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Abstract This simulation research was conducted in order
to develop a large-fire risk assessment system for the con-
tiguous land area of the United States. The modeling system
was applied to each of 134 Fire Planning Units (FPUs) to
estimate burn probabilities and fire size distributions. To
obtain stable estimates of these quantities, fire ignition and
growth was simulated for 10,000 to 50,000 “years” of arti-
ficial weather. The fire growth simulations, when run
repeatedly with different weather and ignition locations,
produce burn probabilities and fire behavior distributions at
each landscape location (e.g., number of times a “cell” burns
at a given intensity divided by the total years). The artificial
weather was generated for each land unit using (1) a fire
danger rating index known as the Energy Release Compo-
nent (ERC) which is a proxy for fuel moisture contents, (2) a
time-series analysis of ERC to represent daily and seasonal
variability, and (3) distributions of wind speed and direction
from weather records. Large fire occurrence was stochasti-
cally modeled based on historical relationships to ERC. The
simulations also required spatial data on fuel structure and
topography which were acquired from the LANDFIRE
project (http://www.landfire.gov). Fire suppression effects
were represented by a statistical model that yields a proba-
bility of fire containment based on independent predictors of
fire growth rates and fuel type. The simulated burn proba-
bilities were comparable to observed patterns across the U.S.
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over the range of four orders of magnitude, generally falling
within a factor of 3 or 4 of historical estimates. Close
agreement between simulated and historical fire size distri-
butions suggest that fire sizes are determined by the joint
distributions of spatial opportunities for fire growth
(dependent on fuels and ignition location) and the temporal
opportunities produced by conducive weather sequences.
The research demonstrates a practical approach to using fire
simulations at very broad scales for purposes of operational
planning and perhaps ecological research.

1 Introduction

For the U.S. Federal land management agencies, a national-
scale assessment of wildfire risk offers a consistent means
of understanding and comparing threats to valued resources
and predicting and prioritizing investments in management
activities that mitigate those risks. An actuarial approach to
risk is well suited to strategic planning in fire and land
management because it integrates fire probabilities with the
consequences (Brillinger 2003; Calkin et al. 2010; Fair-
brother and Turnley 2005; Scott 2006). Such quantitative
risk assessments are still relatively new to wildland fire,
however, in part because of difficulty associated with
reliably estimating burn probabilities and variability in fire
behavior (Finney 2005). Other challenges involve the
estimation of economic or ecological impacts (positive or
negative) produced by the physical fire behaviors (Bril-
linger 2003; Calkin et al. 2010; Kerns and Ager 2007). In
this article, we describe the structure of a simulation sys-
tem designed to estimate the probabilistic components of
wildfire risk for Fire Planning Units (FPUs) across the
continental U.S. and then evaluate its performance against
historical records. A companion article in this issue is
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devoted to the valuation and impact portions of fire risk
assessment (see Thompson et al. 2011).

Burn probabilities are the outcome of ignitions and spatial
and temporal processes that promote or restrict fire spread
across landscapes. Burn probability and associated fire
behavior is heavily influenced by large fires because they
account for most of the burned area (Podur et al. 2009;
Strauss et al. 1989). The term large is used here to refer in a
general way to fires that escape initial attack, irrespective of
their actual size. Fire size criteria are often used for statistical
purposes, however. For example, between 1970 through
2002, fewer than 3% of fires on Forest Service lands were
larger than 121 ha (300 acres) (Calkin et al. 2005). Sup-
pression efforts have presumably been responsible for
reducing estimated burning rates and probabilities in the past
century (Littell et al. 2009) compared to previous centuries
(Stephens et al. 2007). Some of the observed variability in
burn probability across the country is related to vegetation
and human activities as well as climate (Parisien and Moritz
2009; Schmidt et al. 2002; Schroeder and Buck 1970). The
rarity of large fires, in combination with the weather, fuels,
topography, and suppression actions unique to each fire,
contributes to difficulty in planning and risk modeling and in
obtaining the large sample sizes necessary to capture the
variability in these events.

Impacts of large fires derive from fire spread across het-
erogeneous landscapes far from their ignition sources under
highly variable weather. Simulations are routinely used for
capturing this variability when modeling growth and
behavior of individual fires (Anderson et al. 1982; Finney
1998; Richards 1995). Yet, methods for realistically incor-
porating the variability of ignitions, climate, and specific fire
weather patterns in simulations of burn probability are still
emerging (Ager etal. 2007, 2010; Beverly et al. 2009; Moritz
et al. 2005; Parisien et al. 2005; Parisien and Moritz 2009;
Braun et al. 2010). Other methods for addressing large fires
in fire management systems and risk assessments have
included expert gaming (Bratten et al. 1981), non-spatial
stochastic methods (Alvarado et al. 1998; Brillinger 2003),
and statistical modeling of historical data (Brillinger et al.
2006; Preisler et al. 2004; Preisler and Westerling 2007).

Despite the difficulties of using spatial simulations for
quantitative fire risk assessment, their strength lies in
accounting for the variability in physical fire behaviors and
the associated consequences that arise because of topology
in fire spread. The complex topology of fuel patterns,
weather sequences, and fire spread, have strong influences
on the patch structure of fire effects (Collins et al. 2007,
Wimberly et al. 2009) and the effects of fuel treatments
(Finney et al. 2005; King et al. 2008; Schmidt et al. 2008).
In fact, the ability to capture fuel treatment effects on local
and landscape burn probabilities (see Ager et al. 2007,
2010; Beverly et al. 2009; Parisien et al. 2007; Parisien and
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Moritz 2009; Suffling et al. 2008) is a primary motivation
of research into use of simulation for risk estimation.

Fireline intensity (energy release per unit length of flame
front) is a principal driver of many important fire effects and
varies greatly between fires and portions of fires. Fireline
intensity (sensu Alexander 1982; Byram 1959) is closely
related to impacts on ecological attributes such as tree
mortality (Hood et al. 2007; Peterson and Ryan 1986) as well
as the controllability of fire (Andrews and Rothermel 1982).
Intensity depends not only on local conditions at the time the
fire occurs (e.g., fuels, wind speed, moisture content), but
also varies greatly with the orientation of the fire front rela-
tive to the maximum or heading direction (Catchpole et al.
1982). Thus, the intensity experienced at a particular point on
a complex landscape is dependent on relative location of
ignitions (Kerby et al. 2007; Parisien and Moritz 2009) and
the fire environment up to arrival time. The fireline intensity
distribution at a particular point, even under homogenous
environmental conditions would, thus, display substantial
variability (Catchpole et al. 1992). The simulation system
developed here attempts to account for spatial and temporal
variation in weather, ignitions, and fuels, and generates burn
probability distributions by intensity to permit evaluation of
intensity-dependent effects.

2 Methods

The large-fire simulation system, referred to here as FSim,
consists of modules for weather generation, and for mod-
eling of fire occurrence, fire growth, and fire suppression.
The system is designed to simulate the occurrence and
growth of fires for thousands of years in order to estimate
average burn probabilities and fire size distributions. It was
applied independently to each of 134 Fire Planning Units
(FPUs) throughout the U.S. and the results compared to
historical data from those areas. Each module of this sys-
tem is described in the following sections.

2.1 Weather (daily, seasonal, and spatial variation)

A practical method was required for obtaining a large sample
of annual weather data which related to the unique climatic
and seasonal patterns of fire occurrence. Given the rarity of
large fires in our modern record, thousands of years of daily
weather scenarios would be required for simulations to
produce moderately stable and repeatable estimates of burn
probability. Average burn probability can be estimated for
each FPU as the total area burned divided by the total area
and number of years, or for each cell as the number of times
burned divided by the number of years. Measured weather
data are available from the numerous catalogued National
Fire Danger Rating System (NFDRS) Remote Automated
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Fig. 1 Map of Fire Planning
Units (FPUs) and Geographic
Areas (GAs) in the continental
U.S.
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Weather Stations (RAWS) located throughout the U.S.
(Zachariasson et al. 2003; http://www.fs.fed.us/raws). These
data typically cover the past one to three decades, which is
coincident with the most recent set of historical fire records
and contemporary fire management policies.

A single representative weather station was chosen
within each of 134 Fire Planning Units (FPUs) in the
continental U.S. (Fig. 1). The requisite weather and envi-
ronmental variables needed for fire behavior calculations
(Rothermel 1972) consist of a suite of fuel moistures
(percentage of dry weight) for six fuel categories and wind
speed and direction. Moisture content of dead fuels must be
calculated from daily weather records (temperature,
humidity, solar radiation, precipitation) for four fuel time-
lag classes (1, 10, 100, 1000 h) and for live woody and live
herbaceous components (Fosberg and Deeming 1971;
Deeming et al. 1977, Andrews 1986, Bradshaw et al.
1984). We relied on a simple method of accounting for the
daily and seasonal variability of these separate moisture
contents by combining them based on their collective
influence on the fire danger rating index Energy Release
Component (ERC) of the U.S. National Fire Danger Rating
System (NFDRS). The ERC index represents the amount of
energy released during flaming spread (BTU ft~* (J m™2)),
and varies only by fuel moisture for a given fuel type. For
each FPU, we used NFDRS fuel model “G” because it
contains parameters for all fuel components and size
classes (1, 10, 100, 1000 h, live herbaceous, and live
woody) (Bradshaw et al. 1984). ERC(QG) is, thus, capable of
reflecting the influence of both short and long term varia-
tions in fuel moisture caused by precipitation and changes
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Fig. 2 The average daily value of Energy Release Component index
from the U.S. National Fire Danger Rating System is shown for
weather stations in four fire climate regions of the western U.S. ERC
captures the different trends in amplitude, duration, and timing of
seasonal dead and live fuel moisture trends and was thus used as a
proxy for fuel moisture in the simulation system

in temperature and humidity. It has shown strong corre-
spondence with fire occurrence in many different climate
zones of the U.S. (Andrews et al. 2003) By using
ERC(G) for all FPUs, it becomes a proxy for the influence
of fuel moisture on fire behavior and can reflect daily,
seasonal, and regional variability for different fire climates
of the U.S. (Fig. 2).

The seasonal and annual variability in live and dead
fuel moisture (through ERC(G)) was modeled using
time-series analysis. Time series captures (1) the trend in
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ERC(G) throughout the year, averaged daily over the
period of record, (2) the daily standard deviations, and (3)
the average temporal autocorrelation of the ERC(G) values.
ERC(G) has strong autocorrelation because of the time-lag
of larger woody fuel components (100 and 1000 h time
lag) which characterizes the time-periods required to
asymptotically approach equilibrium in fuel moisture pro-
vided steady conditions (Fosberg and Deeming 1971).
These three time-series components were then used to
generate thousands of hypothetical years of daily
ERC(G) trends for each FPU independently as input to the
fire growth modeling.

The time-series modeling is based on a sample of daily
values of ERC(G) (designated as z(f) where ¢ represents
days) from a number of years of historical data (e.g., 10 to
20 years). This analysis assumes that:

1. There exists an overall seasonal trend f{(r) which
remains the same from year to year, which we estimate
with a weighted least squares polynomial model of
z(t). The weights were the inverse of the daily standard
deviations.

2. Daily standard deviations are estimated assuming
z(t) are normally distributed around the daily means
u(r). Visual inspection of z(#) for the FPUs revealed
symmetric distributions without heavy tails, thus
supported this assumption.

3. The residuals (z(f)—f(r)) are autocorrelated in time out
to a maximum value of #*, and follow some autocor-
relation function p (k) where k is the lag in days.

The autocorrelation function p (k) is used to obtain
coefficients ¢ (for use later in an autoregressive function)
as follows:

¢:Pt;1pt* (1)
where
¢ = [(f)la ¢2a LT (f)t*]

Prs = [plap27 . '7pr*]

and the matrix

1 P1 P2 Pri—1
p=| M 1 P1 Prs—2
Pre—1 Prs—2 Prs—3 -+ 1

The overall model for estimating autocorrelated time
series values of ERC(G) is then:

zhat(1) = f(1) + ¢y (alt — 1)) + po(at = 2)) + - --
+ ¢plalt — 1x)) + a(1) (2)

In this expression, a(f) is a white noise process with zero
mean and a variance obtained from Box and Jenkins (1976,
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p- 56) which accounts for the variance explained by the
autoregressive model:

(1) = var(a())/(1 = p1¢1 = patby -+ = Prdb)  (3)

For purpose of simulating artificial time series ERC(G)
values, we then simulate a stream of artificial a(z)’s with

var(a(t)) = s2(6) % (1 = 1@y — P2y = ) (4)

We then apply the filter ¢ and add the seasonal trend as
in Eq. 2. This allows the generation of daily values of
ERC(G) for as many seasons as needed to capture the
variability in moisture conditions (Fig. 3a).

The daily ERC(G) values produced by the time series
modeling for an FPU were translated into values of fuel
moisture content from a look-up table. A look-up table
was constructed for each weather station (each FPU) and
contains the average historical fuel moisture contents for
each ERC(G) percentile range. Because this simulation
system was intended to simulate only large fires,
ERC(G) categories were fixed at the 80th, 90th and 97th
percentiles based on all days in the year. Fire spread was
not simulated for days when ERC(G)dropped below the
80th percentile. Daily fire spread calculations also required
determination of the length of time for which these
moistures apply during the typical afternoon “burning
period” which is the portion of each day where fires are
most active. Fuel moisture is one of the main weather-
caused factors delimiting this period of active fire
spread (Chandler et al. 1963; Beverly and Wotton 2007,
Fernandes et al. 2008; Leonard 2009). Typically the
burning period increases in length as fuels become drier
(i.e., fires burn longer with lower fuel moisture). The
actual lengths of these afternoon periods is uncertain, but
for the purposes of simulation, they were fixed at 1, 3, and
5 h for the 80th, 90th, and 97th percentile ERC conditions,
respectively.

Wind variability was characterized as joint probability
distributions of speed and direction during the afternoon
hours for each month of the year (Fig. 3b). Each of the
monthly distributions of wind speed and direction was
sampled at random to produce a 365-day record of these
attributes. This approach assumes that wind probabilities,
considered jointly, are random from day to day within a
given month and uncorrelated with fuel moisture. Wind
direction may be weakly autocorrelated beyond one day,
however (Kalvova and Sobisek 1981).

Each artificial “year” of weather ultimately generated
for fire simulation, therefore, comprised 365 daily values of
ERC(G), wind speed, and wind direction, plus the fuel
moisture values indicated by the ERC(G) time series. Tens
of thousands of years of weather scenarios were then
generated by this method.



Stoch Environ Res Risk Assess (2011) 25:973-1000

971

Fig. 3 Examples of weather
data supplied to the simulation
for creating artificial daily fire
weather, a three years of daily
Energy Release Component
values (shown in red, blue, and
purple) relative to the trend
(shown in navy) illustrate the
daily and annual variability in
this danger rating index that
reflects fuel moisture, b joint
probability distributions of
wind speed and direction
displayed as a wind-rose for
example months (April, June,
August, October) for a selected
weather station
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2.2 Large fire occurrence

The utility of fire danger indices, such as ERC(G), for
predicting fire activity is often evaluated by means of
logistic regression (Bradstock et al. 2009; Martell et al.
1987; Preisler et al. 2004, 2009). Logistic regression was
used here to develop a probabilistic relationship between
daily ERC(G) and large fire occurrence from the historical
record for each FPU (Andrews et al. 2003). The locally
determined size-limit of a large fire or escaped fire varies by
FPU and is listed in Table 1. The resulting functions indi-
cate that larger fires are less likely than smaller fires for a

N June N
— e NN WNE
1. g i 188
. NE MW ME
x i %
" Ene vawi / \ EME
. (". |."' (L]
\ [ |
| | 1
| | |
{E Wi +E
| { |
f \ /
\ /
E8E ""9*\ /(:&
/ \ /
o MEH i / PH
Foi-a rd 104
o [
e b Es w e b
o -1 0308
e T T __f-/ H ez
— " 85 33 coserom 195 00%) T e Ol aex
o4 Datayears 2022-2018 s ImE
[ “are Annual ter dases: June | thos Jure 30 ] oare
N
e Oct - S
Sy . e : 5
19 ~ - 108
W
= NE // o NE
- 7 .
™ ..\"‘ w-m/ " ENE
i / o
\ / \
\ f \
1E W +E
| |
\
\
EsE ""3""\ ESE
: MEH \ ey
/ 14 . ’ -
. i w“a
; " PPN -3
= LA g ~ ot
1318 -~ - o
e [ 18025 cemaesamepsowy e g nr
g5 Ll os-a Caswvabons 2323 OI%) Eia ra - mEE
] Dateyesr: 2007- 2010 5 I mea

(= AT Anaual teer dates: Cutober | Ty Oclebar

given ERC(G) (Fig. 4a). Although there is no exact defi-
nition of what constitutes a large fire, these regressions
provide a practical and non-spatial method of stochastically
simulating occurrence of large fires in relation to seasonal
and daily weather variability generated by the time-series
model described in the previous section. Fire occurrence
is, of course, only conditionally dependent upon fuel
moisture, meaning that many other factors such as ignition
sources are also relevant (Brillinger et al. 2006; Preisler
et al. 2004).

Two statistics are used here to characterize large fire
occurrence for each FPU:
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(a) 4+hd (1) The probability of at least one large fire start
0.07 / occurring on a particular day as predicted by
e / ERC(G) through logistic regression (Fig. 4a), and
> 005 / (2) The probability of different numbers of simultaneous
3 0.04 126rha large fire starts occurring per day for each FPU
S o003 Vil (Fig. 4b).
Ia.o._ - / // 250+ha . -
§i .~ o~ 1200}na Large fire start locations were determined randomly
S0 >_::‘—""/ within FPUs. This simplest assumption was made in the
0 10 20 30 40 S0 60 70 80 90 100 absence of a ready and practical national-scale alternative
ERC(G) to derivations from historical large-fire start locations. This
(b) 200 simulation system concerns only large fires and spatial
refinements will depend on resolution of whether (1) large
250 - fire start locations differ from the population of all ignitions
as indicated by Dickson et al. (2006) and Syphard et al.
% ax (2008), and (2) if large fire locations are independent over
% 150 time and space. This last factor is critical because large
E fires are distinguished by their ability to spread, and the
E recurrence of future large fires may be diminished by
= = proximity to earlier large fires until fuel conditions recover
H (Rollins et al. 2001; Collins et al. 2007). This would mean
L H N —— that historic large fire occurrence locations may only be
¥ Rad BA T8 8 1011121011 81017184920 generalizable as probability density functions for use in
Number of Fires

Fig. 4 Example data required to model large fire occurrence in each
FPU include a logistic regression predicting the probability of at least
one large fire start as a function of ERC, and b empirical distribution
function of numbers of daily large fire starts occurring simulta-
neously. These data reflect the rarity of simultaneous large fire
occurrence, with only one observation in each category of 7, 8, 10, 11,
14, 16, 18 large fire occurrences in a single day

risk assessment at very coarse resolutions.
2.3 Fuels and topography
Spatial information on fuels and topography was obtained at

30 m resolution from the LANDFIRE project (http://www.
landfire.gov). Data layers include descriptions of surface

Fig. 5 National U.S. map
showing surface fuel models
(Scott and Burgan 2005) at

30 m resolution as contained
in the LANDFIRE data set
(http://www.landfire.gov). All
simulations were performed
after resampling data to 270 m

Fire Behavior Fuel Models
LANDFIRE National

Sy

Non-
Burnable

GR3  Grass-Shrub Shrub Fuel Types Timber Litter Fuel Types Fuel Types

GRa FuelTypes || sHi [ sHe T [ e I e
jors | | GS1 [ sv2 I SHT  mymber Understory : T2 . Slash-Blowdown o2
GRE |52 [ sk MM SHE  Fuel Types T3 [l TS Fuel Types NB3

[ lorr I G$2  El  El LU Tuz [ e [ T SB1 | P
Plcre I G54 [ sHs [ vz [ Tus s | E:H B neo
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(a) No Timber Fuel Types Present
1.0

091
0.8 1
0.7 1
061
0.5
041
031
0.2 1
0.1
0.0 T
(b) Timber Fuel Types Present

Low Spread Intervals

High Spread
Intervals

1.0

09 1 Low Spread
Intervals

0.8 -

Probability of Containment

0.7
06
0.5
04 -
0.3
0.2
0.1 |
0.0

Ecmama High Spread Intervals
0 2 4 6 8 10 12 14 16 18 20
Number of Days in Interval

Fig. 6 Statistical model of large fire containment for fires burning in
a grass and shrub fuel types and b in timber fuels (from Finney et al.
2009). NPI number of previous intervals

fuels (Scott and Burgan 2005) and canopy fuels in formats
required by fire growth simulation software (Finney 1998,
2006). There were 134 FPUs in the continental U.S. which
varied from 418,704 ha to 32,550,526 ha in area (Fig. 1,
Table 1). Data from LANDFIRE are originally produced at
30 m resolution (Fig. 5) but all data were resampled to
270 m to achieve practical simulation times. For purposes
of simulation, the national dataset was clipped to the spatial
extent of each FPU plus a buffer area of 15 km around all
external borders. This buffer area was intended to minimize
edge-effects on spatial fire simulations caused by fires
starting outside the designated FPU. All buffers were
removed prior to analyses of simulation outputs.

2.4 Large-fire suppression

The effectiveness of fire suppression on large fire patterns
remains poorly understood but cannot be ignored given the
huge annual effort and expenditures on large wildland fires
(Calkin et al. 2005; Gebert et al. 2007; Liang et al. 2008).
The influence of modern fire management policy is repre-
sented in this system by means of a statistical model of
containment. The model relied on large-fire records from
2000 to 2005 (Finney et al. 2009) to yield a probability of

containment related to time periods of high and low fire
area growth (relative to the average daily area change).
Containment was more likely (1) during periods of slow
growth, similar to the findings of Flowers et al. (1983) and
Podur and Martell (2007), (2) with increasing fire duration,
and (3) in non-timber fuels (Fig. 6). This suppression
model was used to generate a sequence of containment
probabilities associated with intervals of daily fire growth
rates that then stochastically terminated fire growth. The
fire suppression algorithm limits the sizes of most fires,
especially fires that start early in the season; fires that
started near the end of the active season are influenced to a
lesser degree by suppression and are more apt to be
extinguished due to a number of consecutive days of low
ERC(G). Without the containment probability model, fires
simulated by this system would continue to grow until the
end of the year if weather conditions were favorable.

2.5 Fire growth and behavior

Large fire starts were modeled stochastically using the
daily ERC(G) values generated by the time series analysis
(Fig. 3a) and the relationship between ERC(G) and prob-
ability of fire occurrence (Fig. 4a). The simulation process
begins with the start of the calendar year, day-by-day,
determining whether one or more large fires start on each
given day, and then simulating growth of fires that occur.
The locations of large fires are assumed to be random, but
if data were available and indicated otherwise, the spatial
pattern of ignitions could be adjusted accordingly. Each fire
initiated on a given date was grown from its ignition point
using the sequence of daily values of fuel moisture and
wind speed from the synthetic weather stream for the
corresponding calendar period. The duration of fire growth
was determined only by the weather sequence following
the day of ignition and by the suppression model (i.e., fire
duration was not set a priori). This contrasts with methods
for modeling burn probability which rely on parameteri-
zation of the burn duration based on historical fire data
(e.g., Parisien et al. 2005; Parisien and Moritz 2009; Ager
et al. 2007; Braun et al. 2010).

For each fire, a minimum travel time (MTT) algorithm
performs fire growth by searching for the shortest fire
travel times among nodes of a regular lattice overlain
across a landscape (Finney 2002). This method minimizes
distortion to fire shapes that results from cellular automata
or gridded contagion algorithms (Ball and Guertin 1992;
Peterson et al. 2009). The original MTT algorithm was
enhanced to permit time-varying burning conditions and
include spotting from torching trees (Albini 1979). It cal-
culates fire behavior (e.g., fireline intensity) at each “node”
or cell corner of a gridded landscape, which is necessary
for determining fire effects. Fireline intensity varies
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considerably for each node based upon (1) the different
weather conditions occurring at the time the fire burns each
pixel, and (2) the direction the fire encounters a pixel rel-
ative to the major direction of spread (i.e., heading,
flanking, or backing fire).

To make the fire growth simulation efficient, fire
behavior for the entire landscape was pre-processed for all
combinations of moisture (three percentile categories: 80th,
90th, and 97th ERC(G) percentiles) and wind speeds and
directions for each month described above. For example,
the total number of fire behavior conditions for 3
ERC(G) percentiles, 5 wind speeds, and 8 wind directions
would be 150 (plus three scenarios for calm wind). These
fire behavior calculations (Finney 1998, 2006) yield the
spread and intensity of surface fire (Rothermel 1972),
crown fire (Rothermel 1991; Van Wagner 1977), and
spotting distances from torching trees (Albini 1979). Pre-
processing of fire behavior improved the efficiency of the
system because the calculations could be parallelized and
the results stored for repeated access by the fire growth
algorithm for all of the many fires simulated in the
ensemble. To further enhance efficiency, only the data
essential for determining fire growth and intensity for each
fire weather scenario were stored. These include the
elliptical fire dimensions (Finney 2002), direction of
maximum spread, maximum fire line intensity (Byram
1959), and maximum spotting distance and direction.

The ensemble simulation system was developed for
shared-memory computers and parallelized with multi-
threading among the independent Monte Carlo simulation
years. Computers used for the simulations contained 16 or
32 processors with 32—-64 GB of shared memory. Com-
puting times were dependent on the number of years in the
simulations (set at 10,000 or 50,000 for all FPUs), the
resolution of the spatial data (270 m), and the sizes of
the fires that developed.

The output variables stored from each run included (1)
the burn probability at each 270 m cell as determined by
counting the number of times each cell burned and dividing
by the total number of simulation years, (2) the size dis-
tribution of all fires in each FPU, and (3) the conditional
probability distribution of flame length for each 270 m cell.
Flame length (m) is an empirical transformation of fireline
intensity based on Byram’s (1959) equation and is more
interpretable than units of kW m~"'. Burn probability out-
puts were also summarized as averages for each FPU.

2.6 Comparison with historical fire records
Observational data were obtained from both federal and
non-federal fire-occurrence reporting systems as described

by Brown et al. (2002) and Schmidt et al. (2002). Federal
fire records were drawn from the USDA Forest Service Fire
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Statistics (FIRESTAT) system via the National Interagency
Fire Management Integrated Database (NIFMID), from the
USDI Wildland Fire Management Information (WFMI)
database, and from the Fish and Wildlife Service Fire
Management Information System (FMIS). Non-federal fire
records were drawn from the National Association of State
Foresters (NASF) fire records database and the National
Fire Incident Reporting System (NFIRS). The spatial and
temporal coverage and information content of records
within the non-federal fire reporting systems varied by state
(see Schmidt et al. 2002), and, when possible, missing data
were acquired from state fire-management offices. The
resulting dataset compiled for this analysis included fire
records from circa 1970 through 2008, but originating
years varied by FPU (Table 1). This time span corresponds
well to the weather station data obtained used for fire
simulations.

Fire occurrence records are prone to inconsistencies
between jurisdictions (Schmidt et al. 2002) because of the
differing requirements for reporting, accessing, and
recording specific attributes such as ignition location and
details such as sizes and duration. To be included in this
analysis, a fire record had to include a point location at
least as precise as the centroid for the Public Land Survey
System (PLSS) section in which the fire occurred, the date
on which the fire was discovered, and the final fire size.
Viable records were then screened for obvious geospatial
and information errors (e.g., nonvalid dates). When sour-
ces of geospatial errors could be identified (i.e., improper
formatting of coordinates, incorrect spatial reference pro-
vided), the location information was corrected and those
records salvaged. Redundant records, which are present
within individual reporting systems and further generated
via compilation of data from multiple systems (Schmidt
et al. 2002) were painstakingly identified and removed.
Information and geospatial errors and redundant data may
persist, of course, but errors of omission, especially for
smaller non-federal fires, are much more probable and
cannot be known. The largest fires (ca. > 2000 ha), which
collectively can account for more than 95% of the total
area burned on an annual basis (Strauss et al. 1989), tend
to be multi-jurisdictional incidents and are the most likely
to be included in the compiled database, even with miss-
ing non-federal records, as long as the federal record is
complete. Based on trends indicated by Brown et al.
(2002) and guidance from the national Fire Program
Analysis (FPA) system, we determined that the federal
record could be considered complete only for the period
1992-2008. Thus, while the resulting national dataset still
may be incomplete, it should afford reasonable estimates
of annual area burned from 1992 through 2008 due to the
high probability that records of the largest fires are
included.
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Two metrics for comparing the simulations with obser-
vations were (1) average burn probability for each FPU,
and (2) the fire size frequency distributions for each Geo-
graphic Area (or GA, a regional collection of FPUs)
(Fig. 1). This aggregation of historical fires across the
larger domain of the GA was necessary because of the
paucity of large fires at finer scales. GAs were originally
delineated as administrative units for organizing fire sup-
pression activities (http://gacc.nifc.gov) but are not
homogenous in terms of fire activity or climate. Two pairs
of GAs (Northern and Southern California, and the Eastern
and Western Great Basin) were combined for the analysis
for a total of 8 GAs in the continental U.S. Average annual
burn probabilities were calculated for each FPU by adding
all area burned from 1992 through 2008 and dividing by
the total area in each FPU and the 17 years of record. The
average burn probabilities calculated this way correspond
to the Natural Fire Rotation concept of (Heinselman 1973)
which assumes a stationary climate, spatially uniform
ignition and burning conditions, and constant level of
suppression activity. The assumed stability is impossible to
verify, but given the dearth of other sources of information,
the historical averages of burn probability derived were
deemed satisfactory for comparisons with the results of our
simulation.

To ensure that our modeled burn probability has
parameters consistent with observed historical records, we
employ the method of bootstrapping (Efron and Tibshirani
1986) to form confidence intervals around both the mod-
eled burn probability and the historical burn probability.
Our bootstrapped resampled datasets yielded estimates of
the mean area burned. The standard deviation of those
resampled estimates produces the standard error of the
estimated area burned. We then divide the mean area
burned, and the upper and lower bounds of the estimated
mean by the area of each FPU to obtain the confidence
intervals of the historical and modeled burn probabilities
(Table 1).

Fire size distributions were compiled from the simula-
tion data for each FPU and plotted on logarithmic axes
along with the historical distribution of fires combined
from all FPUs in each GA. The slope of each log-trans-
formed distribution was obtained by robust regression
using Kendall’s Tau statistic (Sen 1968) which does not
assume normality of the residuals. We used the median
frequency in each size category as the dependent variable
instead of the actual frequencies which are sparse for the
larger fire sizes. Both historical and simulated fire size
distributions contained zero observations in some of the
largest size categories because such fires are so rare and
estimates based on the necessarily small sample sizes of
fires in the largest classes are relatively error-prone. The
sample size limitation also produces an identical number of

fires (often 1 or 2) in size classes in range of the largest
fires. The 95% confidence intervals for the slope coeffi-
cients were estimated for evaluating the comparability of
slopes.

3 Results

Simulation time for FSim to be completed for each FPU
varied from about 4 h to about 24 h depending on the size
of the FPU and the number of years specified for the
simulations (Table 1). This was considered a practical level
of performance given that the continental U.S. consisted of
134 FPUs.

Both the historical data and model output indicate that
burn probabilities averaged by FPU were substantially
higher in the western U.S. than the rest of the country
(Fig. 7a). This is primarily a result of the lower fuel
moistures and much larger fires possible in the vast wild-
land areas of the west. The average burn probability from
each FPU spanned four orders of magnitude (1 x 10—
1 x 1072, Fig. 7, Table 1) with a high degree of associa-
tion between the modeled and historical burn probabilities.
The smaller sample sizes for historical burn probabilities
contributed to much wider confidence intervals than for
modeled probabilities (Fig. 7c). While of value, the FPU-
level summaries obscure the underlying finer-scale proba-
bility structure (Fig. 7b) that better reflects local vegetation
and fuel distribution including developed areas that are
mapped as having no flammable vegetation (Fig. 5).
Detailed examination by Geographic Area of simulated
burn probabilities at the original resolution of 270 m
revealed some localized values as low as 1 x 107°
(Fig. 8Aa—Ha). Simulated burn probabilities compared
reasonably with historical data for most FPUs (Fig. 8Ab—
Hb). Discrepancies in burn probabilities within the Rocky
Mountain GA (Fig. 8Fb) and the Southwest GA (Fig. 8Hb)
showed a tendency for simulated probabilities to be higher
than those estimated from historical data.

Observed and simulated fire size distributions for FPUs
in each Geographic Area were all found to have nearly
linear negative slopes when plotted on logarithmic axes
(Fig. 8Ac, d—Hc, d). Of the two parameters that charac-
terize frequency-magnitude distributions, the slope cap-
tures the relative frequency of fires of different sizes, while
the intercept changes with respect to the total number of
fires. In this case, the slope is the parameter of interest,
since it characterizes the distribution of large and small
fires in each FPU and GA. The slope of historical fire size
distributions was between about —1.4 and —1.6 for all
GAs, considering the 95% confidence intervals. Some
FPUs displayed obvious differences compared to the his-
torical distribution for the GA, particularly in the Southeast
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Fig. 7 Results of simulated burn probabilities a compared spatially
to historical burn probabilities for the continental United States by
FPU, b displayed at native 270 m resolution, and ¢ compared to
historical probabilities with 95% confidence intervals

(Fig. 8Gc, d) and the Northeast (Fig. 8Bc, d). Others GAs
were more consistent, for example California GA
(Fig. 8Ac, d), the Northwest GA (Fig. 8Ec, d) and the
Rocky Mountain GA (Fig. 8Fc, d). Expectedly, the num-
bers of fires for each GA based on the 20—30 year his-
torical record were much lower than those based on 10,000
to 50,000 simulation years, causing the historical data
curve to plot below the data from each FPU. Exceptions
include a few FPUs in coastal areas in the Pacific North-
west GA (Fig. 8Ec) and in the heavily agricultural FPUs in
the Rocky Mountain GA (Fig. 8Fc). However, the maxi-
mum simulated sizes were much larger than the maxima
from historical records, some of which could be a product
of rare sequences of fire weather and ignition locations that
have not been observed.

The agreement between simulated and observed fire size
distributions was partly a function of the fire containment
model (Fig. 9). Containment probabilities had the effect of
reducing the sizes of fires by censoring growth after qui-
escent periods (Fig. 9c—f). This caused a greater fraction of
fires to be of smaller sizes and increases the slope of the fire
size distribution.

Fire behavior variability was expressed in terms of
conditional probabilities of flame length (Byram 1959) in
0.66 m categories for each 270 m cell (Fig. 10). The con-
ditional probabilities from all six categories sum to 1.0 and
can be multiplied by the actual burn probability to produce
absolute probabilities. The national maps (Fig. 10) suggest
that low flame length potential dominates eastern forests
whereas high flame length potential is far more common in
the western U.S.

4 Discussion

The spatial simulation of wildfire burn probabilities for an
area the size of the continental U.S. has not been previously
attempted. As demonstrated here, however, it is becoming
practical from both the standpoint of computing require-
ments, data availability, and modeling components. This
effort was driven by the practical desire for a modeling
process for large-scale risk assessment, but the results also
offer the opportunity to investigate fire patterns and their
causes over large spatial domains. For operational pur-
poses, model estimates of burn probability had to be
accurate enough to warrant confidence and be robust to the
range in quality and quantity of standardized sources of
input data routinely available. Only a limited set of metrics

were available to make comparisons of the model results,
and these included the historical burn probabilities sum-
marized by FPU and the fire size distributions.

With a few adjustments (Table 1), the system was
capable of generating output that corresponded well to the
patterns and trends evident from historical fire records. An
important limitation to model evaluation for such a large
and heterogeneous land area such as the continental U.S. is
the reliability, consistency, and time-span of historical fire
records, as well as the annual variability in fire activity
expressed by the confidence intervals (Table 1). Our static
approach to the simulation of probabilistic risk assumes
that the extant landscape structure and climatology can be
used to approximate patterns of fire occurrence for a span
of decades during which human land usage and fire man-
agement policies were in some degree of flux. So it is
interesting that conditions which contributed to the historic
fires (ignition sources, land cover types and fire spread
patterns) appear to be generalizable beyond that time per-
iod and specific landscape pattern. Cui and Perera (2008)
imply that the variability in ignition, land use, and sup-
pression should influence actual fire size distributions. This
contradiction might be partly explained by the extreme
nature of weather and fuel conditions that drive the large
fires; dry and windy conditions overwhelm the sensitivity
of fire behavior to fine scale departures from model
assumptions experienced under moderate conditions. This
is also probably an artifact of modern wildland fire policies
which “allow” fire spread only when the capability to
suppress them is exceeded. Suppression actions select for
the fastest fires under the most extreme conditions and
ultimately limit growth to shorter time periods than would
occur because of weather or fuel limitations.

The most common adjustment applied to the simulation
was alteration of the fire spread rate for two primary grass
and shrub fuel types in a minority of the FPUs (Table 1). A
few fuel types, mapped by LANDFIRE, were found to
produce excessive spread rates and fire sizes. The limited
need for these adjustments or calibrations among FPUs
suggests that the root issues are fuel-specific or region-
specific, or otherwise these calibrations would be required
for a majority of the U.S. Whether these adjustments were
required to compensate for the aggregated spatial resolu-
tion (270 m grid cells) or temporal resolution (daily
weather) is not known. However, both are well understood
to affect models of fire growth and fire regimes. For
example, fire growth modeling has been reported to over-
predict when input weather lacked high-frequency vari-
ability (Anderson et al. 2007). The use of weather data
from a single station in each FPU may contribute to dis-
parity between observed and predicted burn probabilities.
Regarding spatial inputs to the simulation, the spatial scale
and patterns of fuel, topographic features, and roads can
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influence fire growth and fire frequency (Gonzalez et al.
2007; Jones et al. 2004; Jordan et al. 2008; Kellogg et al.
2008; King et al. 2008; Viedma et al. 2009; Yang et al.
2008), as well as ignition (Massada et al. 2009; Krawchuk
et al. 2006; Braun et al. 2010). Sensitivity analysis of input
data resolution and spatial re-sampling algorithms would
likely be helpful in determining the relative influence of
spatial data and weather influences on modeled fire growth
and burn probabilities (Salvador et al. 2001).

The range of modeled and historical burn probabilities
estimated here is generally consistent with those from other
North American studies. Martell and Sun (2008) reported
historical burn probabilities for the years 1976-1994 in
Ontario, Canada, that varied from 1 X 107° to about
1 x 10_2, which is almost identical to the range in our
findings. Our estimates of average burn probability for the
western Geographic Areas were in similar ranges as those
for the past century reported by U.S. eco-region
2 x 107*=7 x 1073, Littell et al. 2009). National patterns
of burn probability indicated here were remarkably similar
to those generated from a multivariate statistical model that
used both climate and vegetation variables (Parisien and
Moritz 2009).

The variability of fire behavior produced by the simu-
lation (Fig. 10) is essential to determining fire effects in an
actuarial risk framework (Calkin et al. 2010). Different
ecological resources, for example, have different responses
across the range of fireline intensity levels. Thus, the
simulated fire line distributions at each cell can be used to
estimate expected impact (or percentiles) for different
ecological resources (Calkin et al. 2010). Expected impacts
can be summarized for each 270 m cell (as displayed in
Fig. 10) or, using the intensity “footprints” of each fire,
evaluated on a fire-by-fire basis to produce cumulative
effects or annual variability in risk within arbitrary land
areas or ownerships. Although not simulated here, the
system allows for the assessment of effects of management
activities on burn probabilities and fire behavior charac-
teristics. By simulating the spread of fires in relation to
certain patterns of fuel types under various weather con-
ditions, the consequences of fuel or vegetation manage-
ment activities, both onsite and “downstream” or offsite
can be evaluated (Ager et al. 2007, 2010; Beverly et al.
2009; Collins et al. 2010; Parisien et al. 2005; Graham
et al. 2009; Stephens et al. 2009).

The close correspondence between simulated and
observed fire size distributions was similar to that reported
by Moritz et al. (2005), but probably for different reasons.
Both models used weather for simulations but temporal
fuel dynamics were specifically modeled by Moritz et al.
(2005) and not here. In both cases, fire sizes from the
simulation were not simple transformations of the inputs
because none directly controlled fire size or duration of
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Fig. 8 Detailed comparison of burn probabilities and fire size
distributions by geographic area. Panel a shows for each geographic
area the burn probabilities from each FPU at 270 m resolution. Panel
b shows observed and simulated average burn probabilities with their
95% confidence intervals and the line of perfect agreement. Panel
¢ contains the logarithmic plots of the fire size distributions; the
legend displays the symbol for each FPU, and in panel d the slope and
confidence interval for each distribution in comparison to the CI (red
lines) for the historical distribution aggregated from fires in the entire
geographic area

burning. This result, therefore, suggests that the spatial and
temporal variability provided to the fire growth model
produce joint distributions of fire growth potential that limit
fire sizes in a manner similar to natural controls. Specifically
the results imply that the distribution of spatial and temporal
opportunity for fire growth is what governs the observed
power-law distribution of fire sizes (Malamud et al. 1998).
In our simulations, these opportunities resulted from the
combination of (1) fire weather sequences subsequent to the
ignitions as generated by the time-series method, (2) igni-
tion location relative to the spatial fuels/topography pat-
terns, and (3) the statistical probability of successful
containment. This interpretation is generally what was
proposed by Reed and McKelvey (2002) who argued that
competing probabilities of extinguishment and growth
could be responsible for the distributions of fire sizes—but
not the observed power-law behavior. Our analysis from
across the U.S. was consistently supportive of power-law
fire size distributions for both historical data and simulated
results over the range of fire sizes. The mechanics of this
simulation, however, does not allow for the spatial inter-
ference of burned patches and areas of available fuel
(self-organized criticality or SOC) (Bak et al. 1988, 1990;
Malamud et al. 1998; Moritz et al. 2005) because the fuel
layers are not updated yearly to reflect burning. This finding
is consistent with the idea that a number of different
mechanisms may be responsible for the observed power-law
behavior besides SOC (Millington et al. 2006; Tebbens and
Burroughs 2005). Consistent with the conclusion of Boer
et al. (2008), our simulation system suggests that weather
sequences exert strong influence over the opportunities for
fire growth. Certainly, the extant spatial fuel and topography
patterns affected fire sizes and frequencies in our simulation
system, just as in nature (Falk et al. 2007; Rollins et al.
2001), but interference among fires (Collins et al. 2007;
Moritz et al. 2005) was effectively excluded from our model
given that recent fires did not affect the static fuel conditions
used for each simulated year. If interference of fire patterns
frequently limited the extent of historic fires (van Wagten-
donk 1995; Collins et al. 2007), and if we were to account
for this phenomenon in our model, then we could see
modeled fire-size distributions with steeper slopes than
currently produced by the simulations.
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Fig. 9 Effects of the statistical fire containment model are demon-
strated as a map of the net difference in modeled burn probabilities
for California with and without large fire suppression (positive values
signify higher burn probabilities without suppression), b historic vs.
simulated average FPU burn probabilities for California and selected

The slopes of the simulated fire size distributions gen-
erally corresponded with the historical data and followed
the trends suggested by Malamud et al. (2005), in which
northeastern and southeastern areas of the U.S. have stee-
per slopes than the west. Clearly, however, the rarest of the
simulated large fires are much larger than have yet been
observed. There are several possible reasons for this, and
they are difficult to disentangle. First, fire sizes depend on
both the spatial continuity of fuels and the temporal
opportunity for spread, and these two factors can jointly
produce statistically rare conditions under which fires can
grow beyond historical maxima. The very long
10,000-50,000 year simulation period is expected to gen-
erate rare events that have not been seen in the relatively
short historical period of record (Cui and Perera 2008)
because large fires are very rare. Second, model simplifi-
cations to fuels and weather may also result in larger-than-
expected fire sizes. Clearly, by setting one weather condi-
tion per day we ignore the finer-scale weather variability
known to affect fire behavior calculations (Anderson et al.
2007). Fuel variability at the sub-270 m resolution is

T
5000
Area (hectares)

T
5000
Area (hectares)

T
50000

FPUs, and c—e fire size distributions with and without implementing
the suppression model compared to historic records for FPUs in
California (c, d), New Hampshire (e) and Montana (f). Historic fire
size distribution is shown in black, standard run in blue, and no-
suppression run in red

likewise unrepresented in the simulation but roads,
streams, urban development, or natural spatial heteroge-
neity in fuels and topography clearly introduces fire spread
thresholds and censors large fire growth (Reed and
McKelvey 2002; Ricotta et al. 1999; Yang et al. 2008).
Third, our inability to fully account for the influences of
suppression activities on fire growth could result in unre-
alistically large modeled fires. We only use a general sta-
tistical model for representing the very complicated effects
of suppression on fire growth. Moritz et al. (2005) relied on
a simple lower limit of spread rate for stopping fire
movement in California chaparral and Braun et al. (2010)
adjusted burn duration to improve fire size correspondence
with historical data. Fire suppression activities can effect
strong changes in fire growth depending on details not
accounted for in our containment model, including tactics
such as night-time operations and burnout from roads,
rivers, and ridges, and the deployment of locally variable
numbers and kinds of firefighting resources. These factors
would be particularly influential on growth of fires in grass
fuels or open shrub vegetation. Given these modeling
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Fig. 10 Conditional burn probabilities for six flame length categories. a Under 2 ft (0.6 m), b 2—4 ft (0.6-1.2 m), ¢ 4-6 ft (1.2-1.8 m), d 6-8 ft

(1.8-2.4 m), e 812 ft (2.4-3.7 m), f Over 12 ft (>3.7 m)

limitations, it may be useful to consider the introduction of
some means of truncation on the fire size distributions that
have been suggested by analysis of empirical data (Cui and
Perera 2008; Cumming 2001; Moritz et al. 2005).

Despite an incomplete understanding of the effects of
suppression on large fires, our modeling system demon-
strates that suppression could be responsible for substantial
reduction in both burn probabilities and fire sizes. Fire size

@ Springer

distributions generated with the statistical containment
model in place (Finney et al. 2009) have steeper slopes
(indicating a greater proportion of small vs. large fires)
than do those generated without containment. By censoring
fire growth, suppression slows the accumulation of burned
area, and proportionally reduces the frequency of larger
fires in favor of smaller ones. The end result is an increase
in the steepness of the modeled fire size distribution (Cui
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and Perera 2008) such that it more closely approximates
the historical observations. The same finding was reported
by Ward et al. (2001) who compared historical fire size
distributions from areas in Ontario, Canada having inten-
sive fire suppression activities and those in more remote
areas having little suppression. Podur et al. (2009) and
Braun et al. (2010) found reduced fire sizes and heightened
fire frequencies in zones of intensive suppression. These
effects on the fire size distribution also show up as reduced
burn probabilities (or fire frequencies) due to reduced fire
sizes. Fire sizes and burn probabilities can be quite closely
related (Falk et al. 2007; Li et al. 1999). The high degree of
correspondence between fire sizes and burn probabilities
(simulated and historical) suggests that the current model
formulation is capturing essential processes in ways that
produce reasonable estimates of the probabilistic compo-
nent of fire risk.

Of course, improvements in the FSim model structure
and components can be made in many areas. For example,
the assumption of uniform random large-fire start locations
in this model and others (i.e., Moritz et al. 2005) probably
is a source of error in fine-scale spatial patterns of burn
probability and behavior (Massada et al. 2009). Our pri-
mary concern here is with fire-start locations resulting in
large fires, which may not be a function of many factors
related to the general ignition pattern, which includes
vegetation type, management history, and spatial proximity
to human activities (Cardille and Ventura 2001; Krawchuk
et al. 2006; Krawchuk and Cumming 2009). Improvements
to the model of large fire occurrence must consider man-
agement actions as a spatially variable ignition filter—
producing a landscape characterized by different rates of
detection and firefighting resource response time, which
would allow fires to escape (become large) at spatially non-
uniform frequencies (Arienti et al. 2006; Dickson et al.
2006; Syphard et al. 2008). Finally, a gridded
ERC(G) time-series analysis could be used to better cap-
ture the variation in weather associated with major topo-
graphic features within FPUs which could then drive a
spatially explicit model of large-fire ignition. Similar
models have been demonstrated, with fire danger rating
indices and other weather factors providing spatial pre-
dictions of fire occurrence (Preisler et al. 2004; Preisler and
Westerling 2007).

5 Conclusions

Fire simulation was shown to be practical for use in con-
tinental-scale wildland fire risk assessments. The simulated
burn probability and fire size distributions demonstrated
reasonable fidelity to historical observations, suggesting
that actuarial calculations of expected impacts to

ecological and economic resources are possible. These
methods also provide for the first time, the ability to
evaluate land and fire management options for mitigating
risk. Risk mitigation could entail local and landscape-level
fuel management, which can affect burn probabilities and
modify the behaviors of fire should it occur. Much work
remains to be done by economists and natural resource
specialists concerning the responses of highly valued
resources to the physical behaviors of fire.
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