Potential Insect-Control Applications for Microwaves

Stuart Nelson

USDA-ARS

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub

Part of the Agricultural Science Commons

https://digitalcommons.unl.edu/usdaarsfacpub/245

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
POTENTIAL INSECT-CONTROL APPLICATIONS FOR MICROWAVES

Stuart O. Nelson

United States Department of Agriculture, Agricultural Research Service,
University of Nebraska, Lincoln, Nebraska 68503 U.S.A.

The idea of using radiofrequency (RF) electric energy for controlling insects is not new. Experiments in the United States to control insects with high-frequency electric fields date back at least 45 years, and reports indicate development of similar interests in Europe during the same period. Many researchers have explored the possibilities since then, and their findings have been reviewed in several publications (Thomas, 1952; Frings, 1952; Peredel'skii, 1956; van den Brueel et al., 1960; Watters, 1962; Nelson, 1966, 1967, 1972, 1973). The purposes in preparing this paper are to summarize these findings in a general way, to discuss some of the fundamental principles, and to present recent data and interpretations which relate to the potential for applying microwave and lower frequency RF energy for insect-control purposes.

Potential applications for controlling insects that infest grain, cereal products, and wood have received the most study. The use of RF energy has also been considered for control of soil insects and insects infesting seeds, fruits, and other food products. The most promising results in experimental work have been obtained when the character of the infested material is such that the energy absorption rate in the insects is high compared with that in the host material. Under these conditions, the insects can be disabled or killed by selective or differential dielectric heating.

Through the years, there has always been some question as to the nature of the lethal mechanisms responsible for the injury or death of insects exposed to RF fields. Most investigators believe that results can be accounted for on the basis of RF dielectric heating. Often, "specific effects" observed could be explained by differential or localized heating of insect body tissues. However, there are some observations that may or may not be satisfactorily explained on this basis (Nelson, 1967; Carpenter and Livstone, 1971), and further research will be necessary to resolve the questions.

Basic Principles

Since known principles useful for insect control depend upon thermal effects, the principles involved in RF dielectric heating of substances will be considered briefly.

The power dissipated per unit volume in a dielectric under the influence of an alternating electric field may be expressed as

\[P = \varepsilon_0 \varepsilon'_\sigma \frac{\omega}{2} \varepsilon_0 \varepsilon'' = 55.63 f \varepsilon_0 \varepsilon'' x 10^{-12} \text{ watts/m}^3 \]

[1]

where \(\varepsilon \) represents the electric field intensity in the dielectric (V/m), \(f \) is the frequency of the alternating field (hertz), \(\omega \) is the angular frequency \((2\pi f) \), \(\varepsilon_0 \) is the permittivity of free space \((8.854 \times 10^{-12} \text{ farad/m}) \), and \(\sigma \) and \(\varepsilon'' \) are,
respectively, the a-c conductivity and the relative dielectric loss factor or loss index of the material at the particular frequency considered. The loss factor, \(\varepsilon''_n \), is the imaginary part of the complex relative permittivity, \(\varepsilon_n = \varepsilon'_n - j\varepsilon''_n \), the real part, \(\varepsilon'_n \), being the dielectric constant.

The time rate of temperature increase (°C, sec) in the dielectric, as a result of energy absorption from the RF field, may be expressed as

\[
\frac{dT}{dt} = 0.239 \times 10^{-6} P/\rho \varepsilon
\]

where \(P \) is power density in watts/m\(^3\), and \(\sigma \) and \(\rho \) represent, respectively, the specific heat and specific gravity of the dielectric. This expression neglects any heat losses from the dielectric during the exposure and is not valid if any energy is used for the volatilization of water or other material in the dielectric.

While Eqs. 1 and 2 are applicable to homogeneous dielectrics under specified conditions, they are difficult to apply to nonhomogeneous dielectrics or mixtures of materials. In these cases, the relationships should be valid for individual constituents of the mixture, but values for the field intensity, \(E \), the loss factor, \(\varepsilon''_n \), and even the specific heat and specific gravity may be somewhat difficult to obtain.

For the simple case of a sphere of one material (medium 1) embedded in an infinite medium of another material (medium 2), the relationship between field intensities in the two media may be expressed as

\[
E_1 = E_2 \left(1 - \frac{\varepsilon'_1 - \varepsilon'_2}{2\varepsilon'_2 + \varepsilon'_1} \right) = E_2 \left(\frac{\varepsilon'_2}{2\varepsilon'_2 + \varepsilon'_1} \right).
\]

Thus, the relative magnitude of the dielectric constants of materials in the mixture and their geometric shapes and relationships will influence the electric field intensity distribution in a nonhomogeneous mixture of materials.

At microwave frequencies, the attenuation of the energy as it penetrates large objects is another factor which must be taken into account. The degree of attenuation depends mainly upon the dielectric loss factor of the materials.

While an accurate analytical approach to the action of microwaves (and lower frequency RF energy as well) on a complex mixture such as insects and their host materials may appear futile, an understanding of the basic principles can provide useful insight in explaining observed phenomena.

General Findings

With regard to insect-control studies, many of the early findings can be substantiated by considering the basic principles. The heating rate of materials exposed to RF electric fields increases with increasing field intensity and with increasing frequency (Eqs. 1 and 2). Since the loss factor of hygroscopic materials generally increases with moisture content, their heating rates also are higher when moisture contents are greater.

Studies have shown that many insects that infest grain, cereal products, and wood products can be controlled by short exposures to RF fields that do not damage the host material. Generally, resulting temperatures in the host material necessary for control of the insects range between about 40° and 70° C., depending upon the host, the insect species, and the nature of the RF treatment. So far as is known, however, RF methods have not been used on a practical scale, because they have not been as economical as chemical or other control methods.

Differences in the susceptibility to control of different insect species have been noted when treated in common host media under comparable conditions. Some of these differences are no doubt attributable to interspecific differences of a biological or physiological nature, but some may be explained by differences in size and geometric relationships.

Differences have also been found in the susceptibility of different developmental stages of the same species. In general, the adults are more susceptible to
control by RF fields than are the immature forms, i.e., egg, larval, and pupal stages. Some of the stored-grain insect species have been found more susceptible when they exist outside the grain kernels than when they are concealed within the kernels.

Various kinds of injuries to the legs and other appendages of insects have been observed in insects subjected to sublethal RF exposures. These injuries have usually been attributed to high E-field concentrations and consequent localized heating during RF exposure. Interspecific differences have been found in the degree of delayed mortality observed during the weeks following RF treatment.

Reproductive sterilization of the type produced by ionizing radiations has not been observed in RF-treated insects. Reproductive capacity, however, is reduced in surviving adults by treatments which achieve a relatively high mortality of the population.

Physical Factors

The influences of various physical factors, such as frequency, electric field intensity, pulse modulation, heating rate, and characteristics of host materials, have been studied. General conclusions are difficult to draw concerning some of these factors. High field intensities are more effective than low field intensities in some instances. High heating rates are to be preferred, generally, to minimize the opportunity for thermal losses from the insect to the host medium. Although pulse modulation permits the use of higher field intensities at some frequencies, definite advantages of modulation have not been confirmed.

Contrasting differences in effectiveness of RF insect-control methods have been noted when widely differing frequencies have been used. In particular, comparisons of stored-grain insect-control treatments at frequencies of 11 to 90 MHz with treatments at 2450 MHz have shown the lower frequency range to be much more efficient in controlling the insects (Nelson and Charity, 1972; Nelson, 1973). Resulting temperatures in the host media were considerably higher at 2450 MHz than at the lower frequencies for the exposures required to control the different insect species and developmental stages of those species.

The importance of frequency has been further illustrated by studies of the frequency dependence of the dielectric properties of insects and host media. Values for the dielectric constant and dielectric loss factor of adult rice weevils, Sitophilus oryzae (L.), and wheat, Triticum aestivum L., have been measured over a wide range of frequencies (Nelson and Charity, 1972). Frequency dependence of the loss factor, ε'', for these two kinds of materials is illustrated in Fig. 1.

An analysis of the differential dielectric heating to be expected at different frequencies, based on Eqs. 1 and 3 and values of ε'_0 and ε''_0, revealed that the dielectric loss factor is the dominant factor to be considered. Therefore, it is obvious from the data of Fig. 1 that much better selective heating of the insects should be expected in the frequency range between 5 and 100 MHz than can be expected at frequencies above 1 GHz.

Since the curves for ε'_0 of rice weevils and wheat, as well as those illustrated for ε''_0 in Fig. 1, are characteristic of some dielectric dispersion and absorption phenomenon, it is probable that the relaxation frequencies (frequencies of maximum loss) will shift to higher frequencies as the temperatures of the ma-

![Fig. 1. Frequency dependence of ε'' for bulk samples of adult rice weevils and wheat (10.4% moisture, w.b.) at 21° C.](image-url)
aterials increase. Shifts in relaxation frequencies of two orders of magnitude may be entirely possible in the temperature range through which the insects must be elevated to achieve complete mortality. If this occurs during RF treatment at a fixed frequency of 40 MHz, for example, it means that the insect-to-grain loss-factor ratio will decrease during the exposure, and the relatively large selective heating advantage possible at the beginning of the exposure may be drastically reduced during latter stages of the exposure. Therefore, it may be possible to materially improve the efficiency of RF treatment for insect-control purposes by increasing the frequency during exposure to more nearly follow the maximum insect-to-grain loss-factor ratio as the treatment progresses.

Practical Aspects

If the anticipated shift in relaxation frequencies occurs, as explained in the foregoing example, the optimum frequency for finishing the treatment may well fall in the microwave range. The most practical design for a high-power RF-treating system would likely include two or more fixed-frequency power oscillators. The infested product would be conveyed continuously through the system with the exposure starting at the lower frequency and finishing at the higher frequency.

Cost estimates for RF insect control in grain, based on fixed-frequency equipment operating at one frequency, indicate that RF methods might be 3 to 5 times more expensive than chemical controls currently in use. Various other factors influencing practical application have also been considered (Nelson, 1972, 1973). A major improvement in the efficiency of RF treatment could materially change the economic picture. Therefore, a survey of the frequency and temperature dependence of the dielectric properties of insects and host materials for any particular application may provide important information on which to assess the practicality of an RF application.

Continually increasing concern about environmental aspects of chemical control methods is another factor that should be considered. Speed of treatment and lack of potentially harmful chemical residues are two unique advantages which RF methods have to offer. With improvement of efficiency and with developing technology, RF insect-control methods may well become practical for certain applications in which they are particularly well suited.

References

2. Frings, H. 1952. J. Econ. Entomol. 45:(3)396-408.