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ABSTRACT 

      

There is a growing interest in the estimation of gross primary productivity 

(GPP) in crops due to its importance in regional and global studies of carbon 

balance. We have found that crop GPP was closely related to its total chlorophyll 

content, and thus chlorophyll can be used as a proxy of GPP in crops. In this 

study, we tested the performance of various vegetation indices for estimating 

GPP. The indices were derived from spectral data collected remotely but at close-

range over a period of eight years, from 2001 through 2008. The results show that 

chlorophyll indices, based on near infrared and either the green or red-edge 

regions of the spectrum, are capable of accurately predicting widely variable GPP 

in maize under both rainfed and irrigated conditions.  

 

 

Keywords:     GPP, Remote Sensing, Vegetation Indices 

 

 

   

INTRODUCTION 

      

Cultivated systems occupy about 24% of the Earth's terrestrial surface and, in 

general, can have equal or greater gross primary production (GPP) than the 

natural ecosystems that were originally converted for crop production. The maize 

cropping systems, that dominate agricultural land use in the north-central USA, 

play an important role in the annual carbon exchange in this region. Crop hybrids 

and field management practices have changed over the last three decades, 

increasing crop yields, decreasing tillage, and increasing residue inputs to the soil. 

These changes have impacted the amount of atmospheric carbon fixed through 

photosynthesis, as well as on the release of carbon dioxide (CO2) due to the 

decomposition of organic matter. 

Field studies have used the tower eddy covariance systems to provide 

information on the seasonal and inter-annual dynamics of CO2 fluxes in crops  
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(e.g., Verma et al, 2005). These techniques provide an integrated measurement of 

CO2 fluxes with high temporal resolution over limited footprints. Therefore, up-

scaling beyond these small footprints is needed for regional carbon budget 

assessments as well as for estimating crop yield. Since vegetation productivity is 

directly related to the interaction of solar radiation with the plant canopy, remote 

sensing techniques have been increasingly used for such up-scaling. The 

procedures developed, so far, can be grouped into two broad categories according 

to the way the absorption of solar radiation and its conversion into dry matter is 

modeled (e.g., Ruimy et al., 1999): canopy photosynthesis models (CPM) and 

production efficiency models (PEM). While CPMs compute the amount of leaves 

(i.e., leaf area index, LAI) used to absorb solar radiation, PEMs directly compute 

the absorbed solar radiation based on the original logic of Monteith (1972), which 

suggests that the gross primary production (GPP) is linearly related to the amount 

of absorbed photosynthetically active radiation: 

GPP ∝ ε × ∑ ( fAPAR × PARin)      (1)  

where PARin is the incident photosynthetically active radiation, fAPAR is the 

fraction of PARin absorbed by the canopy, and ε is light use efficiency (LUE).  

Note: GPP = NEP + Re, where NEP is net ecosystem production and Re is 

ecosystem respiration.   

Most PEMs are based on the assumption of a close linear relationship between 

the fAPAR and the Normalized Difference Vegetation Index (NDVI), as well as 

on a constant, though biome-specific, LUE (e.g., Ruimy et al., 1999). It has been 

shown that these assumptions do not hold in many circumstances. On the one 

hand, a significant decrease in the sensitivity of NDVI is observed for moderate-

to-high vegetation density when fAPAR exceeds 0.7 (e.g., Kanemasu, 1974, Asrar 

et al., 1984, Vina and Gitelson, 2005). On the other hand, although LUE is a 

relatively conservative value among plants of the same metabolic type (e.g., 

Ruimy et al., 1999), its variability is species-specific rather than biome-specific 

(e.g., Ahl et al., 2004), and it varies considerably among vegetation types, with 

phenological stage, and in response to varying environmental conditions such as 

drought and diffuse radiation.  

Many remote sensing models for GPP estimate LUE using look-up tables of 

maximum LUE for given vegetation type and then adjust those values downward 

on the basis of environmental stress factors (e.g., Running et al., 2004; Xiao et al., 

2005). Several studies have attempted to assess LUE directly using the 

photochemical reflectance index, (PRI, Gamon et al., 1992), to estimate LUE at 

different scales, from leaf level to entire regions (e.g., Gamon et al., 1992, 

Rahman et al., 2004). The PRI vs. LUE relationship, however, varies considerably 

among vegetation types (Nichol et al., 2002; Sims et al., 2006a), and among 

different years at the same site (Sims et al., 2006b). In the case of agricultural 

crops, the use of PRI as a proxy of LUE did not show a major improvement over 

the GPP estimated with a constant LUE (Gitelson et al., 2006).   

A more direct approach may be to devise GPP models based entirely on 

remotely sensed data, with continuous output at the spatial resolution of Earth-

orbiting satellite sensors. Thus, attempts have been made to estimate GPP directly 

from the vegetation indices, such as the NDVI or Simple Ratio, without 
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depending on an estimation of LUE. These indices were used as proxy of fraction 

of radiation absorbed by photosynthetically active “green” vegetation, fAPARgreen 

(Hall et al., 1992). Since NDVI tends to saturate at moderate-to-high vegetation 

densities, alternative vegetation indices, such as the enhanced vegetation index, 

(EVI, Huete et al., 1997) have been suggested for use in the remote estimation of 

GPP (e.g., Xiao et al., 2005, Sims et al., 2006a). Sims et al., (2006a) have shown 

that a model based solely on EVI provided as good or better estimates of GPP for 

most of the sites than did the much more complex NASA-MODIS product.   

Another approach is based on the assumption of a close relationship between 

GPP and total canopy chlorophyll (Chl) content (Gitelson et al., 2003b, 2006). 

This approach has solid biophysical background. Because long- or medium-term 

changes in canopy Chl are related to crop phenology, canopy stresses, and 

photosynthetic capacity of the vegetation, Chl is also related to GPP. It was found 

that canopy level Chl may appear to be the community property most relevant for 

the prediction of productivity (e.g., Whittaker and Marks, 1975). Low frequency 

(day-to-day) variation in GPP is associated with crop phenological stage and 

physiological status. Following Monteith’s logic, GPP is a function of the amount 

of PAR absorbed by the canopy (APAR) and the capacity of the leaves to export 

or utilize the product of photosynthesis (i.e., LUE). The product of fAPARgreen 

and LUE depends on the amount and distribution of photosynthetic biomass; thus 

it depends upon chlorophyll content and leaf physiology with Chl as a driver of 

fAPARgreen and an indicator of LUE.  

As a result, Gitelson et al., (2003a; 2006) suggested estimating crop GPP 

remotely by exploiting the consistent and not species-specific relationship 

between total crop chlorophyll content and the low frequency variation of GPP. 

They showed that the product of total Chl and PAR explained more than 98% of 

GPP variation in both irrigated and rainfed maize and soybean crops. Therefore, a 

procedure for assessing remotely the GPP of crops may be implemented through 

the estimation of total crop chlorophyll content.  

Changes in leaf Chl content induce large differences in canopy reflectance.  

However, these changes are masked and/or confounded by other factors (e.g., 

canopy architecture, Chl distribution within the canopy, LAI, leaf water content, 

soil background) that also affect canopy reflectance. Therefore, remote Chl 

retrieval at canopy level is complicated and challenging. Recently, a Chlorophyll 

Index (CI) in the form CI = [R(λ1)
-1

 – R(λ2)
-1

] × R(λ3), where R(λ) is reflectance 

in spectral bands λ1, λ2 and λ3, has been developed for Chl retrieval from 

reflectance spectra (Gitelson et al., 2003b, 2005). To assess Chl content at canopy 

level, this model was spectrally tuned to find the optimal positions of  λ1, λ2 and 

λ3, in accord with the optical properties of vegetation. Optimal positions of 

spectral bands for the remote estimation of total Chl content in maize and soybean 

canopies for λ1 were found in either the green (540-560 nm) or the red edge (700-

730 nm) ranges, and for λ2 =λ3 was found in the near infrared range (beyond 750 

nm) (Gitelson et al., 2005). Thus, chlorophyll indices CIgreen = (RNIR / Rgreen – 1) 

and CIred edge = (RNIR / Rred edge – 1) were used for remote Chl retrieval. Using this 

finding, it was suggested to estimate GPP using CIs as follows (Gitelson et al., 

2006): 
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GPP ∝ PARin × CIgreen       (2) 

GPP ∝ PARin × CIred edge       (3) 

In this study, we investigated the potential of a model, GPP ∝ VI × PARin, 

based entirely on remotely sensed data. We tested the performance of widely used 

vegetation indices Simple Ratio (SR), NDVI, EVI2, Wide Dynamic Range 

Vegetation Index (WDRVI), CIgreen and CIred edge in estimating GPP in maize 

using data taken at close range in rainfed and irrigated sites over a period of 8 

years.  

 

METHODS 

 

Three study sites are located at the University of Nebraska-Lincoln 

Agricultural Research and Development Center near Mead, NE, US. Site 1 and 

site 2 are 65-ha fields equipped with center pivot irrigation systems. Site 3 is of 

approximately the same size, but relies entirely on rainfall for moisture. Site 1 is 

under continuous maize, while site 2 and site 3 are under a maize-soybean 

rotation (Table 1).  

 

CO2 Fluxes and Incoming Photosynthetically Active Radiation 

 

The micrometeorological eddy covariance data used in this study were 

collected each year from 2001 through 2008. To have sufficient upwind fetch (in 

all directions), eddy covariance sensors were mounted at 3 m above the ground 

while the canopy was shorter than 1 m, and later moved to a height of 6.2 m until 

harvest (details are given in Suyker et al., 2004). The study sites represented 

approximately 90-95% of the flux footprint during daytime and 70-90% during 

nighttime (e.g., Schuepp et al., 1990). Daytime net ecosystem exchange (NEE) 

values were computed by integrating the hourly CO2 fluxes collected by the eddy 

covariance tower during a day. Daytime estimates of ecosystem respiration (Re) 

were obtained from the night CO2 exchange and temperature relationship (e.g., 

Falge et al., 2002). The daytime GPP (in grams of carbon per meter square per 

day, gC/m
2
/d) was then obtained by subtracting daytime respiration from NEE. 

This approach has been widely used in the context of tower flux measurements 

and is considered to provide reasonable estimates at the landscape level.   

Incoming Photosynthetically Active Radiation (PARin) was measured with 

point quantum sensors (LI-190, LI-COR Inc., Lincoln, NE) pointing to the sky, 

and placed 6 m above the surface. Daytime PARin values were computed by 

integrating the hourly measurements during a day.  

 

Maize reflectance 

 

Spectral measurements at the canopy level were made using hyperspectral 

radiometers mounted on “Goliath”, an all-terrain sensor platform (Rundquist et 

al., 2004). A dual-fiber optic system, with two inter-calibrated Ocean Optics 

USB2000 radiometers, was used to collect radiometric data in the range 400-1100 

nm with a spectral resolution of about 1.5 nm. Radiometer 1, equipped with a 25° 
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field-of-view optical fiber was pointed downward to measure the upwelling 

radiance of the crop ( maizeL
λ

). The position of the radiometer above the canopy was 

kept constant throughout the growing season (i.e. around 5.4 m), yielding a 

sampling area with a diameter of around 5 m. Radiometer 2, equipped with an 

optical fiber and cosine diffuser (yielding a hemispherical field of view), was 

pointed upward to simultaneously measure incident irradiance ( incE
λ

). The inter-

calibration of the radiometers was accomplished, in order to match their transfer 

functions, by measuring the upwelling radiance ( calL
λ

) of a white Spectralon 

(Labshere, Inc., North Sutton, NH) reflectance standard simultaneously with 

incident irradiance ( calE
λ

). To mitigate the impact of solar elevation on radiometer 

intercalibration, the anisotropic reflectance from the calibration target was 

corrected in accord with Jackson et al (1992). Percent reflectance (
λ

R ) was 

computed as: 
calcalcalincmaize RLEELR
λλλλλλ

*100*)/()/( ×=      (4) 

where calR
λ

 is the reflectance of the Spectralon panel linearly interpolated to match 

the band centers of each radiometer. 

Spectral reflectance measurements at canopy level were carried out from May 

until October each year over the eight-year period from 2001 through 2008. This 

resulted in 173 measurement campaigns (18 in 2001, 31 in 2002, 34 in 2003, 31 in 

2004, 21 in 2005, 15 in 2006, 14 in 2007 and 9 in 2008). Radiometric data were 

collected close to solar noon (between 11:00 and 13:00 local time), when changes 

in solar zenith angle were minimal. For each measurement site, six randomly 

selected plots were established per field, each with six randomly selected 

sampling points. Thus, a total of 36 points within these areas were sampled per 

data acquisition and site, and the median was calculated as the site reflectance. 

Measurements took about 5 minutes per plot and about 30 minutes per field. The 

two radiometers were inter-calibrated immediately before and immediately after 

measurement in each field.   

 

Table 1.  Crop management details for the three maize sites during 2001–2008.   

 

Site1 Site2 Site3 
 Irrigated Maize Irrigated Maize Rainfed Maize 

2001 Pioneer 33P67 Pioneer 33P67 Pioneer 33B51 

2002 Pioneer 33P67   

2003 Pioneer 33B51 Pioneer 33B51 Pioneer 33B51 

2004 Pioneer 33B51   

2005 DeKalb 63-75 Pioneer 33B51 Pioneer 33G68 

2006 Pioneer 33B53   

2007 Pioneer 31N30 Pioneer 31N28 Pioneer 33H26 

2008 Pioneer 31N30   
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Calibration and validation of the models 

 

Vegetation indices (VI) tested in this paper are following: 

Simple Ratio (Jordan, 1969): 

SR = RNIR / Rred         (5) 

Normalized Difference Vegetation Index (Rouse et al, 1974):  

NDVI = (RNIR − Rred) / (RNIR + Rred)      (6) 

Enhanced Vegetation Index (EVI2, Jiang et al., 2009)  

EVI2 = 2.5 × (RNIR − Rred) / (RNIR + 2.4 × Rred)    (7) 

Wide Dynamic Range Vegetation Index (Gitelson, 2004): 

WDRVI = (α × RNIR − Rred) / (α × RNIR + Rred), α = 0.2   (8) 

Green and red edge chlorophyll indices (Gitelson, 2003b & 2005): 

CIgreen = RNIR / Rgreen − 1       (9) 

CIred edge = RNIR / Rred edge − 1       (10) 

Where Rred, Rgreen, Rred edge and RNIR are reflectances in the red (630-690nm), 

green (520-600nm), red edge (703-712nm) and NIR (760-900nm) spectral ranges.   

VIs calculated from spectral reflectance data were used to establish and 

validate relationships between GPP and the product of VI and incoming PAR 

(PARin): GPP vs. VI × PARin. The approach to estimate GPP was tested by means 

of regression analysis. The dataset includes all spectral reflectance data taken in 

2001 through 2008 for three sites and daytime GPP for the same days as spectral 

measurements (332 samples total). The samples were sorted in ascending order of 

GPP. Data with odd numbers (166 samples) were used for model calibration; i.e., 

the establishment of the relationship GPP vs. VI × PARin. Then, these 

relationships were validated using samples with even numbers (166 samples). 

Measured reflectances in the validation data set were used to estimate GPP values 

(GPPest), and then GPPest were compared with GPP as measured by the eddy 

covariance technique (GPPmeas). The root mean squire error (RMSE) of GPP 

estimation by the vegetation indices (Eq. 5-10) was calculated to evaluate the 

model accuracy.  

 

RESULTS AND DISCUSSION 

 

Firstly, we examined the relationship between GPP and total canopy 

chlorophyll content. Total canopy Chl was estimated as Chl = Chlleaf × green LAI, 

where Chlleaf is Chl content of collar or ear leaves (Gitelson et al., 2005, Ciganda 

et al., 2009) and green LAI was determined destructively (details in Gitelson et 

al., 2003c). Daytime GPP was normalized by PARin in order to remove 

modulation of GPP by a change in radiation conditions (PARin). It can be seen 

that the temporal behavior of canopy Chl was almost the same as that GPP/PARin 

during a growing season (Figure 1).  
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Fig. 1.  Canopy chlorophyll content (Chl) and the ratio GPP/PARin plotted 

versus day of year for site 1 in 2003. Both chlorophyll and the ratio were 

scaled between 0 and 1. 
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Fig. 2.  Relationships between daytime gross primary production in irrigated 

sites in 2003 and the product of vegetation index and incident PAR for four 

vegetation indices: NDVI, EVI2, CIgreen, and CIred edge.   

Based upon the close relationship between GPP and total canopy Chl, we 

compared the performance of NDVI, EVI2, CIgreen and CIred edge in GPP estimation 

(Figure 2). NDVI increased quite sharply with an increase in GPP up to 7gC/m
2
/d, 

but tended to saturate when GPP exceeded 10gC/m
2
/d. EVI2 was sensitive to GPP 

in the whole range of GPP variation, while CIgreen and CIred edge showed more 

sensitivity to moderate to high GPP values than to low GPP.  

Table 2 summarizes the RMSE and coefficients of variation (CV = RMSE / 

mean GPP) of the quadratic polynomial relationships between daytime GPP and 

the product of vegetation indices and incident PAR (VI × PARin) for five 

vegetation indices (NDVI, EVI2, SR, CIgreen and CIred edge). For each site in 2001 

through 2008, NDVI was consistently less accurate as a GPP predictor with the 

mean CV > 23%, while the chlorophyll indices (CIred edge and CIgreen) were the best 

except for site 3 in 2001 and site 1 in 2002, when EVI2 performed better than the 

others. The last row in Table 2 is quite informative showing mean values of 

RMSE and the CV for each index. Ratio indices (SR and CIs) were the most 

accurate in GPP estimation.   

 

Table 2.  Root mean square error (RMSE) and coefficients of variation (CV = 

RMSE/mean GPP) of quadratic polynomial relationships between daytime GPP 

and the product of vegetation index (VI) and incident PAR (VI × PARin) for five 

vegetation indices: NDVI, EVI2, SR, CIgreen, and CIred edge.  Maize hybrids and 

crop management practices in each site are shown in Table 1. 

   Root Mean Square Error (gC/m2/d) CV (%) 

Year Site 
GPP 
Mean 

NDVI EVI2 SR CIgreen CIred edge NDVI EVI2 SR CIgreen CIred edge 

2001 1 19.22 4.74 4.00 2.23 2.10 2.03 24.7 20.8 11.6 10.9 10.6 

2001 2 16.71 4.57 3.93 2.02 2.11 1.92 27.4 23.5 12.1 12.6 11.5 

2001 3 16.58 4.16 1.73 2.79 2.73 2.44 25.1 10.5 16.8 16.5 14.7 

2002 1 15.24 2.85 1.97 2.81 2.46 2.38 18.7 12.9 18.4 16.1 15.6 

2003 1 12.45 3.35 2.69 2.54 2.66 2.38 26.9 21.6 20.4 21.3 19.1 

2003 2 14.22 3.60 2.99 2.23 2.48 2.04 25.3 21.0 15.7 17.4 14.4 

2003 3 12.96 2.65 2.29 2.30 2.10 2.42 20.5 17.7 17.8 16.2 18.7 

2004 1 13.37 3.67 2.30 2.30 2.43 2.06 27.4 17.2 17.2 18.1 15.4 

2005 1 12.55 2.82 1.90 2.08 1.88 1.82 22.5 15.2 16.6 15.0 14.5 

2005 2 13.05 3.42 2.29 2.38 2.13 1.96 26.2 17.5 18.2 16.3 15.1 

2005 3 11.62 3.19 2.53 1.77 1.65 1.41 27.4 21.7 15.2 14.2 12.1 

2006 1 14.44 2.67 2.39 1.15 1.18 0.97 18.5 16.6 8.0 8.2 6.7 

2007 1 16.97 3.50 2.51 1.57 1.76 1.25 20.6 14.8 9.3 10.4 7.4 

2007 2 16.95 3.25 2.31 1.20 1.28 1.19 19.2 13.6 7.1 7.5 7.0 

2007 3 16.42 2.32 1.85 1.60 1.68 1.39 14.1 11.2 9.8 10.2 8.5 

2008 1 19.25 4.72 1.76 1.89 1.01 1.04 24.5 9.1 9.8 5.2 5.4 
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Mean   3.5 2.5 2.1 2.0 1.8 23.1 16.6 14.0 13.5 12.3 

 

 

Although the relationships between GPP and CIs for each site were very close 

with a mean CV < 13.5% and r
2
 > 0.9, these relationships were specific for 

different sites and years. The coefficients of equations VI × PARin vs. GPP were 

different between years and between sites in the same year. For irrigated sites, the 

relationships for eight different years deviated especially for the years 2002 and 

2006 (Fig. 3). This deviation became more pronounced at high GPP values. In 

rainfed sites, there was also variation in coefficients of the relationships between 

the years (Fig. 4). 

The coefficients of the relationships also varied among the sites with different 

management practices. The slope of the best fit function of the relationship 

between GPP and PARin × CI for all rainfed sites was little lower than slope of 

best fit function for irrigated sites (Figures 5 and 6). Thus, the RMSE of GPP 

estimation in both irrigated and rainfed sites combined was slightly higher (2.69 

vs. 2.56gC/m
2
/d for CIgreen and 2.54 vs. 2.41 gC/m

2
/d for CIred edge) than RMSE of 

GPP estimation of irrigated and rainfed sites when treated separately.  
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Fig. 3.  Best fit functions of the relationships between daytime gross primary 

production and the products of CIgreen×PAR for each irrigated site from 2001 

through 2008 (see Table 1).  
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Fig. 4.  Best fit functions of the relationships between daytime gross primary 

production and the products of CIgreen×PAR for each rainfed site from 2001 

through 2008 (see Table 1).  
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Fig. 5.  Best fit functions of the relationships between daily gross primary 

production and the products of CIgreen×PAR.  Dotted line: 12 irrigated sites 

in 2001 through 2008, dashed line: 4 rainfed sites in 2002, 2004, 2006, and 

2008, solid line: 16 irrigated and rainfed sites taken together.  
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Fig. 6.  Best fit functions of the relationships between daily gross primary 

production and the products of CIred edge×PAR.  Dotted line: 12 irrigated sites 

in 2001 through 2008, dashed line: 4 rainfed sites in 2002, 2004, 2006, and 

2008, solid line: 16 irrigated and rainfed sites taken together.  

 

 

The reason for the variable relationships among the years and sites is 

complicated. The different maize hybrids and field management practices (as 

shown in Table 1) over the eight years may have caused differences in crop 

physiological status, such as canopy architecture and density. In addition, other 

factors, such as water stress, temperatures, and soil moisture, may also contribute 

to the variation. However, this variation among the years and sites is within one 

standard error of GPP estimation, which is below 2.7gC/m
2
/d for both CIs.    

In Figure 7 and Table 3, the results of validation are shown.  SR, CIgreen and 

CIred edge were the best among vegetation indices tested in GPP estimation, while 

NDVI was much less accurate. Chlorophyll indices were also superior in 

estimating GPP in wheat (Wu et al., 2008). The first results of GPP estimating in 

crops using Landsat and Hyperion satellite data were also very promising 

(Gitelson et al., 2008; Wu et al., 2010). Thus, it confirms the validity of GPP 

estimating via vegetation indices related to chlorophyll content. 
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Fig 7.  Validation of vegetation indices in estimating daytime gross primary 

production in 16 irrigated and rainfed maize sites in 2001 through 2008: 

enhanced vegetation index (EVI2), green chlorophyll index (CIgreen) and red 

edge chlorophyll index (CIred edge).   

Table 3.  The results of validation of vegetation indices in estimating daytime 

gross primary production in 16 irrigated and rainfed maize sites in 2001 through 

2008. Offset, root mean square error (RMSE) and determination coefficient (R
2
) 

of linear relationships between estimated and measured daily GPP are given for 

six vegetation indices.  

 NDVI WDRVI EVI2 SR CIgreen CIred edge 

Slope 0.86 0.92 0.89 0.95 0.96 0.96 

Offset 1.9 1.16 1.72 0.69 0.46 0.51 
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RMSE, gC/m
2
/d 3.62 3.5 3.10 2.88 2.74 2.62 

R
2
 0.82 0.84 0.87 0.89 0.90 0.91 

 

However, it is still not clear how short term variation in GPP can be detected 

using vegetation indices (e.g., SR, NDVI, EVI2 or CIs) alone. GPP is affected by 

short-term (minutes to hours) environmental stresses (e.g., temperature, humidity, 

and soil moisture, among others). If these short-term stresses do not affect the 

“greenness” of the crop (i.e., fAPARgreen, canopy chlorophyll content, green LAI), 

the model will fail to detect a decrease in GPP related to the types of stressors 

mentioned.  

 

CONCLUSION 

 

GPP in crops is closely related to their total chlorophyll content. We presented 

the model that relates GPP with a product of chlorophyll and incident PAR that is 

based entirely on remotely sensed data. The model is capable of accurately 

predicting widely variable GPP in maize under both irrigated and rainfed 

conditions. The chlorophyll indices appear to be the best predicators of daytime 

GPP in maize, among the vegetation indices tested. The model was tested using 

vegetation indices calculated with reflectances that were simulated in the spectral 

bands of the Landsat-TM, MODIS, and MERIS sensors. The next step is to test 

the model and to assess its accuracy using real satellite data.  
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