resulting cDNA was amplified as described previously using primers F5 and 2-2
(Table 1). The resulting product was reamplified using primers F6 and 2-2 (Table 1). The
resulting single band was cloned into PCRII and sequenced as previously described.

2.3. 59 race (clone 4)

Total RNA (5mg) was reverse transcribed in a 50ml reaction using primer 5.7 (Table 1)
as described previously. For 59-RACE, a modification [15] of the procedure of Apte and
Siebert [16] was used. Briefly, after reverse transcription, the RNA was degraded and cDNA
was separated from free nucleotides using glass milk as described [15]. The recovered cDNA

Table 1
Primer sequences used for amplification, cloning and sequencing of the porcine erythropoietin receptor. Abbr:
RT-reverse transcriptase, amp-amplification, reamp-reamplification, RACE-rapid amplification of cDNA ends

Primer name Primer sequence (59(39) Used for

Oligo dT18 TTTTTTTTTTTTTTTTTT clones 1,2 RT
F1 TTCTCTTACCAGCTCGAGGGTG clone 1
R2 GAGCACGAGGATGAGGGAGA clone 1
Epor3.F2 AACGCGCTACACCTTCATG clone 2
Epor3.R2 AAGGGTTGGAGTAGGGGC clone 2
2-1 TCCGTCTCGCCGTTAGTG(T18) 39RACE RT
2-2 TCCGTCTCGCCGTTAGTG 39RACE amp/reamp
Epor3.F5 TTGTGGTGTCTGACTCTGGC 39RACE amp
Epor3.F6 GTGGCCCCTACTCCAACC 39RACE reamp
Epor5.7 GGGTCTAGCAGCACCACTTC 59RACE RT
Xba-lnk P-TCTAGAGTCAAGTCAGGCAATGTCGTT-NH2 ligated to cDNA
Xba-com AACGACATTGCCTGACTTGAC 59RACE amp/reamp
Epor5.8 GAGCCAGCGCAGTACCAC 59RACE amp
Epor5.9 GTTCACCTCATGCGGATAAGG 59RACE reamp
Eporall.F1 GGTCAGCTGTGTCCGGTG full length clone
Eporall.F2 GACCCAGCTGTGGACTGTG full length clone
Eporall.R TGTGACTTTCTGAGCAGGATG full length clone
M13-21 TGTAAAACGACGGCCAGT sequence confirmation
M13 rev CAGGAAACAGCTATGACCAT sequence confirmation
F2A GCGTTTCTGGTGGTCGCTG sequence confirmation
84F3 TCATCCTCGTGCTCATCTTG sequence confirmation
84R1 GGTACAAGTACTTCAGGTGGGG sequence confirmation
3F4 TATCCTGGATCCCAGCTCAC sequence confirmation
R2A GAGCACGAGGATGAGGGAGG sequence confirmation
GAPDH.R GAAGCAGGGATGATGTTCTGG GAPDH RT and amp
GAPDH.F CACGACCATGGAGAAGGC GAPDH amp
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was then lyophilized and redissolved in 10ml water. Oneml of the resulting solution was
then ligated to the Xba-LNK primer (Table 1) using T4 RNA ligase and the conditions
previously described. Oneml of the resulting solution was then used as template and
amplified using primers 5.8 and Xba-com. This PCR product was then reamplified with
primers 5.9 and Xba-com. The resulting product was electrophoresed on a 1.5% agarose gel,
the band corresponding to the correct size was isolated using glass milk (Sigma, St. Louis,
MO) and the isolated fragment was ligated into PCRII and sequenced as previously de-
scribed.

2.4. Full-length clone

To confirm the entire EPOR sequence, the primers eporall.F1 and eporall.R were gener-
ated and used to amplify the entire coding region. Total RNA from a Day 30 fetal liver was
reverse transcribed using the eporall.R primer and then these primers were used to amplify
the resulting cDNA. A 1.8 kb band corresponding to the correct size for EPOR was gel
purified as described previously and ligated into PCRII. Three positive clones were fully
sequenced in both directions using primers M13-21, M13 rev, F2a, 5.8, 84F3, 84R1, 3F4 and
R2a (see Table 1).

2.5. Northern analysis

Ten mg of total RNA isolated from Day 24, 30 and 40 fetal liver tissue from white
crossbred intact, white crossbred unilateral hysterectomized-ovariectomized (UHO) and
Meishan intact pigs (4 per age/group combination), was electrophoresed in a 1.2% agarose,
13 MOPS/formaldehyde gel, capillary blotted onto nylon membrane (Hybond, N-Amer-
sham, St. Louis, MO), UV cross linked and stored at220°C. In the UHO surgical procedure,
one uterine horn and one ovary are removed. Due to ovarian compensation, ovulation rate is
unaffected by this treatment, but the developing embryos are forced to gestate in half the
normal uterine space, creating a crowded intrauterine environment. Probe was generated
using primers F1 and R2 and the initial EPOR clone as template in a PCR reaction as
described above substituting [32P]dCTP for dCTP. Blots were prehybridized in Rapid Hybe
(Amersham) at 65°C for 1 hr. Probe was then added (13 106 CPM/ml) and blots were
incubated for 2 hr at 65°C. Blots were rinsed twice in 23 SSC (13 SSC5 .15 M NaCl, .015
M Na Citrate), 0.1% SDS, washed twice for 15 min in 23 SSC, 0.1% SDS at 65°C, in 0.53
SSC, 0.1% SDS at 55°C and 65°C for 15 min each and placed on film for 72 hr.

The glyceraldehyde phosphate dehydrogenase (GAPDH) cDNA probe used [14] was
generated using the GAPDH.F and GAPDH.R (Table 1) primers in the presence of [32P]CTP
as described for the erythropoietin receptor. Blots were stripped of EPOR probe (1 mM Tris,
1 M EDTA; 2 hr at 80°C) and then prehybridized for 2 hr at 65°C with Rapid Hybe and
hybridized with 13 106 CPM radiolabelled probe per ml at 65°C for 2 hr. Blots were then
washed twice with 23 SSC, 0.1% SDS. To quantitate changes in mRNA, autoradiographs
were analyzed by densitometry using a laser densitometer (Ultrascan XL, Pharmacia LKB,
Piscataway, NJ).
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2.6. Statistical analysis

Densitometric data for the major EPOR mRNA band was analyzed by analysis of variance
using a model which included GAPDH densitometric values as a covariate along with effects
of day of gestation, breed/treatment (white crossbred intact, UHO and Meishan intact) and
the day by breed/treatment interaction. Sets of orthogonal contrasts were employed to more
fully evaluate day and breed/treatment effects. Two sets were used. Generally, white
crossbred intact was compared with Meishan intact (effect of breed) followed by a compar-
ison of these two groups combined with the white crossbred UHO treatment group (effect of
UHO). However, in the event that the first contrast was significant, the white crossbred intact
group was compared with white crossbred UHO group (effect of UHO) and then the two
combined were compared with the Meishan group (effect of breed).

3. Results

The size of each individual clone and their relationship to each other is diagrammed in Fig.
1. A total of 1843 nucleotides of the sequence for the pEPOR mRNA (Genbank Acc.
#AF274305) was obtained and the sequence and its inferred amino acid sequence are shown
in Fig. 2. The sequence encodes for a protein of 509 amino acids and includes 159 and 154
nucleotides in the 59 and 39 untranslated regions (UTR), respectively. No consensus sequence
of translation initiation was observed in the 59 untranslated region [17]. The inferred amino
acid sequence is aligned with rat, mouse and human sequences in Fig. 3. The open reading
frame contains one putative N-glycosylation site in the extracellular domain of the peptide
(AA 184), nine conserved cysteine residues, and the WSAWSE hallmark of cytokine
receptors. A putative signal peptide (aa 1 to 24) and a single transmembrane domain (aa 251

Fig. 1. The relationships among the different erythropoietin receptor clones is diagrammed schematically. Primers
used for the isolation of each clone are described in Table 1.
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to 273) are also present as expected. Overall, the inferred amino acid sequence ranged from
79 to 85% identity with previously reported receptors from other species (Table 2). However
the identity among sequences was not uniformly distributed over the entire coding sequence.
Large regions of 100% conservation included from amino acids 104 to 122, 247 to 261, 293
to 309 and from 445 to 472. Finally, the nucleotide sequence of the 59 UTR and 39 UTR were

Fig. 3. The inferred amino acid sequence for porcine erythropoietin receptor is shown aligned with the previously
reported sequences for rat, mouse and human erythropoietin receptor. A dashed line indicates identity. Conserved
cysteine residues are indicated with an *. The transmembrane domain, box 1 and 2 are the first, second and third
underlined regions, respectively. Potential N-linked glycosylation sites are in bold letters.
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91%, and 71% identical (Fig. 4) with the corresponding nucleotide sequences for human
EPOR, suggesting that the 59 and 39 UTR may contain conserved control elements respon-
sible for regulating either transcription or translation.

Northern analysis indicated a molecular weight of 2.5 Kpb for the most abundant form of
pEPOR mRNA along with two other much less abundant minor forms. Expression was low
on Day 24 and then increased dramatically on Day 30 and Day 40 of gestation (Fig. 5).
Densitometry indicated that the UHO treatment group had lower overall expression of
pEPOR mRNA that approached statistical significance (n 5 4, P5 0.06) when compared to
the two intact groups combined (Fig. 6).

4. Discussion

This study represents the first reported cloning of pEPOR and the first known examination
of pEPOR expression in the fetal liver of the pig. Results indicate that expression of pEPOR
mRNA (at detectable levels) is initiated between Day 24 and Day 30 of gestation in the pig
fetal liver and remains relatively constant between Day 30 and Day 40.

Comparison of the nucleotide sequences and inferred amino acid sequences between
species indicates that both the erythropoietin receptor protein and the untranslated regions
within the mRNA are highly conserved. All of the regions of 100% homology within the
amino acid sequence of the protein correspond to important functional regions of the
receptor. The first region brackets a phenylalanine residue (F 117) which was shown to be
important for interaction with ligand [18]. Thus the conservation in this region is likely
necessary to preserve some aspect of the ligand binding site. The second corresponds to the
external border and first half of the transmembrane domain. It seems unusual that the
transmembrane domain should be highly conserved, because replacement of these residues
by other hydrophobic amino acids would be expected to have little influence on the ability
of this region to behave as a transmembrane domain. The signal sequence, which also
functions to span the membrane, is not conserved. The conservation in the transmembrane
region therefore may suggest that it may do more than simply span the membrane. The third
conserved region is located near the box 1 region of the cytoplasmic side of the receptor, a
region that has been shown to be conserved among various cytokine receptors, and is thought
to be important in intracellular signaling [18]. Thus, this conserved region is a necessary part
of the interaction between the erythropoietin receptor and intracellular kinases which carry
out the changes that occur within the cell in response to the binding of erythropoietin [10,20].

Table 2
Percent sequence identity between the inferred amino acid sequences for erythropoietin receptor from the pig,
rat, mouse and human

Human Mouse Rat

Pig 84.6 80.7 78.9
Rat 80.7 94.2
Mouse 81.9
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Fig. 4. The 59 (A) and 39 (B) untranslated regions for the porcine fetal liver erythropoietin receptor aligned with
the same regions for the human erythropoietin receptor are illustrated. They were 91 and 71% identical,
respectively.
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The final region is reported to interact with an intracellular phosphatase [8,10]. It was
reported that several genetic mutations in humans either truncating or modifying this region
result in benign increases in red blood cell concentrations [21–23]. In the pig, changes in
several codons could potentially generate mutations similar to those described in humans.
Single nucleotide mutations (TCA to TGA; CAG to TAG; and AGA to TGA) of codons
434(S), 435(Q) or 440(R), respectively, could all result in truncations of this region. If
increased concentration of red blood cells is beneficial to uterine capacity, these possible
mutations could be useful in increasing litter size in swine. A search for possible beneficial
mutations within this region is currently in progress.

The conservation between species extends into the 59 and 39 UTR, suggesting that these
regions may be important in the control of the amount of receptor mRNA that is transcribed
or translated. The elaboration of erythropoietin receptor on cells of the erythropoietic line is
required once cells are committed to the erythropoietic pathway [12]. Analysis of the 59 UTR
using signal scan [24] suggested potential binding sites for part of an enhancer region
reported for the human transferrin gene (25; bases 52–59) and two potential SP1 [26] sites
(bases 106–111 and 121–126). Both potential SP1 sites are conserved, it cannot be deter-
mined whether the transferrin gene enhancer is conserved because the human sequence is
lacking. Analysis of RNA folding of the 39 UTR indicated a possible stem-loop structure
(bases 1806–1841), which includes the polyadenylation site (AATACA; bases 1819–1824).

Fig. 5. A representative Northern blot for fetal liver erythropoietin receptor and glyceraldehyde phosphate
dehydrogenase mRNA is illustrated. Treatments were intact white crossbred (INT), unilaterally hysterectomized
ovariectomized white crossbred (UHO) and Meishan (ME). See Fig. 6 for densitometric evaluation of these blots.
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However, this stem loop structure is not conserved in the human epor cDNA. Whether the
59 and 39 UTR contain sequences which govern the onset of erythropoietin expression
requires further investigation.

The dramatic increase in EPOR expression in fetal liver on Day 30 of pregnancy coincides
with a shift from nucleated immature cells to nonnucleated cells in the circulating blood and
also with the fetal liver becoming a major site of erythropoiesis. Fetal liver erythropoiesis in
mice is completely dependent on both EPO and EPOR, while the development of primitive
nucleated blood cells which precedes this period does not require either [11,12]. It is likely
that the increase in fetal liver EPOR is a direct result of the immature red blood cells, which
highly express EPOR, becoming resident in the liver at this time. However, it was reported
that erythropoietin is a mitogen for fetal liver stromal cells [27]. Because dramatic growth of
the liver also occurs at this time [4], some of the increase in receptor mRNA may be from
liver cells. Thus, EPO and EPOR could also be involved in the maturation of the fetal liver
into a hematopoietic organ. Further studies are needed to determine which cells have EPOR
and the role of EPOR in liver and blood cell development.

The presence of multiple mRNA sizes is consistent with previous reports [28–30].
Alternative splicing of the gene for EPOR causes generation of two truncated forms of
EPOR. The first is a secreted form, the alternative splicing introduces a stop codon ahead of
the transmembrane domain. The second introduces a stop codon truncating part of the
cytoplasmic domain. The function of the secreted form is not known. The second truncated

Fig. 6. Least squares means (n 5 4) for fetal liver erythropoietin receptor mRNA from white cross (WC) intact,
unilateral hysterectomized-ovariectomized (UHO) and Meishan (ME) intact gilts are illustrated. The pooled
standard error of each mean from analysis of variance was 1.33 relative units. Expression was lower (P5 0.06)
for UHO compared to white cross and Meishan intact treatment groups.
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form is the dominant form in immature erythroid progenitor cells [31]. The ratios of the
bands to each other does not appear to change during the period examined. Whether the
multiple EPOR mRNA sizes correspond to truncated forms of the receptor, and the physi-
ological relevance of these potential alternate forms of EPOR mRNA remains to be deter-
mined.

Although not statistically significant, a trend toward lower pEPOR gene expression in the
UHO group was observed. Our previous investigations suggested that the overall efficiency
of erythropoiesis was unaffected by intrauterine crowding; however, a positive correlation
between fetal weight and erythropoiesis has been observed at several stages of pregnancy
[4,32,33]. These relationships suggest that in small fetuses, which are the most negatively
affected by uterine crowding, there is an impairment in erythropoiesis. If the amount of
EPOR gene expression by fetal liver reflects the number of red blood cell precursors that are
resident in the fetal liver, or is indicative of fetal liver growth or maturation, these data could
suggest that impairment of these processes could be a component of the negative impact of
intrauterine crowding on erythropoiesis. Whether this observation has any direct impact on
the physiology of the embryo/fetus or its survival is unknown. Further study into the
expression of EPO and correlations with other fetal physiological parameters may be
necessary to further associate pEPOR expression with erythropoiesis, crowding or litter size
in swine.

Previous data suggest that fetal erythropoiesis in the Meishan breed may be accelerated
compared to white crossbred pigs [4,32]. Data from this experiment suggest that changes in
the ontogeny of the erythropoietin receptor is not a part of this accelerated development.
Plasma erythropoietin also was not different between breeds. Changes in translation of the
erythropoietin receptor mRNA or changes in effector molecules downstream of the receptor
may be responsible for the acceleration of erythropoiesis observed in the Meishan.

In conclusion, our results indicate that the nucleotide and amino acid sequence of the
pEPOR is very similar to other known EPOR and this similarity reaches into the noncoding
regions, suggesting that these regions may be important in control of transcription, transla-
tion or stability of the mRNA. A dramatic increase in fetal liver EPOR mRNA occurs
between Day 24 and 30 of pregnancy, likely coinciding with the onset of residency of
erythrocyte precursors in the fetal liver. Results suggest that uterine crowding may impair
fetal liver EPOR expression, possibly indicating a negative effect of uterine crowding on
fetal erythropoiesis.
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