Kaposi's Sarcoma-associated Herpesvirus Transactivator Rta Induces Cell Cycle Arrest in G0/G1 Phase by Stabilizing and Promoting Nuclear Localization of p27kip

Running Title: KSHV encoded Rta induces cell cycle arrest

Pankaj Kumar and Charles Wood#
Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln NE 68583

Word Count
Abstract: 233
Text: 5958

Correspondent Footnote
102C Morrison Center
4240 Fair Street
University of Nebraska Lincoln
Lincoln NE 68583
USA

cwood1@unl.edu
The Kaposi's sarcoma-associated herpesvirus (KSHV) encoded immediate early gene, replication and transcription activator (K-Rta) is a key viral protein that serves as the master regulator for viral lytic replication. In this study, we investigated the role of K-Rta in cell cycle regulation and found that the expression of K-Rta in doxycycline (Dox)-inducible BJAB cells induced cell cycle arrest in G0/G1 phase. Western blot analysis of key cell cycle regulators revealed that K-Rta-mediated cell cycle arrest was associated with a decrease in Cyclin A and phosphorylated Rb (pS807/ pS811) protein levels, both markers of S phase progression and an increase in protein levels for p27, a cyclin-dependent kinase inhibitor. Further, we found that K-Rta does not affect the transcription of p27 but regulates p27 at the post-translational level by inhibiting its proteosomal degradation. Immunofluorescence staining and cell fractionation experiments revealed largely nuclear compartmentalization of p27 in K-Rta expressing cells demonstrating that K-Rta not only stabilizes p27 but also modulates its cellular localization. Finally, shRNA knockdown of p27 significantly abrogates cell cycle arrest in K-Rta expressing cells supporting its key role in K-Rta mediated cell cycle arrest. Our findings are consistent with previous studies which showed that expression of immediate early genes of several herpes viruses including HSV, EBV and CMV results in cell cycle arrest at the G0/G1 phase, possibly to avoid competition of resources needed for host cell replication during the S phase.
Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as Human herpesvirus-8 (HHV-8) is a member of gammaherpesvirus family that includes Epstein Barr Virus (EBV), Herpesvirus saimiri (HVS) and Murid herpesvirus 68 (MHV 68) (1). KSHV is the etiological agent of Kaposi’s sarcoma (KS), the most common tumor associated with HIV infection and for at least two other malignancies, pleural effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD) (2-4). Like all herpesviruses, the life cycle of KSHV consists of latent and lytic phases. The latent phase is characterized by a restricted pattern of viral gene expression that facilitates the evasion of immune surveillance and the establishment of lifelong persistent infection. The lytic phase drives the replication cycle and a majority of the viral genes are expressed in this phase. This phase mainly allows for the spread of the virus in the infected individual. A growing body of research suggests that both latent and lytic replication phases play an important role in the pathogenesis of KS (5).

The transition from latency to lytic replication is controlled by the KSHV replication and transcription activator (K-Rta) gene, an immediately early gene encoded by open reading frame 50 (ORF50). K-Rta expression has been found to be essential and sufficient to trigger lytic replication by activating the lytic gene expression cascade (6-8). Genetic knockout of K-Rta resulted in a null phenotype in viral DNA synthesis and in virus production (9). K-Rta is a 691-amino acid (aa) long transcriptional factor that contains an N-terminal DNA-binding domain and a C-terminal activation domain. K-Rta can trigger KSHV lytic reactivation via transcriptional activation of a number of viral lytic promoters, by either binding directly to the promoter DNA or indirectly via interaction with cellular DNA binding proteins (10-15).

There is a complex interplay between herpesvirus lytic replication and host cell cycle arrest. Previous studies investigating the role of cell cycle in herpesvirus lytic replication...
suggested that host cell cycle arrest precedes the induction of lytic cycle and essentially
determines whether immediate early gene expression is initiated or not (16). However, current
research increasingly support the idea that cell cycle arrest follows lytic cycle induction and is a
direct consequence of immediate early gene expression (17-19). It is hypothesized that arresting
cells during early lytic replication may be an evolutionary common strategy employed by
herpesviruses to avoid competition of resources required for viral DNA replication with the host
in the S phase, or it may serve to prevent premature apoptosis during lytic replication (20). This
is in contrast to small DNA viruses, especially those lacking their own polymerase like SV40 and
adenoviruses which actively drive host cells into S phase of the cell cycle in order to replicate
their genome at the same time with host DNA synthesis. Arresting cell growth early during
infection/reactivation may also be a strategy to avoid being killed by cytotoxic T cells as it has
been reported that non-cycling cells are refractory to killing by cytotoxic T cells (21).

To date, several herpesvirus-encoded proteins have been identified that participate in
arresting host cell growth. These proteins are either virion components and/or immediate early
(IE) transcriptional factors. For example, the IE product of herpes simplex virus, ICPO has been
found to arrest cell cycle in G1 phase by both p53 mediated and p53 independent pathways (22, 23).
In the case of EBV, immediate early product, Zta can induce host cell cycle arrest by
stabilizing p53 and p27, and also through repressing the expression of c-myc (24, 25).
Furthermore it has been shown that Zta may cooperate with host transcriptional factor C/EBP to
upregulate p21, which in turn results in cell cycle arrest (26).

Among the characterized early genes of KSHV, K8 or K-bZIP protein, a functional
homologue of EBV’s immediate early Zta protein was shown to arrest PEL cells in G1 phase
during lytic cycle by up regulating C/EBP and p21 proteins (27). K8 was also found to inhibit
kinase activities of CDK2 by directly binding through its bZIP domain (17). However the role of
KSHV encoded ORF50/K-Rta, one of the first genes transcribed and the central regulator for the initiation of lytic replication cycle, in cell cycle regulation has not been evaluated. In the present study, we demonstrated that K-Rta induces cell cycle arrest in an inducible BJAB cell model and this growth arrest is mediated by elevated levels of p27, a central cyclin-dependent kinase inhibitor (CDKI). Our results shed new light on the biological function of K-Rta as a key cell cycle regulator early on during viral reactivation, in addition to being a transcriptional regulator.
Materials and Methods

Cell culture plasmids and transfection. 293T cells, 293 based doxycycline-inducible K-Rta cell line (TREx293Rta) (provided Dr Yoshihiro Izumiya, University of California at Davis, California) and Vero cells were cultured in Dulbecco’s modified Eagle's medium (DMEM; Invitrogen, Carlsbad CA) supplemented with 10% fetal bovine serum (FBS; HyClone, Logan, UT) and 100 µg/ml penicillin-streptomycin (Mediatech). DG75 is an EBV-negative Burkitt's lymphoma (BL) derived B-cell line (provided by Dr. Luwen Zhang, University of Nebraska-Lincoln, Lincoln NE). It was grown in RPMI 1640 medium (Gibco BRL) supplemented with 10% FBS and 100 µg/ml penicillin-streptomycin. TRExBJABRta and TRExBJAB cells are BJAB (EBV and KSHV negative B-cell line) derived cell lines with or without doxycycline-inducible K-Rta gene. They were provided by Dr Jae Jung (University of Southern California, Los Angeles, CA) (28) and were grown in RPMI 1640 medium supplemented with 10% FBS, 100 µg/ml penicillin-streptomycin and 200 µg/ml of hygromycin B. KSHV-positive and EBV-negative B cell lines, BC3 cells (ATCC, USA) and Cro6 (29) (provided by Dr. Luwen Zhang, University of Nebraska-Lincoln, Lincoln NE) were grown in RPMI 1640 medium (ATCC, USA) supplemented with 20% FBS and 100 µg/ml penicillin-streptomycin. Human Microvascular Endothelial Cells (HMVEC) cells were grown in endothelial basal medium-2 (EBM-2) (Lonza, Boston, MA) supplemented with 10% fetal bovine serum (FBS), 100 µg/ml penicillin-streptomycin, 0.01 µg/ml epidermal growth factor, and 1 µg/ml hydrocortisone (30). All cultures were incubated at 37°C with 5% CO₂.

K-Rta expression plasmid (pCMVtagORF50), which encodes Flag-tagged full length Rta and pCMVtagORF50 (1-527), which encodes truncated K-Rta (amino acid 1 to 527), were described previously (31). The transfection of 293T cells and Vero cells was carried out using Lipofectamine 2000 (Invitrogen) or Fugene 6 (Promega) according to the manufacturer’s
recommendations. The transfection of DG75 was carried out using the nucleofection protocol according to the manufacturer’s protocols (Solution V and program O-006, Amaxa Biosystems).

Cell Cycle analysis. Cell cycle profiles were analyzed by flow cytometry with standard propidium iodide (PI) staining methods (32). Asynchronized and synchronized cells were harvested at given time points, washed once with PBS and fixed in 70% ethanol at -20°C. After collection of all time points, the cells were washed with PBS twice and were resuspended in PBS containing PI (Roche) at a final concentration of 10 µg/ml and RNase A (20 µg/ml). The samples were kept at RT for 30 min in dark and 20,000 events per sample were acquired using FACS Calibur flow cytometer (BD Biosciences). The data was analyzed using Modfit LT version 2.0 software (Verity Software House Inc.).

RNA extraction and RT-PCR. Total cellular RNA was extracted using an RNeasy kit (QIAGEN) according to the manufacturer’s procedure. RNA samples were digested with DNase (Invitrogen) to remove any residual DNA. Total RNA (2 µg) was used for reverse transcription (RT) using oligo(dT) as primers and Superscript II reverse transcriptase kit (Invitrogen, Inc., Carlsbad, CA) according to the manufacturer’s instructions. The primers used for the mRNA quantitation were p27 (F) 5'-CGTCAAACGTAAACAGCTCG-3' and p27 (R)- 5'-CATTCCATGAAGTCAGCGAT-3', ORF50 (F)- 5'-CAAACCCCATCCCAACAT-3' and ORF50 (R)- 5'-AGTAATCACGGCCCCTT-3', GAPDH (F) - 5'-CCATGGAGAAGGCTGGGG-3' and GAPDH (R)- 5'-CAAAGTTGTCATGGATGACC-3'. These target genes were amplified using the iQ SYBER green real time master mix (BioRad) in a BioRad iCyclerIQ thermocycler. All reactions were performed in triplicate using the following conditions: 50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for 15 sec and 60°C for 1 min. Melting-curve data for all the samples were obtained to ensure specific amplification. All reactions were performed in triplicate and included no-template controls for each gene. The experiments were repeated 2 times using
samples in triplicate. Relative gene expression was calculated using delta-delta-CT method (33). For calculating relative mRNA levels, the CT (threshold cycle) value of each gene was normalized to the CT value of GAPDH, and the normalized CT values from samples were compared to those of the control samples (untreated).

Immunoprecipitation and immunoblot analysis. Total cell lysates for immunoprecipitation and western blotting were prepared in radioimmunoprecipitation assay buffer (RIPA) (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% NP-40) supplemented with protease and phosphatase inhibitor cocktail (Pierce). The lysates were kept in ice for 30 min with occasional vortexing. Finally, the lysates were centrifuged for 15 min at 13,000 x g at 4°C and the supernatant was collected. Cytosolic and nuclear proteins were extracted from TRExBJABRta cells using Sigma-CelLytic™ NuCLEAR™ Extraction Kit using manufacturer’s protocol. The protein concentration was measured using a BCA protein kit (Pierce, Rockford, IL). For immunoprecipitation, equal amount of lysate from each treatment was precleared with 20 µl of Protein A/G Sepharose (1hr, 4°C). Five percent of the precleared lysate was saved as input control and total amount of p27 was captured by incubating with 2 µg of anti-p27 (SC-1641; Santa Cruz) antibody overnight at 4°C. Immune complexes were captured with 30 µl of a 1:1 mixture of Protein-A and Protein-G Sepharose beads (Pierce, Rockford, IL) for 2 hrs. The beads were then pelleted and washed three times with ice-cold RIPA buffer. The immunoprecipitated proteins were eluted by heating in 2X sample buffer and subjected to immunoblotting.

For immunoblotting, equal amounts of total proteins (40 µg) were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to nitrocellulose membrane using standard methods. After blocking with 5% non-fat dry milk in Tris-buffered saline (TBS) (20 mM Tris pH-7.4, 137 mM NaCl) containing 0.01% Tween-20 (TBST) for 1 hr, the membrane was incubated with primary antibody overnight at 4°C.
Following washing with TBST three times, the membrane was incubated with horse peroxidase conjugated goat anti-rabbit/mouse secondary antibody (1:10000, Pierce) or infrared-tagged secondary antibodies (1:10000, Licor Inc., Lincoln, NE) for 30 min. Antibody binding was detected using SuperSignal West Dura Extended Duration Substrate kit (Pierce) or using an Odyssey imager. Image analysis and quantification of immunoreactive bands was performed using the Odyssey Infrared Imaging System application software (LiCor Inc., Lincoln, NE) or NIH ImageJ software.

Following antibodies were used in the present study: anti-rabbit K-Rta antibody was a kind gift from Dr Izumiya (UC Davis, California) and was used at a dilution of 1:5000. The anti-rabbit p27 (SC-528), anti-mouse p27 (SC-1641), anti-rabbit p21 (SC-397), anti-rabbit Rb (pS807/pS811) (BD558389), anti-rabbit Cyclin A (SC-751), anti-mouse GAPDH (SC-32233), anti-mouse Ub (SC-8017), anti-rabbit Skp2 (H-435), anti pp27-T187 (Ab75908), anti-mouse TATA binding protein (Ab818), anti-mouse α tubulin (SC-5286) were used at 1:1000 dilution in TBST.

Protein stability test. Exponentially growing TRExBJABRta cells were cultured in the presence of doxycycline (DOX) for 24 hrs. DOX treated and untreated cells were treated with 50 μg/ml cyclohexamide (CHX) (Sigma-Aldrich, St. Louis, MO). The cells were harvested at indicated time points after CHX treatment and cell lysates were subjected to Western blot analysis. Band intensities were quantitated using Odyssey 3.0 software provided by Odyssey imager (LiCor Inc., Lincoln, NE) and the half-life of p27 protein was calculated from the slope of the curve.

Immunofluorescence assay. TRExBJABRta cells were treated with doxycycline for 48 hrs. The cells were fixed with 4% paraformaldehyde for 20 min, permeabilized with 0.2% Triton X-100 in phosphate buffered saline (PBS) for 10 minutes, and blocked for 30 min with 2% bovine serum albumin (BSA) in PBS at room temperature (RT). After incubation with primary
antibodies [anti-p27 mouse monoclonal (BD) and anti-rabbit K-Rta] both at 1:250 dilution in 2% BSA for 2 hrs at RT, the cells were incubated with anti-mouse Alexa-Fluor-488 and anti-rabbit Alexa-Fluor-647 conjugated secondary antibodies (1:1000) for 1 hour at RT. This was followed by three washes with PBS. The last wash contained 4',6-diamidino-2-phenylindole (DAPI) (Calbiochem) to counterstain nuclei. The localization of K-Rta/p27 and DAPI stained nuclei were visualized by confocal microscopy.

Lentivirus-based short hairpin RNAs (shRNA) knockdown of p27. To establish p27 knockdown cell line, plasmids encoding p27 shRNA (1 and 2) and scrambled negative control shRNA (1 and 2) were purchased from Origene and were transfected into TRExBJABRta cells using the Nucleofector kit T from Lonza (Walkersville, MD) according to the manufacturer’s procedure (Program- G-016). The transfected cells were selected with puromycin (1 µg/ml) for 3 weeks.

Lentivirus vector expressing full length K-Rta, virus production and transduction of HMVEC cells. To generate a lentiviral vector expressing KSHV full length Rta, the coding sequence was cloned into pLVX-AcGFP1 (Clontech). The VSV-G-pseudotyped lentiviral particles were produced by transient cotransfection of 293T cells as described (34). Briefly, 5-6 x10^6 HEK293T cells were co-transfected with 18 µg of K-Rta expressing transfer vector (pLVX-Rta), 12 µg packaging vector psPAX2, and 6 µg of envelope vector pHEF-VSVG per 10 cm diameter plate at a 3:2:1 mass ratio by using standard calcium phosphate co-precipitation method. Eight hours post-transfection the media was replaced with DMEM supplemented with 10% FBS. The medium containing the virus was harvested 48 hours post-transfection, filtered through 0.45 µm pore filter and concentrated by ultracentrifugation at 4°C for 2 hrs at 25,000 rpm with T-865 rotor (Sorvall). Pellets were gently resuspended in DMEM and kept over-night at 4°C. The viral titers of concentrated pseudotyped lentiviruses were determined by transducing...
3×10^5 293T cells seeded in one well of a 6-well plate in 4 ml of medium containing 8 μg/ml of polybrene (Sigma). The media was replaced after 6 hrs. After 48 hours the number of cells expressing GFP was determined using flow cytometry. The viral titers were calculated using the formula: N×M / V where N is the number of target cells used for infection, M is % GFP expressing cells, and V is the volume of concentrated virus used in ml.

Statistical Analysis. All data analysis was done using SPSS software (v11). Comparison of mean number of cells was done using Student’s t-test. All p-values ≤0.05 were considered significant.
Results

Expression of K-Rta induces cell cycle arrest in G1 phase: Earlier investigations have reported that TPA-induced reactivation of KSHV results in cell cycle arrest in G1 phase of the treated cells and implicated early-lytic gene product K-bZIP for the induction of cell cycle arrest (17). Indeed TPA treatment of asynchronously growing BC3 cells (KSHV positive latent B-cell line) resulted in a marked increase of cells in the G1 fraction at 24 hrs after treatment, from 37% (before treatment) to 56.5%. This increase in proportion of cells arrested in G1 phase was also noted after TPA treatment of another KSHV positive latent B-cell line, Cro6, with a significant increase from 55.6% (before treatment) to 70.5% at 24 hrs post treatment. However TPA induced G1 arrest was not observed in KSHV negative control B-cell line DG75, at 24 hrs post TPA treatment (Fig. 1). These results confirmed previous findings that KSHV lytic reactivation arrests naturally infected B cells in G1 phase.

Since G1 arrest is favored after lytic replication, we sought to investigate whether any other immediate early genes besides K-bZIP was involved in cell cycle arrest. We hypothesized that K-Rta being the central regulator of viral lytic cycle and one of the very first genes to be transcribed following reactivation may work in concert with K-bZIP to arrest cell cycle in G1 phase. To investigate K-Rta’s role in cell cycle regulation, we utilized TRExBJABRta cells in which myc-tagged full length K-Rta gene is integrated into the chromosomal DNA under the control of a tetracycline-inducible promoter. Asynchronously growing exponential cultures of TRExBJAB (Control) and TRExBJABRta were synchronized in G0/G1 phase by serum starvation. The cells were released from growth arrest with the addition of medium containing 10% serum along with doxycycline. We then quantitated the fraction of cells in different phases of cell cycle by flow cytometry at 24, 48 and 72 hrs post Dox treatment for both TRExBJAB and TRExBJABRta cells. The fraction of cells arrested in G0/G1 phase after 24 hrs of serum
starvation treatment was about 53% for both cell lines. Serum starvation for extended time was avoided as it affected cell viability. The cell cycle profiles of both cell lines were similar following release from serum starvation without Dox treatment and showed enrichment of cells in S phase over time (Data not shown). Interestingly cell cycle profile clearly showed a significant increase in the number of cells arrested at G1 phase in TRExBJABRta cells compared to control TRExBJAB cells at 48 hrs (p=0.006) and 72 hrs (p<0.001) post Dox treatment (Fig. 2A). In contrast, there were more cells in S phase for TRExBJAB cells after 48 and 72 hr of Dox treatment, demonstrating that doxycycline alone has little or no effect on cell cycle progression following the release of cell cycle arrest in the absence of K-Rta. A significant arrest in G1 phase was also noted for Dox treated TREx293Rta cells at 72 hrs post treatment compared to untreated cells (p <0.001) (Fig. 2B) further supporting the data observed in BJAB cells. These results clearly show that the expression of K-Rta alone can induce cell cycle arrest in G1 phase.

K-Rta expression led to a decrease in phosphorylated Rb and a parallel increase in p27kip1 protein levels: To explore the underlying mechanism of K-Rta mediated cell cycle arrest, the expression kinetics of key cell cycle regulators were analyzed by western blotting. Whole cell lysates were prepared from Dox treated and untreated TRExBJAB and TRExBJABRta cells. First we investigated the phosphorylation status of Retinoblastoma (Rb) protein, a critical negative regulator of the cell cycle that undergoes differential phosphorylation during the cell cycle (35). In early G1 phase Rb is largely dephosphorylated and bound to E2F family of transcriptional factors, forming a repressor complex. However, upon phosphorylation by Cdk4/6/cyclin D complex during early G1 phase and further by Cdk2/cyclin E during late G1 phase, Rb dissociates from E2F, thus activating the expression of proteins needed for S-phase entry and progression (35). We examined the status of Rb phosphorylation using an antibody that recognizes Rb phosphorylated at Ser807/Ser811. These sites are the target sites of Cdk4/6/cyclin
D complex during G1 phase. Induction of K-Rta in TRExBJABRta cells resulted in a significant decrease in the phosphorylated levels of Rb, most notably at 48 and 72 hrs post Dox treatment (Fig. 3A). The results were markedly different in Dox untreated TRExBJABRta, which displayed a significant increase in the levels of phosphorylated Rb in a time dependent manner that reached peak expression by 48 hrs, indicating that most of these cells were actively progressing through the cell cycle. In control TRExBJAB cells, the levels of phosphorylated Rb increased in a time dependent manner following release from cell cycle arrest, irrespective of Dox treatment suggesting that Dox treatment alone did not affect the normal cell cycle progression. Cyclin A is useful marker for S phase whose expression increases during cell cycle progression (36). Cyclin A expression in both cell lines with or without Dox treatment followed the expression kinetics similar to phosphorylated Rb.

Since the activities of G1 cyclin-CDK complexes are mainly regulated by Cip/Kip family of Cyclin dependent kinase inhibitors (CDKIs), we aimed to evaluate the expression profile of p21 and p27, two central regulators of cell cycle progression that inhibit a broad range of cyclin Cdk complexes. The levels of p27 significantly increased over time in Dox treated TRExBJABRta cells but the kinetics of p27 protein accumulation lagged by about 24 hrs following the expression of Rta in TRExBJABRta cells, reaching maximum levels at 48 hrs (~5X above background) whereas in untreated cells, p27 levels decreased in a time dependent manner. In TRExBJAB cells, the expression kinetics of p27 was similar in both Dox treated or untreated cells and was consistent with those described for cells entering S phase following cell cycle arrest in G1 phase. The levels of p21 remained largely unchanged during the course of experiment for both cell lines irrespective of Dox treatment. Since p21 is a direct transcriptional target of p53, we also investigated the expression levels of p53 and found no significant change in the relative levels of p53 in both cell lines with or without Dox treatment (data not shown).
These results demonstrated that K-Rta-mediated cell cycle arrest in BJAB cells does not involve p21 and is associated with a decrease in Rb phosphorylation and a parallel increase in p27 levels.

We also examined the expression of p27 in TPA treated BC3 cells and found that p27 levels increased in a time dependent manner following reactivation (Figure 3B). This increase in p27 levels was not observed in TPA treated DG75 cells. Although this increase in p27 levels in TPA treated BC3 cells does not directly implicate K-Rta but it does show that cell cycle arrest during reactivation of KSHV from a latently infected B cell line is associated with an increase in p27 levels.

To ensure that K-Rta mediated up regulation of p27 in BJAB cell line was not a cell type specific effect, we transiently transfected or transduced K-Rta in DG75, Vero cells and HMVEC cells respectively and checked the levels of p27 at 36 hours post-transfection/transduction by western blotting (Figure 3C) while the cells were actively growing at log phase. We found increased levels of p27 in cells that were transfected or transduced with K-Rta compared to cells that were transfected/transduced with vector or control virus. These results suggest that increase in p27 levels following K-Rta expression is not unique to BJAB cells.

K-Rta does not affect p27 at the transcriptional level: Since K-Rta is a transcriptional factor and has the ability to regulate the expression of cellular genes (37); we investigated the possibility whether the increased level of p27 in K-Rta expressing cells is due to transcriptional up regulation of p27 by K-Rta. Real time PCR was carried out with RNA samples extracted from Dox treated and untreated cells. As shown in figure 4A, the level of p27 mRNA after normalization with GAPDH showed no significant difference before and after K-Rta induction. The data suggest that the up regulation of p27 in K-Rta expressing cells is not due to increased p27 mRNA expression. These results were also supported by increased p27 levels observed in cells transiently transfected with K-Rta lacking the transactivation domain, suggesting that K-Rta
is not directly acting on p27 at the transcriptional level or the ability of K-Rta to upregulate p27 is independent of its transactivation function (Fig. 4B).

K-Rta expression results in stabilization of p27: Since p27 is mainly regulated at the post-translational level via the ubiquitin-proteasome pathway (38, 39), we examined the effect of K-Rta on the half-life of p27. Protein synthesis was blocked in K-Rta expressing BJAB cells by cycloheximide and p27 protein levels were quantitated at various time intervals by immunoblotting (Fig. 5A). As a control, we also followed p27 levels in Dox untreated TRExBJABRta cells. In control cells, the half-life of p27 was found to be approximately 4.1 hrs but in K-Rta expressing cells the half-life of p27 increased to approximately 7.3 hrs. The data suggest that upregulation of p27 in K-Rta expressing cells is most likely mediated by changes in protein stability. Next, we investigated the possibility whether reduced poly-ubiquitination of p27 in K-Rta expressing cells is responsible for increased levels of p27. Poly-ubiquitination of the p27 was assessed by immunoprecipitating p27 from Dox treated and untreated TRExBJABRta cells followed by immunoblotting (Fig. 5B). As expected, there was an increase in p27 levels in K-Rta expressing cells in both lysate and immunoprecipitated lanes, however we detected decreased levels of ubiquitinated p27 in Dox-treated TRExBJABRta cells as evidenced by a reduction of the smear of high molecular weight p27 bands as compared to the uninduced Dox lane. These results suggest that the expression of K-Rta increases p27 stability by inhibiting the poly-ubiquitination and subsequent proteasomal degradation.

K-Rta promotes nuclear localization of p27: The activity of p27 is also regulated by its subcellular localization as it shuttles between nucleus and cytoplasm during the cell cycle (40). p27 is exclusively nuclear during G0/G1 phase but is exported to the cytoplasm in response to proliferating signals. Since the subcellular localization of p27 is inherently linked to the regulation of p27 activity, we determined whether K-Rta is modulating the subcellular
localization of p27. The localization of endogenous p27 was investigated in Dox treated and untreated TRExBJABRta cells by indirect immunofluorescence assay. Figure 6A shows a representative field of immunostaining. As expected, intense staining suggesting higher p27 expression levels were observed in most K-Rta expressing cells. Further, the staining for p27 was predominantly nuclear and colocalized with K-Rta. In most of the untreated TRExBJABRta cells, the staining for p27 was less intense and mostly diffuse. In order to confirm the effects of K-Rta on p27 localization observed in immunofluorescence assay, we performed cell fractionation to determine the levels of p27 in nuclear and cytosolic extracts of untreated and treated TRExBJABRta by western blot (Fig. 6B). We found a significant fraction of p27 in the nuclear extracts (normalized to the total p27 levels) of K-Rta expressing BJAB cells (43% vs. 14%) compared to the control cells. These results demonstrate that in addition to increased stability of p27, modulation of the intracellular localization of p27 also occurred in K-Rta induced G1 arrest.

K-Rta induced cell cycle arrest coincides with down regulation of Skp2: Multiple degradation pathways that regulate p27 protein levels have been characterized in recent years (39). One of the best-understood pathways for degradation of p27 is mediated by SCF/Skp2 complex in late G1 phase and early S phase (41). CDK2-dependent phosphorylation at T187 targets p27 to SCF/Skp2 complex for ubiquitin-dependent degradation (42). CDK2-dependent phosphorylation at T187 and binding of phosphorylated p27 to Skp2 are both considered rate-limiting steps for p27 ubiquitination and subsequent degradation (43, 44). We examined both these events to better define the mechanism of K-Rta mediated up regulation of p27. Figure 7 shows the kinetics of Spk2 and p27 phosphorylated at T187 from Dox treated and untreated TRExBJABRta cells at various time intervals following release of cell cycle arrest. Skp2 levels decreased over time with kinetics that parallel increase in the levels of p27 in K-Rta expressing
cells. In Dox untreated TRExBJABRta cells, the kinetics was opposite with gradual accumulation of Skp2 over time. In K-Rta expressing cells, there was a decrease in the level of p27 phosphorylation at T187 and a parallel increase in the total p27 levels. However, in Dox untreated cells the level of phosphorylated p27 at T187 gradually increased over time with a parallel decrease in p27 levels as expected. These results suggest that K-Rta mediated up regulation of p27 is most likely a Skp2 dependent event and T187 is the key phosphorylation site targeted.

Knock down of p27 expression by shRNAs mitigates K-Rta induced cell cycle arrest. The data above strongly suggest that K-Rta induced cell cycle arrest involved impaired degradation of p27 by Skp2 resulting in accumulation of p27 in the nucleus. To conclusively prove that the observed accumulation of p27 had the causal effect on the cell cycle arrest or is directly responsible for K-Rta mediated cell cycle arrest, we knocked down p27 expression in TRExBJABRta cell line by stably expressing shRNAs against p27. Western blot analysis of Dox treated TRExBJABRta cell lines expressing shRNA against p27 showed efficient but incomplete knock down of p27 expression (~80% in both clones 1 and 2) (Fig. 8A). TRExBJABRta cell lines expressing control shRNAs (Clone 1 and 2) showed no significant reduction in the levels of p27 compared to the parent TRExBJABRta cell line. Next we quantitated cells in G1 phase from TRExBJABRta cells expressing these shRNAs after release from mitotic arrest and treatment with Dox. The results from FACS analysis showed that the down regulation of p27 by shRNA results in a significant decrease in K-Rta induced G1 arrest, ~60% in G1 phase compared to ~70% cells in G1 phase in parent TRExBJABRta cells or TRExBJABRta cells stably expressing control shRNAs (Fig. 8B). We did not observe total abrogation of cell cycle arrest in G1 phase in TRExBJABRta cells expressing shRNA against p27 but we noticed a significant decrease of cells in G1 phase compared to TRExBJABRta cells expressing control shRNA. The data suggest
that the accumulation of p27 observed in K-Rta expressing cells contributes to cell cycle arrest at G1.
Discussion

Our study demonstrates that KSHV encoded immediate early gene K-Rta induces cell cycle arrest in G0/G1 phase in an inducible B-cell line model. Consistent with G1 arrest, K-Rta mediated cell cycle arrest was associated with a decrease in the protein levels for cyclin A and phosphorylated Rb, both markers of S phase progression. Importantly, our results establish p27, a critical cyclin-dependent kinase inhibitor (CDKI) as a key player in K-Rta mediated cell cycle arrest. The central role of p27 in K-Rta mediated G1 arrest is supported by shRNA knockdown of p27, which significantly overrode the cell cycle arrest in K-Rta expressing cells. Since the knockdown of p27 did not completely abolish K-Rta mediated G1 arrest, we cannot exclude the possibility that K-Rta may also be functioning through other pathways that could contribute to cell cycle arrest.

Our finding that K-Rta arrests cells in G0/G1 phase is in general agreement with recent studies that investigated the role of EBV encoded Rta (E-Rta) in cell cycle regulation (18). The expression of inducible E-Rta in 293 and nasopharyngeal carcinoma (NPC) derived cells resulted in G1 arrest (18, 19) which was associated with elevated levels of p21 and p27. However, we did not notice any significant changes in the expression of p21 in K-Rta expressing cells. It is possible that E-Rta and K-Rta may have evolved diverse mechanisms to arrest cell cycle in G1 phase or these diverse pathways could be due to the different cellular contexts used in the experiments. It is interesting to note that K-Rta mediated increase in p27 levels was not at the transcriptional level and was independent of K-Rta’s transactivation ability. The transactivation function of several herpesviral immediate early genes including Zta, IE2 and ICP0 was found to be dispensable for cell cycle arrest (25, 45-47). Instead, the ability to arrest cell cycle was mapped to key motifs that are involved in protein-protein interactions like the bZIP domain of E-Zta and RING finger domain for ICP0 (25, 45). These studies suggest that the transactivation
function of immediate early genes may be less important for mediating cell cycle arrest than
direct interactions with key cell cycle regulators.

In normal cells, p27 levels are maximal in quiescence but falls rapidly as the cells progress from G1 to S phase. p27 is a short-lived protein and its levels are mainly regulated by post-translational proteolytic degradation (39, 48). In the late G1 phase, degradation of p27 is mediated by SCF/Skp2 E3 ubiquitin ligase complex that requires phosphorylation of p27 at T187 residue by cyclin E,A/ CDK2 complex (49). The phosphorylation at T187 creates a recognition site for Skp2 complex, which induces p27 poly-ubiquitination and subsequent degradation by the proteasome (41-43). The data presented here demonstrate that p27 was more stable in K-Rta expressing cells. This finding was also supported by decreased poly-ubiquitination of p27 observed in K-Rta expressing cells. It is noteworthy that p27 degradation involves both Skp2-dependent and -independent proteosomal degradation pathways (39). We have focused on Skp2-dependent proteosomal pathway, as it is the best-characterized and most potent degradation pathway that determines p27 stability. It remains to be clarified whether K-Rta mediated stabilization of p27 also involve another degradation pathway besides Skp2-dependent pathway that would function independently of T187 phosphorylation.

Based on our results, we hypothesize that there are at least three non-mutually exclusive possibilities by which K-Rta can induce cell cycle arrest, as summarized in Figure 8. First, K-Rta may sequester p27 in the nucleus to prevent its export to the cytoplasm by direct or indirect interaction. The localization of p27 seems to be finely regulated during G1 progression (39). To act as a cell cycle inhibitor, p27 must be localized in the nucleus, whereas its cytoplasmic export allows cell cycle progression. In our study we observed the accumulation of p27 in the nucleus of K-Rta expressing cells, but it is difficult to resolve whether K-Rta is directly modulating the subcellular localization of p27 or the nuclear accumulation of p27 is an indirect consequence of
K-Rta mediated cell cycle arrest. The second possibility is that K-Rta may induce or repress the expression of any upstream kinase or phosphatase, which may regulate the phosphorylation of p27. Several key phosphorylation sites have been characterized in recent years including S10, T157 and T198 that determine p27 stability and subcellular localization (39). The third possibility is that K-Rta may directly or indirectly interact with SCF/Skp2 complex to disrupt the binding between p27 and Skp2, which targets p27 for subsequent proteosomal degradation. Since K-Rta has been shown to possess E3 ubiquitin ligase activity, the last scenario becomes particularly interesting if Skp2 is identified as a target for K-Rta-mediated proteosomal degradation (50). In that case p27 will escape Skp2 mediated proteosomal degradation and would accumulate in the nucleus. We were able to co-immunoprecipitate over expressed tagged versions of K-Rta and Skp2 in transiently transfected 293T cells (Data not shown), however our effort to detect this interaction in vivo under physiologically relevant conditions was unsuccessful. It is plausible that the interaction between K-Rta and Skp2 is transient in nature and/or very weak.

Recent research suggests that KSHV lytic reactivation is tightly linked to B-cell terminal differentiation (51). KSHV remains latent in a not very well characterized B-cell compartment until B cells differentiate into plasma cells. This terminal differentiation provides the physiological lytic switch through plasma cell transcription factor X box binding protein 1 (XBP-1s). Thus, KSHV like EBV reactivates by exploiting the terminal differentiation pathway of latently infected B cells. In most cell lineages, final differentiation is associated with loss of proliferation and cell cycle arrest in G1 phase (52). During the differentiation process, the expression of various CDKIs including p27 is up regulated. Strong evidence for a role of p27 in differentiation programs comes from studies in mice lacking p27, which shows altered differentiation program in various tissues (53-55). It would be interesting to investigate whether...
K-Rta mediated up-regulation of p27 following lytic reactivation also plays a role in differentiation of B cells besides cell cycle arrest.

An issue that remains to be resolved is the experimental validation of the hypothesis of the presumed benefit of cell cycle arrest during KSHV or in general herpesvirus lytic replication. Most studies including ours have investigated the role of herpesviral immediate early genes in cell cycle regulation in an over expressed system. Experimental validation in the context of normal viral infection setting proves to be a challenging endeavor, most likely because of temporal and ephemeral nature of cell cycle arrest. In case of KSHV, it has been shown that following K-Rta induction there is a substantial increase in the expression of vCyclin and LANA proteins, both of which have the potential to accelerate cell cycle progression modulating Rb-E2F pathway. Clearly, more work is needed to obtain a comprehensive understanding of cell cycle regulation in herpesvirus lytic replication.

In summary our results demonstrate that KSHV encoded K-Rta is another player besides K8 that participate in arresting host cells in G1 phase following viral reactivation. K-Rta mediated cell cycle arrest was associated with stabilization and increased nuclear accumulation of p27. Our study has revealed a discrete functional role for K-Rta in host cell cycle regulation, which is independent of its function as a major viral transcriptional factor.
Acknowledgements

This work was supported in part by the Public Health Service grants CA-75903, P20 RR15635 and P30 GM103509 from the National Institutes of Health.

We would like to thank Dr. Levon Abrahamyan for his help with confocal microscopy and Danielle Shea for help with flow cytometry. We also thank Dr. J. U. Jung at the University of Southern California for providing RTA-inducible BJAB cell line, Dr Luwen Zhang at the University of Nebraska, Lincoln for DG75 and Cro6 cell lines and Dr. Izumiya at UC Davis for Rta polyclonal serum.

Figure 1. KSHV reactivation following TPA treatment arrests cells in G0/G1 phase:
Asynchronously growing exponential cultures of BC3 and Cro6 (KSHV positive) and DG75
(KSHV negative) cells were treated with TPA (20 ng/ml). At the indicated times post-TPA
treatment, the cells were fixed, stained with propidium iodide (PI) and analyzed by flow
cytometry. Cell cycle phase distribution was determined using ModFit LT version 2.0 software.
Cell cycle profiles presented here are representative of two independent experiments.

Figure 2. K-Rta arrests cells in G0/G1 phase: (A) Asynchronously growing exponential
cultures of control cell line (TRExBJAB) and Rta inducible BJAB cell line (TRExBJABRta)
were synchronized by serum starvation for 24 hours. Growth arrested cells were stimulated with
medium containing 10% serum and doxycycline (Dox). At the indicated times post-Dox
treatment, the cells were fixed, stained with propidium iodide (PI) and analyzed by flow
cytometry. Cell cycle phase distribution was determined using ModFit LT version 2.0 software.
Data represents the mean of three independent experiments. Errors bars represent SD for
triplicate samples. A significant increase in the number of cells stuck at G0/G1 phase was noted
in TRExBJAB vs TRExBJABRta at 48 hrs (p=0.006) and 72 hrs (p<0.001) post-Dox treatment.
(B) Asynchronously growing exponential cultures of TREx293 Rta cells were treated with
doxycycline. At 72 hrs post-Dox treatment, treated and untreated cells were fixed, stained with
PI and cell cycle status was determined by flow cytometry as described above. A significant
arrest in G1 phase was noted for Dox treated TREx293Rta cells at 72 hrs post Dox treatment
compared to untreated cells (p<0.001). Cell cycle profiles presented here are mean of three
independent experiments. Errors bars represent SD for triplicate samples.

Figure 3. K-Rta expressing cells have increased levels of p27kip1: (A) Asynchronously
growing exponential cultures of control cell line (TRExBJAB) and Rta inducible BJAB cell line
(TRExBJABRta) were synchronized by serum starvation for 24 hours. Growth arrested cells were stimulated with medium containing 10% serum and doxycycline. Doxycycline treated or untreated TRExBJAB and TRExBJABRta cells were harvested and the expression kinetics of key cell cycle regulators were followed by immunoblotting at indicated times. GAPDH served as a loading control. The numbers below p27 band indicate the relative intensities of the p27 protein normalized to GAPDH protein. (B) Asynchronously growing DG75 (KSHV negative) and BC3 (KSHV positive) cells were treated with TPA (20 ng/ml) for 24 and 48 hrs. The lysates were immunoblotted with antibodies as indicated. (C) DG75 and Vero cells were transiently transfected with either empty Flag vector or Flag Rta expression plasmid. Human Microvascular Endothelial Cells (HMVEC) cells were transduced with equal amounts of either control lentivirus or lentivirus expressing K-Rta. The cells were harvested after 36 hrs and the lysates were immunoblotted with antibodies as indicated. The values below the figure represent relative density of p27 bands normalized to that of GAPDH bands.

Figure 4. K-Rta does not affect p27 at the transcriptional level: (A) RNA was harvested from parallel samples collected at 0, 24, 48 and 72 hrs from doxycycline treated or untreated TRExBJAB and TRExBJABRta cells from the same experiment as described in Fig 2. The samples were subjected to quantitative real-time PCR analysis to detect the transcript levels of K-Rta, p27 and GAPDH. Each sample was tested in triplicate and representative data obtained from two independent experiments is shown. Relative gene expression was normalized to GAPDH expression and the fold change in the expression of each gene was calculated by using the delta-delta Ct method. (B) Schematic diagram depicting various domains of Rta protein. 5X10^6 293-T cells were transiently transfected with 4 µg of either empty Flag vector, Flag vector expressing full length K-Rta (FL) or Flag vector expressing truncated K-Rta (1-527 AA). The cells were harvested 36 hrs post transfection and whole cell lysate was immunoblotted with anti-
Flag antibody, anti-p27 antibody and anti-GAPDH antibody. LZ – Leucine zipper, NLS – Nuclear localization signal.

Figure 5. K-Rta affects p27 protein stability: (A) Stability test: K-Rta inducible BJAB cell cultures (TRExBJABRta) were treated with 50 µg/ml cyclohexamide (CHX) in the absence or presence of doxycycline (Dox) for indicated lengths of time (In hours). Cell lysates were subjected to Western blot analysis with indicated antibodies. The relative band intensity of p27 (normalized to GAPDH) was plotted with respect to time after CHX addition. Gel images presented here are representative of three independent experiments. (B) Doxycycline treated and untreated (for 48 hrs) TRExBJABRta cells were pretreated with proteasome inhibitor MG132 (20 µM) before harvesting. Cell extracts were prepared under denaturing lysis conditions and p27 was immunoprecipitated (IP) from Dox treated and untreated TRExBJABRta cells. Immunoprecipitates were subjected to Western blot analysis using p27, Rta and GAPDH antibody. The same membrane was stripped and reprobed with anti-Ubiquitin (Ub) antibody. Gel images presented here are representative of three independent experiments. WB – Western Blot.

Figure 6. K-Rta can promote nuclear localization of p27: (A) TRExBJABRta cells were treated with doxycycline for 48 hrs. The Dox treated and untreated cells were fixed with 4% paraformaldehyde for 20 min, permeabilized with 0.2% Triton X-100 in PBS for 10 minutes, and blocked for 30 min with 2% bovine serum albumin (BSA) in PBS. After incubation with primary antibodies (anti-p27 and anti-Rta, both 1:250 dilution) in 2% BSA for 2 hrs at room temperature, the cells were incubated with anti-mouse Alexa-Fluor-488 and anti-rabbit Alexa-Fluor-647 conjugated secondary antibodies (1:1000) for 1 hour at room temperature. The Rta and p27 localization and DAPI stained nuclei were visualized by confocal microscopy. (B) Cytosolic and nuclear fractions were extracted from TRExBJABRta cells treated with doxycycline and subjected to western blotting with indicated antibodies. TATA binding protein (TBP) and α-tubulin were
used as a nuclear fraction and cytosolic fraction loading control respectively. The bar graph on
the right side shows percent of p27 quantitated in the nuclear fraction (normalized to total p27
levels). Gel images presented here are representative of two independent experiments.

Figure 7. K-Rta expressing cells have decreased levels of Skp2: TRExBJABRta cells were
serum starved for 24 hours. Growth arrested cells were stimulated with medium containing 10%
serum and doxycycline. At times indicated doxycycline treated and untreated cells were
harvested and lysates were subjected to immunoblot analysis with indicated antibodies. GAPDH
served as a loading control. Gel images presented here are representative of two independent
experiments.

Figure 8. Knock down of p27 expression by sh-RNAs attenuates K-Rta induced cell cycle
arrest: The parent cell line, TRExBJABRta cells or TRExBJABRta cells stably expressing
control sh-RNA (clone #1 and #2) or sh-RNA against p27 (clone #1 and #2) were serum starved
for 24 hrs. Growth arrested cells were stimulated with medium containing 10% serum and
doxycycline. At 48 hrs post doxycycline treatment, the cells were harvested for flow cytometry
and immunoblot analysis. (A) Whole cell lysates were subjected to immunoblot analysis with
indicated antibodies. GAPDH served as a loading control. The numbers below p27 band indicate
the relative intensities of the p27 protein normalized to GAPDH protein. (B) For flow cytometry,
the cells were fixed, stained with propidium iodide and cell cycle phase distribution was
determined using ModFit LT version 2.0 software. Data represents the mean ± SD of two
independent experiments.

Figure 9. A schematic diagram for K-Rta mediated cell cycle arrest in G0/G1 phase: 1, 2
and 3 represent alternate possibilities elaborated in the discussion section by which K-Rta can
induce cell cycle arrest.
Figure 1.

<table>
<thead>
<tr>
<th></th>
<th>0 hr</th>
<th>24 hr</th>
<th>48 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cro6</td>
<td>G0/G1: 37%</td>
<td>G0/G1: 55.6%</td>
<td>G0/G1: 70.5%</td>
</tr>
<tr>
<td></td>
<td>G0/G1: 42.5%</td>
<td>G0/G1: 56.5%</td>
<td>G0/G1: 71.9%</td>
</tr>
<tr>
<td>BC3</td>
<td>G0/G1: 37%</td>
<td>G0/G1: 43.5%</td>
<td>G0/G1: 47.5%</td>
</tr>
<tr>
<td></td>
<td>G0/G1: 44%</td>
<td>G0/G1: 44%</td>
<td></td>
</tr>
<tr>
<td>DG75</td>
<td>G0/G1: 44%</td>
<td>G0/G1: 43.5%</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.

A

[Bar chart showing mean % cells in each fraction at 0, 24, 48, and 72 hours.]

- G1
- G2
- S

At 0 hr:
- TRExBJ
- TRExBJ ABRta

At 24 hr:
- TRExBJ
- TRExBJ ABRta

At 48 hr:
- TRExBJ
- TRExBJ ABRta

At 72 hr:
- TRExBJ
- TRExBJ ABRta

Significance levels:
- p = 0.006
- p < 0.001
B

![Graph showing cell distribution](image)

- **Mean % cells in each fraction**
 - TREx293Rta (-Dox)
 - TREx293Rta (+Dox)

- Statistical significance: *p < 0.001*

- **Legend**: G1, G2, S
Figure 3.

A

<table>
<thead>
<tr>
<th></th>
<th>TRExBJAB</th>
<th>TRExBJABRta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+ Dox 24</td>
<td>+ Dox 24</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rta

Rb (pS807/pS811)

Cyclin A

p21

p27

GAPDH

0 0.7 0.2 0.3 0.8 0.3 0.5 1 0.4 0.2 1.0 1.4 5.1 2.5
B

<table>
<thead>
<tr>
<th></th>
<th>DG75</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA</td>
<td>0</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>Rta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>1.0</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>Flag vector</th>
<th>Flag Rta</th>
<th>Control Lentivirus</th>
<th>Lentivirus expressing Rta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>1.0</td>
<td>1.6</td>
<td>1.2</td>
<td>1.9</td>
</tr>
</tbody>
</table>

DG75 Vero cells HMVEC cells
Figure 4.

A

![Graph showing relative gene expression](image)

- TRExBJAB
- TRExBJABRta
- Rta p27

Relative gene expression

+ Dox + Dox

0 24 48 72 24 48 72

0 20 40 60 80 100 120 140

0 24 48... 24 48 72

Relative gene expression

+ Dox

0 24 48 72
B

DNA Binding and Dimerization

Transcriptional Activation

NLS

Basic Domain

LZ

Proline-Rich

NLS

1 13 85 167 246 270 300 448 514 528 556 664 691

1 527

Rta

Vector Rta (FL) Rta (1-527)

Rta

p27

1 2.1 2.2

GAPDH
Figure 5.

A

<table>
<thead>
<tr>
<th></th>
<th>- Dox</th>
<th>+ Dox</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Time post CHX treatment (h r s)
- Relative protein levels

\[y = -0.3045x + 1.2104 \]
\[y = -0.2537x + 1.2006 \]

TRExBIABRta (-Dox)
TRExBIABRta (+Dox)
B

<table>
<thead>
<tr>
<th></th>
<th>5% Lysate</th>
<th></th>
<th>IP: p27</th>
<th>IP: Control Sera</th>
<th>IP: p27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dox</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

WB: Ub

p27

Rta

GAPDH
Figure 6.
B

<table>
<thead>
<tr>
<th></th>
<th>Cytoplasmic</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dox</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>TBP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Tubulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Bar graph](bar graph.png)

Percent p27 in nuclear fraction

-Dox | +Dox
Figure 7.
Figure 8.
Figure 9.

Cyclin E → CDK2 → p27 → 1 → p27 → SKP2 → T187 → Ub → Ub → Ub → Ub → Proteasome-mediated degradation → p27

Nucleus

Cytoplasm

G0/G1 → S