2009

Genotypic Variability in Mineral Composition of Switchgrass

H. M. El-Nashaar
USDA-ARS

G. Banowetz
USDA-ARS

S.M. Griffith
USDA-ARS

M. D. Casler
USDA-ARS, michael.casler@ars.usda.gov

Kenneth P. Vogel
University of Nebraska-Lincoln, Ken.Vogel@ars.usda.gov

Follow this and additional works at: http://digitalcommons.unl.edu/usdaarsfacpub

Part of the Agricultural Science Commons

http://digitalcommons.unl.edu/usdaarsfacpub/241
Genotypic variability in mineral composition of switchgrass

H.M. El-Nashaar a, G.M. Banowetz a, S.M. Griffith a, M.D. Casler b, K.P. Vogel c

aUSDA/ARS, 3450 S.W. Campus Way, Corvallis, OR 97331, USA
bUSDA/ARS, 1525 Linden Dr. W, Madison, WI 53706, USA
cUSDA/ARS, Room 324, Kelin Hall, E.C., University of Nebraska, Lincoln, NE 68583-0837, USA

ABSTRACT

Switchgrass (Panicum virgatum L.) is a warm season perennial grass with great potential as an energy crop in the USA. It is widely adapted to many regions of the country, produces large amounts of biomass, serves as a useful forage grass, and provides ecosystem services that benefit soil and water quality and wildlife. Biological and thermochemical technologies are being developed to convert herbaceous biomass, including switchgrass, to energy. The objective of this research was to determine the effect of genotype and production environment on the concentration of minerals that affect the suitability of switchgrass for thermochemical conversion and to quantify the amount of potassium (K) and phosphorus (P) removed from the production system by harvest of the aboveground biomass, a measure of the sustainability of the practice. Straw dry biomass contained from 1.3 to 6.4 kg Mg⁻¹ and from 6.2 to 15.8 kg Mg⁻¹ of P and K, respectively. Variability in aluminum (Al), calcium (Ca), chloride (Cl), K, P, silicon (Si), and sulfur (S) concentrations across locations was relatively high, ranging from twofold (Al) to eightfold (Cl). Location had a strong impact on mineral concentrations among switchgrass genotypes evaluated in this study. Latitude of origin impacted the Cl and Si concentrations measured in plant tissues, but none of the other minerals analyzed in this study. Upland and lowland cytotypes explained some of the observed differences, but population × location interactions were the primary source of variability in the concentration of these minerals.

Published by Elsevier Ltd.
Weeds were controlled by clipping and herbicide application as de-

c2.2.

tew

c2.1.

daw and diminish the economic feasibility of converting these

t feedstocks to fuel (Miles et al., 1996). Reduced mineral content at

harvest improves the combustion characteristics of biomass (Nor-
din, 1994).

Genetic improvement of switchgrass may reduce the potential
for slag and corrosive alkali formation during thermochemical pro-
cessing of switchgrass. While there has been considerable develop-
ment of switchgrass germplasm adapted to specific production
environments, little is known about the genetic variability in min-
eral concentration in this grass. In this study, the concentrations of
Al, Ca, Cl, K, P, Si, and S, and in aboveground biomass of selected
upland and lowland switchgrass cytotypes grown at various loca-
tions over 2 years were quantified. We included analyses of Al be-
cause previous work (Rengel and Robinson, 1989) demonstrated
that Al impacts uptake of other macronutrients measured in this
study. Our objective was to determine the effect of genotype on
the concentration of minerals that affect the suitability of switch-
grass for thermochemical conversion and to quantify the amount of
K and P removed from the production system by harvest of the
aboveground biomass.

2. Methods

2.1. Sites and cultivar descriptions

Four upland populations of switchgrass including cultivars Cave-
In-Rock, Trailblazer, Sunburst, and Blackwell, along with two low-
land cytotypes, Kanlow and NL94-1, were harvested from five loca-
tions in Spooner, WI (Spn; 45°49' N, 91°54' W), Arlington, WI (Arl;
43°20' N, 89°23' W); Medx, NE (Mea; 41°13' N, 96°29' W); Manhattan,
KS (Man; 39°25' N, 96°35' W); and Stillwater, OK (Stl; 35°67' N,
96°5' W). Soil types included an Omega loamy sand (sandy, mixed,
frigid Typic Haplorthod) at Spooner, Plano silt loam (fine-silty,
mixed, superactive, mesic Typic Argudoll) at Arlington, Sharpsburg
silt loam (fine, smectitic, mesic Typic Argiudoll) at Mead. Haynie
very fine sandy loam (coarse-silty, mixed, superactive, calcareous,
mesic Mollic Udifluent) at Manhattan, and a Kirkland silt loam
(fine, mixed, superactive, thermic Udertic Paleustoll) at Stillwater.
The experimental design, location details, growing, harvesting, and
plant tissue preparation procedures were previously described (Cas-
ler et al., 2004). In brief, the experimental design at each location was
a randomized complete block with three replicates at Spooner, four
at Manhattan, five at Arlington and Stillwater, and six at Mead.
Weeds were controlled by clipping and herbicide application as de-
scribed (Casper et al., 2004). Plants were fertilized in spring with
112 kg N ha⁻¹. A flail harvester was used to harvest a 0.9 m swath
from the center of each plot in late summer after most populations
had completed anthesis. Samples representing the 1999 crop year
were available from all locations except Manhattan. All locations
were represented in the 2000 crop year.

2.2. Mineral extraction and analysis

Plant dry matter was ground through a 2-mm screen of a Wiley-
type mill (Thomas Scientific, Swedesboro, NJ, USA) and a 1-mm
screen of a cyclone mill. Minerals were extracted from plant sam-
ples utilizing microwave-assisted acid digestion (EPA method
3052) with an Ethos D microwave station (Milestone, Monroe, CT)
and analyzed for Al, Ca, K, P, S, and Si by inductive coupled plas-
ma-optical emission spectroscopy (ICP-OES) (Isaac and Johnson,
1985; Perkin-Elmer Life and Analytical Sciences, Shelton, CT). A
quality control check standard (QCQS), representing the approxi-
mate midpoint of the calibration range for each mineral was in-
cluded as the first sample in each set and was repeated following
every tenth sample. All QCQS value determinations were within
10% of the actual concentration. Plant tissue samples (25 g) were
extracted with 100 ml of deionized water and shaken for 30 min
at 350 rpm and then filtered through Whatman Qualitative No. 42
filters (Florham Park, NJ) that had been washed three times with
1% H₂SO₄ (v/v) and deionized water. The filtrate was analyzed col-
orimetrically for Cl (QuickChem method 10-117-07-1-C) on a La-
chat flow injection autoanalyzer (Hach Co., Loveland, CO).

2.3. Statistical analyses

Data were initially subjected to analysis of variance (PROC GLM,
SAS, Statistical Analysis System Institute, Cary, NC) to identify
interactions among locations, years, cultivars, and cytotypes. Since
mineral concentrations in these populations were not different
(P = 0.05) between 1999 and 2000, data from the 2 years were
pooled for subsequent analyses and data were tabulated to show
interactions between cultivar, location, and cytotype. Plant tissues
were not available from each location both years so means repre-
sent data where n = 10 for Arl; n = 8 for Man; n = 8 for Stl; n = 12
for Mea; n = 6 for Spn. Statistical analyses of mean differences
among populations, locations, and comparisons between upland
and lowland cytotypes were calculated by analysis of variance,
where locations and years were considered random and varieties
and cytotypes were considered fixed. Main and interaction effects
were considered significant at P < 0.05, unless otherwise stated.
Means of all minerals were evaluated for main effects and interac-
tions of the locations, latitude of origin, years, and varieties were
compared utilizing Tukey's studentized range (HSD) test (SAS).

3. Results

Mean monthly temperature and precipitation data from May to
September showed that Stl and Spn received approximately aver-
age rainfall in 1999 and 2000 while Arl and Mea received less than
average precipitation during one of these years (Table 1). Location
and cultivar accounted for much of the variability observed and
location + cultivar interactions had an effect for five of the seven
minerals (Table 2). There were location interactions with the con-
centrations of all seven minerals. Latitude of origin affected the
concentrations of Cl and S, but not that of the other five minerals.
There was no apparent relationship between temperature and rain-
fall with mineral concentration (Tables 3–9). Genotypic vari-
bility in Al, Ca, Cl, K, P, S, and Si concentrations was affected by
the location at which the crop was grown and in some cases, the
variability was associated with cytotype.

Differences in Al concentrations within a location were rela-
tively small among these populations and generally lower in the
two northernmost locations, Arl and Spn (Table 3). Interactions
of Al concentration with cytotype and Man and Mea, the two loca-
tions at intermediate latitudes used in this study.

Chloride concentrations within these genotypes varied nearly
eightfold, ranging from 513 to 4258 mg kg⁻¹ (Table 4). On average,
plants grown at Man and Mea contained less Cl whereas those har-
vested at Stl contained the greatest concentrations. Interactions
between Cl concentration and cytotype occurred at Arl, Mea, and
Stl. At Arl, and Mea, Cl concentrations were greatest in upland
cytotypes, in contrast to Stl where lowland cytotypes contained
more Cl.

The concentrations of K in these populations were generally
lower in plants grown at Man (Table 5). Lowland cytotypes con-
tained more K in plants grown at Mea, Spn, and Stl. The Kanlow
Table 1
Mean temperature and precipitation data for five locations at which switchgrass populations were grown.

<table>
<thead>
<tr>
<th>Location/month</th>
<th>1999 Precipitation (mm)</th>
<th>2000 Precipitation (mm)</th>
<th>1999 Temperature (°C)</th>
<th>2000 Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arlington WI</td>
<td>10.0</td>
<td>26.6</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>May</td>
<td>13.4</td>
<td>18.2</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>June</td>
<td>8.7</td>
<td>8.7</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>July</td>
<td>6.4</td>
<td>8.4</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>August</td>
<td>3.6</td>
<td>7.9</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>42.1</td>
<td>65.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mood NE</td>
<td>15.6</td>
<td>5.8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>May</td>
<td>12.9</td>
<td>14.3</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>June</td>
<td>7.2</td>
<td>9.7</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>July</td>
<td>5.2</td>
<td>3.0</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>August</td>
<td>8.1</td>
<td>2.0</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>53.0</td>
<td>34.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manhattan KS</td>
<td>13.1</td>
<td>6.5</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>May</td>
<td>14.1</td>
<td>1.7</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>June</td>
<td>4.6</td>
<td>5.5</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>July</td>
<td>6.3</td>
<td>1.8</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>August</td>
<td>8.7</td>
<td>2.4</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>52.8</td>
<td>30.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sproucer WI</td>
<td>11.5</td>
<td>11.3</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>May</td>
<td>13.1</td>
<td>12.2</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>June</td>
<td>18.1</td>
<td>15.0</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>July</td>
<td>8.8</td>
<td>12.2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>August</td>
<td>9.4</td>
<td>1.7</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>64.0</td>
<td>63.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stillwater OK</td>
<td>11.5</td>
<td>16.7</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>May</td>
<td>20.7</td>
<td>19.3</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>June</td>
<td>4.9</td>
<td>13.1</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>July</td>
<td>2.5</td>
<td>0.1</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>August</td>
<td>15.5</td>
<td>0.1</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>10.0</td>
<td>48.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The concentration of K was generally lower in plants grown at Arl, where NL94-1 contained the lowest concentration recorded in our study (Table 6). Interactions between K concentration and cytotype occurred, but were location dependent. At Arl and Man, upland cytotypes contained more K. In contrast, lowland cytotypes contained greater concentrations of K at Spn. Latitude of origin had little effect on the K measured in these populations.

The concentrations of Si ranged from 3818 to 13956 mg kg⁻¹ and were strongly dependent on location (Table 7). Populations grown at Arl and Spn contained the lowest concentrations, approximately half that measured in the other locations. Interactions between Si concentration and cytotype occurred at all five locations, and in four of the five, upland cytotypes contained greater concentrations of Si. Kanlow and Blackwell plant populations generally contained more Si whereas NL94-1 often contained the least. The impact of cytotype was greater than that of latitude of origin. Plants grown at Man contained lower S concentrations than those produced at the other locations (Table 8). Interactions of S concentration with cytotype occurred at four of the five locations between Si concentration and cytotype occurred at all five locations, and in four of the five, upland cytotypes contained greater concentrations of Si. Kanlow and Blackwell plant populations generally contained more Si whereas NL94-1 often contained the least. The impact of cytotype was greater than that of latitude of origin. Plants grown at Man contained lower S concentrations than those produced at the other locations (Table 8). Interactions of S concentration with cytotype occurred at four of the five locations.
Table 5
Potassium (K) concentration (mg kg⁻¹ dry plant tissue) in aboveground biomass of six populations of switchgrass grown in 1999 and 2000 at Arlington (Ar), and Spooner (Spn), WI; Manhattan (Man), KS; Mead (Mea), NE; and Stillwater (Stl), OK. Interactions of K concentration with location, cultivar, and cytotype based on initial analysis of variance to test for significant interactions. Cytotype interactions represent pooled cultivar data including four upland and two lowland cytotypes. Data are expressed as mean mg kg⁻¹ dry plant tissue (n = 10 for Arl; n = 8 for Man; n = 8 for Stl; n = 12 for Mea; n = 6 for Spn).

<table>
<thead>
<tr>
<th>Cultivar (cytotype-latitude of origin)</th>
<th>Arl</th>
<th>Man</th>
<th>Mea</th>
<th>Spn</th>
<th>Stl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cave-in-Rock (U-S)</td>
<td>70.67</td>
<td>77.50</td>
<td>70.40</td>
<td>80.86</td>
<td>80.87</td>
</tr>
<tr>
<td>Blackwell (U-S)</td>
<td>95.38</td>
<td>77.69</td>
<td>93.96</td>
<td>10.38</td>
<td>89.86</td>
</tr>
<tr>
<td>Sunburst (U-N)</td>
<td>96.91</td>
<td>77.92</td>
<td>94.97</td>
<td>82.10</td>
<td>68.41</td>
</tr>
<tr>
<td>Trailblazer (U-N)</td>
<td>97.41</td>
<td>69.92</td>
<td>96.01</td>
<td>10.97</td>
<td>76.74</td>
</tr>
<tr>
<td>Katrina (L-N)</td>
<td>113.34</td>
<td>76.74</td>
<td>11.336</td>
<td>15.806</td>
<td>83.68</td>
</tr>
<tr>
<td>NL94-1 (L-N)</td>
<td>90.00</td>
<td>75.99</td>
<td>11.175</td>
<td>10.221</td>
<td>86.99</td>
</tr>
<tr>
<td>Pooled LSD (P < 0.05)</td>
<td>164.3</td>
<td>27.24</td>
<td>14.50</td>
<td>23.89</td>
<td>16.98</td>
</tr>
</tbody>
</table>

Cyototype
Lowland: 70.15 | 78.22 | 11.24 | 13.08 | 84.89
Upland: 98.34 | 73.75 | 95.56 | 94.60 | 78.87
P-values: 0.73 | 0.35 | 0.00 | 0.00 | 0.00

* U. upland; L. lowland; S. southern, south of 40° N; N. northern, north of 40° N for upland, north of 34° N for lowland.

Table 6
Phosphorus (P) concentration (mg kg⁻¹ dry plant tissue) in aboveground biomass of six populations of switchgrass grown in 1999 and 2000 at Arlington (Ar), and Spooner (Spn), WI; Manhattan (Man), KS; Mead (Mea), NE; and Stillwater (Stl), OK. Interactions of P concentration with location, cultivar, and cytotype based on initial analysis of variance for significant interactions. Cytotype interactions represent pooled cultivar data including four upland and two lowland cytotypes. Data are expressed as mean mg kg⁻¹ dry plant tissue (n = 10 for Arl; n = 8 for Man; n = 8 for Stl; n = 12 for Mea; n = 6 for Spn).

<table>
<thead>
<tr>
<th>Cultivar (cytotype-latitude of origin)</th>
<th>Arl</th>
<th>Man</th>
<th>Mea</th>
<th>Spn</th>
<th>Stl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cave-in-Rock (U-S)</td>
<td>1850</td>
<td>4565</td>
<td>4319</td>
<td>3177</td>
<td>2844</td>
</tr>
<tr>
<td>Blackwell (U-S)</td>
<td>1702</td>
<td>5418</td>
<td>4551</td>
<td>3633</td>
<td>2604</td>
</tr>
<tr>
<td>Sunburst (U-N)</td>
<td>1389</td>
<td>5389</td>
<td>4404</td>
<td>7229</td>
<td>2925</td>
</tr>
<tr>
<td>Trailblazer (U-N)</td>
<td>2369</td>
<td>6442</td>
<td>4304</td>
<td>4030</td>
<td>3671</td>
</tr>
<tr>
<td>Katrina (L-N)</td>
<td>2210</td>
<td>4564</td>
<td>4382</td>
<td>5075</td>
<td>3041</td>
</tr>
<tr>
<td>NL94-1 (L-N)</td>
<td>1207</td>
<td>3876</td>
<td>4548</td>
<td>4179</td>
<td>2812</td>
</tr>
<tr>
<td>Pooled LSD (P < 0.05)</td>
<td>656</td>
<td>1092</td>
<td>61</td>
<td>958</td>
<td>677</td>
</tr>
</tbody>
</table>

Cyototype
Lowland: 1754 | 4150 | 4470 | 4627 | 2977
Upland: 1963 | 5777 | 4509 | 3267 | 3011
P-values: 0.00 | 0.00 | 0.64 | 0.00 | 0.63

* U. upland; L. lowland; S. southern, south of 40° N; N. northern, north of 40° N for upland, north of 34° N for lowland.

where upland cytotypes contained the greater concentrations. Latitude of origin did not appear to impact the concentration of this mineral. NL94-1 populations contained the least concentration of S at four of five locations.

Location differences in Ca concentrations were small relative to those observed for the other minerals (Table 9). Calcium concentrations ranged from 2290 (NL94-1 at Man) to 5296 (Kanlow at Spn) mg kg⁻¹. Populations of upland cytotypes contained more Ca at three locations, but latitude of origin had little effect on Ca.

4. Discussion

The mineral concentrations of herbaceous biomass have great impact on the suitability of switchgrass and other perennial grasses as feedstock for thermochemical conversion processes (Jenkins et al., 1998; Boeteng et al., 2006). Mineral constituents including K, C, S, and Si, react to form slag deposits and corrosive compounds at temperatures in the range of 700 °C (Baxter, 1993; Jenkins et al., 1998). Operation of thermal reactors at reduced temperatures frequently produces syngas with reduced heating value. Boeteng et al. (2006) showed that the heating value of non-condensable gases produced during pyrolysis of switchgrass peaked around 900 °C. Genetic selection to reduce mineral accumulation by switchgrass has potential to reduce the risk of slag formation at optimal reactor operation temperatures, but a genetic approach is dependent upon the existence of variability in mineral concentration. Among the minerals quantified in our study, the least variability was observed in Ca, K, and S, three macronutrients that are important components in slag formation.

Variability in the minerals analyzed in this study was dependent upon complex location × cultivar interactions which made prediction of mineral concentrations within switchgrass populations at a given location difficult. While differences in the concentration of specific minerals between populations were measured at each of the five locations, the relative ranking of the populations was not consistent across all locations. Casler and Boe (2003) reported that interactions among harvest date, growing site, year
Table 9
Calcium (Ca) concentration (mg kg⁻¹ dry plant tissue) in aboveground biomass of six populations of switchgrass grown in 1995 and 2000 at Arlington (Ad), and Spooner (Sp). WI; Manhattan (Man); KS; Mead (Mea); NE; and Stillwater (Stw). OK. Interactions of Ca concentration with location, cultivar, and cytotype based on initial analysis of variance to test for significant interactions. Cytotype interactions represent pooled cultivar data including four upland and two lowland cytotypes. Data are expressed as mean mg kg⁻¹ dry plant tissue (n = 10 for Ad; n = 8 for Man; n = 8 for Stw; n = 12 for Mea; n = 6 for Sp).

<table>
<thead>
<tr>
<th>Cultivar (cytotype-latitude of origin)</th>
<th>Ad</th>
<th>Man</th>
<th>Mea</th>
<th>Sp</th>
<th>Stw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cave-in-Rock (U-S)</td>
<td>3396</td>
<td>3372</td>
<td>3475</td>
<td>4485</td>
<td>3133</td>
</tr>
<tr>
<td>Blackwell (U-S)</td>
<td>3164</td>
<td>3816</td>
<td>3617</td>
<td>4721</td>
<td>3641</td>
</tr>
<tr>
<td>Sunburst (U-N)</td>
<td>2965</td>
<td>3348</td>
<td>3783</td>
<td>4710</td>
<td>3879</td>
</tr>
<tr>
<td>Trailblazer (U-N)</td>
<td>3481</td>
<td>3579</td>
<td>3479</td>
<td>4017</td>
<td>4017</td>
</tr>
<tr>
<td>Kanlow (L-N)</td>
<td>3130</td>
<td>2695</td>
<td>3147</td>
<td>5256</td>
<td>3270</td>
</tr>
<tr>
<td>NL94-1 (L-N)</td>
<td>3460</td>
<td>2250</td>
<td>3124</td>
<td>4042</td>
<td>3059</td>
</tr>
<tr>
<td>Pooled LSD (0.05)</td>
<td>473</td>
<td>787</td>
<td>433</td>
<td>690</td>
<td>488</td>
</tr>
</tbody>
</table>

* U: upland; L: lowland; S: southern; south of 40° N; N: northern, north of 40° N for upland, north of 34° N for lowland.

and cultivar also made biomass yield unpredictable among six upland cultivars of switchgrass. The impact of location on Cl illustrates the variability associated with location. Plant Cl concentration was generally lowest in populations grown at Mead, NE whereas Sunburst contained approximately 500 mg kg⁻¹. In contrast, Sunburst populations grown at other locations were not always the lowest in Cl concentration. At Stillwater, OK, Sunburst plants contained the least Cl, but the concentrations detected were fivefold greater than those measured in plants grown at Mead, NE.

The Si concentrations were of special interest because this mineral is critical in slag formation. Similar to other minerals, complex location × cultivar interactions influenced the concentration of Si measured in plant tissues. The lowest concentrations of Si measured in this study were in populations grown at Spooner, WI. The relatively low Si concentrations measured in those populations were unexpected because the soil at Spooner is sandy (rich in Si) relative to the other sites. Accessibility of Si by plants is largely dependent upon the rate of water uptake (availability), and weathering of the Si parent molecule which frees Si into soil solution. Minerals such as quartz (e.g., quartz sand) are highly resistant to weathering processes, making Si less available to plants (Mengel and Kirby, 1987). Location effects did not appear to be associated with temperature or precipitation encountered during most of the growing season. Studies of Si accumulation during heat adaptation suggest that warmer temperatures are accompanied by an increased formation of silica bodies and increased silica-containing leaf pubescence in grasses (Banowetz et al., 2008). In the present study, the least Si occurred in plants grown at the two coolest locations (Spooner and Arlington, WI) while the greatest silica concentrations were observed in plants grown at Manhattan and Stillwater, KS, the two locations with warm mid-summer temperatures.

The basis for the complex location effect remains unclear. Hopkins et al. (1995a,b) reported genotype × environment effects on forage yield, quality, holocellulose, and lignin concentrations among diverse switchgrass populations propagated at three Midwest locations over two different cropping seasons. Despite the complexity of these interactions, they were able to identify populations that consistently ranked high in yield and quality. Casler and Boo (2003) also demonstrated genotype × environment interactions in six switchgrass populations planted at two locations where Cave-in-Rock consistently ranked lowest in ash content, a favorable trait for thermochemical conversion processes. Lewandowski et al. (2003) found similar location effects in a study of 15 genotypes of Miscanthus, a C₄ perennial grass, planted at five European locations. They showed that delayed harvest reduced biomass yields, but improved combustion qualities by significantly reducing ash, Cl, K, N, and moisture content. Delayed harvest also reduced yields of reed canarygrass (Christian et al., 2006) and switchgrass (Christian et al., 2002; Vogel et al., 2002). Management practices like chemical weed control, residue incorporation, soil drainage improvement, or soil fertilization, which impact soil characteristics including pH, also affect mineral uptake and subsequently their concentrations in plant tissues (Parrish and Fike, 2005).

One factor that might have contributed to variability in our study was plant physiological stage. Populations of all cultivars used in this study were harvested at the same time at each of the five locations and consequently, the plant samples represented, to some extent, differential maturity stages among genotypes. Dien et al. (2006) demonstrated that differences in physiological maturity correlated with mineral concentrations in three potential bioenergy crops, including switchgrass. Physiological maturity of Cave-in-Rock population impacted condensible gas yield in switchgrass pyrolysis products at temperatures <750 °C (Boote et al., 2006).

The range of mineral concentrations in these switchgrass populations was similar to that reported for Cave-in-Rock in a previous study (Dien et al., 2006), although the concentrations of silica measured in our study were on the lower end of the range they reported. They indicated that the possibility of soil contamination may have contributed to elevated Si concentrations in their plant populations. Quantities of P and K removed from the production system by harvest of the biomass ranged from 1.3 to 6.4 kg Mg⁻¹ (P) and from 6.2 to 15.8 kg Mg⁻¹ (K), depending on the location and cultivar. The concentrations of Cl, K, and P measured in our study were comparable to those reported by Christian et al. (2002), who evaluated seven varieties of switchgrass that included Cave-in-Rock, Sunburst, and Kanlow, three of the six plant populations evaluated in our study. These independent reports utilizing different analytical approaches confirmed the general range and baseline of mineral concentrations that should be anticipated in genetic approaches to improve the suitability of switchgrass for thermochemical conversion technologies. Ultimate and proximate analyses of three switchgrass populations which included Cave-in-Rock and Kanlow showed few genotypic differences in Cl concentration and that of mineral oxides, although Cave-in-Rock had somewhat greater ash (Lemus et al., 2002). The variability observed by Lemus et al. (2002) among these components between harvest years was in general agreement with our findings.

5. Conclusion

Genotypic variability in the concentration of these minerals occurred within these populations, but location effects made prediction of mineral concentrations within a given population difficult. Ranking of populations across the locations for all the minerals showed that NL94-1 and Sunburst most frequently contained the lowest concentration of the respective mineral. In contrast, Cave-in-Rock, Blackwell, and Kanlow frequently contained the greatest concentrations of minerals. Sunburst accumulated relatively low concentrations of Si in cooler locations, but contained greater concentrations of this mineral at Stillwater, OK, the warmest location. In general, silica concentrations were greater at locations with warm-summer temperature.

The contributions of cytotypes and latitude of origin to mineral concentration was at least partially masked by unidentified environmental factors. At Mead, NE, the intermediate latitude in this
study, mineral concentrations in upland northern cultivars were
similar to that of upland southern cultivars. The genotypic variability
observed among these switchgrass populations suggests that
genetic improvement in the suitability of switchgrass for thermo-
chemical conversion technologies is possible, although much re-
ains to be learned about environmental factors that impact
mineral concentration.

The strong location effect demonstrated in this study suggests
that site-specific management practices or other environmental
influences may also have large effect on mineral concentrations
in these switchgrass populations. Further research to identify man-
agement or other non-genetic effects, as well as genotype is
needed to determine the most effective means to lower the con-
sentrations of minerals that impact thermochemical conversion
processes.

Acknowledgements

The authors thank Michelle Nelson and Don Streeter for tech-
nical assistance. The use of trade, firm, or corporation names in this
publication is for the information and convenience of the reader.
Such use does not constitute an official endorsement or approval
by the United States Department of Agriculture or the Agricul-
tural Research Service of any product or service to the exclusion of oth-
ers that may be suitable. We thank Dr. Charles Tagliaferro, Ohio-
state University (retired) and Richard Wynia, NRCS, Manhat-
ttan, KS for their collaborative efforts in generating samples
that were used in this research project.

References

Baroweza, G.M., Azevedo, M.D., Stout, R., 2008. Morphological adaptations of hot-
springs panic grass (Dichanthium ignicolum var. seminatum (Schult.) to
Boateng, A.A., Hicks, K.B., Vogel, K.P., 2006. Pyrolysis of switchgrass (Panicum
vulgare) harvested at several stages of maturity. J. Anal. Appl. Pyrol. 75,
55–64.
Boateng, A.A., Boateng, G.M., Steier, J.J., Barton, T.F., Taylor, D.G., Hicks, K.B., El-
Nashar, H., Sethi, V.K., 2007. Calorification of Kentucky bluegrass (Poas prox-
C Adler, M.D., Roe, A.R., 2003. Cultivar × environment interactions in
switchgrass. Crop Sci. 43, 2226–2233.
switchgrass and coastal panic grass grown as a biofuel in southern England.
yield and mineral content of Panicum arundinaceum L. (reed canary grass) genotypes
screened for their potential as energy crops in southern England. J. Sci. Food
Agric. 86, 1181–1185.
Bie, B.S., Jung, H.-G., Vogel, K.P., C Adler, M.D., Lam, J.S., Ees, L., Mitchell, R.B.,
pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and
Hennington, J.C., Best, L.B., 2002. Grassland bird use of riparian filter strips in
effects and genotype × environment interactions for traits of elite switchgrass
variability and genotype × environment interactions among switchgrass
Chloroplast DNA and nuclear DNA content variations among cultivars of
emission spectrometry: collaborative study. J. Assoc. Offic. Anal. Chem. 68,
43–52.
Biomass yield and quality of 20 switchgrass populations in southern Iowa.
USA. Biomass Bioenerg. 23, 433–442.
Lewandowski, I., Chittor-Brown, J.C., Anderson, B., Buech, G., Christian, D.G.,
the combustion qualities of Miscanthus genotypes. Agron. J. 95, 1274–1280.
northern belleville area rice selection and fate. J. Wildlife Manage. 20, 564–571.
Evaluation of selected warmed-season grasses for biomass production in areas
Potash Institute, Worldfarming–Ben, Switzerland.
Soil properties and chemical characteristics of biomass fuels. Biomass Bioen-
erg. 10, 123–138.
R.L., Miller, D., needles, C.J. (Eds.), Peragro: An Introduction to Grassland
Bioenerg. 6, 339–347.
Sample, D.W., Kline, R.M., 1996. Some ecological and socio-economic
considerations for biomass energy crop production. Biomass Bioenerg. 10,
115–122.
Perlebach, R.D., Wright, L.L., Tack, W.W., Graham, R., Stokes, M.J., Enichuk, D.C.,
2005. Biomass as feedstock for a bioenergy and bioproducts industry: the
Roth, A.M., Sample, D.W., Ribe, C.A., Patte, L., Undersander, D.J., Bartlett, G.A.,
2006. Grassland yield response to harvesting switchgrass at a biomass energy
crop. Biomass Bioenerg. 29, 400–408.
Sanderson, M.A., Reed, R.L., McLaughlin, S.B., Wolfsleger, S.D., Genger, R.J.,
Sanderson, M.A., Reed, R.L., Ocumpaugh, W.R., Hussey, M.A., Van Erenbruck, N.,
production in the Midwest USA: harvest and nitrogen management. Agron. J.
94, 413–420.
Biomass Bioenerg. 6, 191–205.