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Introduction

It is estimated that approximately 99% of the organic 
resources that undergo decomposition in a terrestrial 
ecosystem are plant-derived (e.g. leaf litter, root exu-
dates, stems) or fecal matter (Swift et al. 1979). As a con-
sequence, the breakdown of these materials has received 
a vast amount of attention (e.g. Aarons et al. 2004; Bjorn-
lund and Christensen 2005). In contrast, the decompo-

sition of dead mammals (i.e. cadavers) has long been a 
neglected microsere (Allee et al. 1949). This is in spite 
of the fact that a large number of mammals die from 
causes other than predation and leave their cadavers to 
decompose and nutrients to be recycled. In a Neotrop-
ical rainforest (Barro Colorado Island, Panama) (Eisen-
berg and Thorington Jr. 1973), 5,000 kg of mammal bio-
mass per km2 is associated with 750 kg of cadavers per 
year per km2 (Houston 1985). The average annual bison 
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Abstract  
A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that 
releases an intense, localized  pulse of carbon and nutrients into the soil upon decomposition. Despite the fact 
that as much as 5,000 kg of cadaver can be introduced to a square kilometer of terrestrial ecosystem each year, 
cadaver decomposition remains a neglected microsere. Here we review the processes associated with the intro-
duction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that ca-
daver decomposition can have a greater, albeit localized, effect on below-ground ecology than plant and fecal 
resources. Cadaveric materials are rapidly introduced to below-ground floral and faunal communities, which 
results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs 
are associated with increased soil microbial biomass, microbial activity (C mineralization) and nematode abun-
dance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the 
wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, fe-
cal matter (from scavengers, grazers and predators), and feathers (from avian scavengers and predators). As 
such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialized habitat for a number of 
flies, beetles, and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems. 

Keywords:  mammal, carbon cycle, nutrient cycle, forensic taphonomy, scavenging, biodiversity, landscape het-
erogeneity, postputrefaction fungi
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(Bos bison L.) biomass in 988 ha of North American tall-
grass prairie (Konza Prairie, Kansas, USA) from 1998 to 
2004 was 92,432 kg (E. G. Towne, personal communica-
tion). An average mortality rate of 5.6% resulted in an 
annual bison cadaver input of approximately 5,000  kg 
and shows that cadaveric resources might represent 
more than 1% of the organic matter input in some ter-
restrial ecosystems. 

Considering that each cadaver is approximately 20% 
carbon and acts as a specialized habitat for several or-
ganisms, cadaver decomposition is likely an important 
ecosystem process. It is therefore surprising that lit-
tle is understood about the fate of cadaver-derived car-
bon and nutrients (e.g. nitrogen, phosphorus) (Putman 
1978b; Vass et al. 1992; Hopkins et al. 2000; Towne 2000; 
Carter 2005) and cadaver components (e.g. bone, skel-
etal muscle tissue) (Child 1995; Aturaliya and Lukas-
ewycz 1999; Carter and Tibbett 2006), particularly since 
carbon sequestration (Janzen 2006), carbon cycle model-
ing (Fang et al. 2005), soil organic matter formation (Mo-
ran et al. 2005) and the relationships between biodiver-
sity and ecosystem function (McCann 2000; Fitter et al. 
2005) are at the forefront of ecological research. 

Much research into cadaver decomposition is done 
under the guise of forensic taphonomy. Taphonomy, 
originally a branch of paleontology, was developed to 
understand the ecology of a decomposition site, how 
site ecology changes upon the introduction of plant or 
animal remains and, in turn, how site ecology affects 
the decomposition of these materials (Efremov 1940). 
In recent years, these goals were incorporated by foren-
sic science to understand the decomposition of human 
cadavers (Rodriguez and Bass 1983; Spennemann and 
Franke 1995; Carter and Tibbett 2006), to provide a ba-
sis on which to estimate postmortem and/or postburial 
interval (Willey and Snyder 1989; Vass et al. 1992; Hig-
ley and Haskell 2001; Tibbett et al. 2004; Megyesi et al. 
2005), to assist in the determination of cause and man-
ner of death (Nuorteva 1977; Crist et al. 1997; Haglund 
and Sorg 1997) and to aid in the location of clandes-
tine graves (Rodriguez and Bass 1985; France et al. 1992; 
Hunter 1994; France et al. 1997; Carter and Tibbett 2003). 
These goals are achieved through the study of the fac-
tors that influence cadaver decomposition (e.g. temper-
ature, moisture, insect activity). These studies have also 
provided insight into the below-ground ecology of ca-
daver breakdown. 

The aim of the current work is to review the funda-
mental processes associated with the formation and 
ecology of gravesoil. We define gravesoil as any soil that 
is associated with cadaver decomposition, regardless of 
the species of mammal or whether decomposition takes 
place on or in the soil. This definition is based on the 
original aim of taphonomy to understand the processes 

associated with the fossilization of animal remains 
(Efremov 1940). Because gravesoil represents a linkage 
between aboveground and below-ground ecology, this 
paper will review the relationships between gravesoils, 
intrinsic cadaver decomposition processes (autolysis, 
putrefaction), aboveground insect activity and scav-
enger activity. As a consequence, more fundamental 
work can be found on autolysis and putrefaction (Evans 
1963b; Coe 1973; Clark et al. 1997; Gill-King 1997; Vass 
et al. 2002), cadaver associated insect activity (Schoenly 
and Reid 1987; Campobasso et al. 2001; Amendt et al. 
2004) and scavenger activity (Haynes 1980; DeVault et 
al. 2003, 2004). 

The Formation of Gravesoil

Although soil microbial biomass is recognized as “the 
eye of the needle” (Jenkinson 1977) through which all or-
ganic material eventually passes, little work has focused 
on cadaver decomposition, below-ground ecology and 
microbiology (Bornemissza 1957; Putman 1978b; Sagara 
1995; Hopkins et al. 2000; Tibbett and Carter 2003). Ad-
vances in the understanding of gravesoils are primar-
ily empirical observations (Illingworth 1926; Mant 1950; 
Evans 1963b; Morovic-Budak 1965; Sagara 1976; Micozzi 
1991; Dent et al. 2004) or made during the study of in-
sect and/or scavenger activity (Bornemissza 1957; Reed 
1958; Payne 1965; Payne et al. 1968; Rodriguez and Bass 
1985; DeVault et al. 2003). These observations and stud-
ies showed that introduction of cadaveric material into 
the soil is primarily regulated by the activity of insects 
and scavengers and the mass of the cadaver. 

Insects, scavengers and microbes compete for cadav-
eric resources. Insects can consume a cadaver before a 
scavenger has utilized it (Putman 1978a; DeVault et al. 
2004) and microorganisms can release repellent toxins, 
such as botulin toxin (Janzen 1977). However, scaven-
gers were observed to consume 35% to 75% of the ca-
davers in terrestrial ecosystems (DeVault et al. 2003). 
When insects and microbes are less active (such as dur-
ing winter) scavenger success can approach 100% (Put-
man 1983). Smaller cadavers (i.e. rodents, juveniles) 
tend to be consumed ex situ so that the amount of cadav-
eric material entering the soil might be negligible (Put-
man 1983). Adult or large cadavers tend to be consumed 
(at least partly) in situ, which allows cadaveric mate-
rial to enter the soil (Coe 1978; Towne 2000) or to be left 
on the soil surface as recalcitrant residues such as hair, 
nails or desiccated skin (Putman 1983). Thus, significant 
amounts of cadaveric material might only enter the soil 
when insects and microbes dominate cadaver decompo-
sition or when a cadaver is too large to be carried away 
in its entirety by a scavenger. 
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Decomposition Stages and Gravesoil Ecology

The resource-driven selection of the decomposer 
community (e.g. Beijerinck 1913; Sinsabaugh et al. 
2002) was repeatedly observed as the aboveground in-
sect succession associated with cadaver decomposition 
on the soil surface (Holdaway 1930; Bornemissza 1957; 
Anderson and VanLaerhoven 1996; Richards and Goff 
1997; Kocárek 2003) or the succession of marine trophic 
groups associated with whale falls on the floor of deep-
sea ecosystems (Bennett et al. 1994; Smith et al. 1998; 
Baco and Smith 2003; Smith and Baco 2003). Several ca-
daver decomposition studies (Payne 1965; Payne et al. 
1968; Micozzi 1986; Hewadikaram and Goff 1991; An-
derson and VanLaerhoven 1996; Kocárek 2003; Melis et 
al. 2004; Carter 2005) showed that cadaver breakdown 
follows a sigmoidal pattern (Figure  1). This decompo-
sition pattern differs from the breakdown of plant and 
fecal matter, which are better described by an exponen-
tial decay curve (Putman 1983; Coleman et al. 2004). The 
discrepancy between the pattern of cadaver and plant/
fecal decomposition is probably due to the complexity 
of the substrate and presence of skin, which will retain 
cadaveric moisture, and the rate at which fly larvae as-
similate cadaveric material, which can also follow a sig-
moidal pattern (Putman 1977). Although the rate of 
cadaver breakdown will vary depending on the envi-
ronment (Mann et al. 1990; Fiedler and Graw 2003; Dent 
et al. 2004), it was suggested that cadavers might not 
persist in terrestrial ecosystems as long as fecal matter 
and woody material (Schoenly and Reid 1987). 

The progress of a cadaver through the sigmoidal de-
composition pattern is often associated with a num-
ber of stages (Fuller 1934; Bornemissza 1957; Reed 
1958; Payne 1965; Payne and King 1968; Johnson 1975; 
Coe 1978; Megyesi et al. 2005). Decomposition stages 
are a convenient means to summarize physicochemi-
cal changes, however, they are subjective and do not 
typically represent discrete seres (Schoenly and Reid 
1987). For consistency we refer to the six stages (Fresh, 
Bloated, Active Decay, Advanced Decay, Dry, Remains) 
proposed by Payne (1965). It is important to note that 
the progress of a cadaver through these stages is typi-
cally attributed to temperature. Accumulated degree 
days (ADDs: the sum of average daily temperature) can 
be used to compensate for differences in temperature 
(Vass et al. 1992; Megyesi et al. 2005). Consequently, it is 
known that “Advanced Decay” and “Remains” associ-
ated with a 68 kg human cadaver occur at 400 and 1,285 
ADDs, respectively (Vass et al. 1992). Thus, an average 
summer daily temperature of 25 °C would result in the 
onset of “Advanced Decay” after 16 days while an aver-
age daily winter temperature of 5 °C would result in an 
onset of “Advanced Decay” after 80 days. 

“Fresh” stage decomposition is associated with the 
cessation of the heart and the depletion of internal ox-
ygen. A lack of oxygen inhibits aerobic metabolism, 
which causes the destruction of cells by enzymatic di-
gestion (autolysis) (Evans 1963b; Coe 1973; Gill-King 
1997). Concomitantly, blow flies (Calliphoridae) and 
flesh flies (Sarcophagidae) colonize a cadaver to find 
a suitable site for the development of their offspring. 
Autolysis (Vass et al. 2002) and fly colonization (Payne 
1965; Nuorteva 1977) can begin within minutes of 
death. Fly oviposition is a vital step in the breakdown 
of a cadaver as maggot activity is the driving force be-
hind the removal of soft tissue in the absence of scav-
engers. Indeed, Linnaeus (1767) stated that “three flies 
could consume a horse cadaver as rapidly as a lion.” In 
addition, soil microbes (possibly zymogenous r-strat-
egist bacteria) were observed to positively respond, 
as measured by carbon dioxide (CO2–C) evolution (a 
commonly used index of microbial activity (Ajwa and 
Tabatabai 1994; Michelsen et al. 2004; Carter and Tib-
bett 2006)), to cadaver introduction within 24  h (Put-
man 1978b; Carter 2005). 

The depletion of internal oxygen also creates an ideal 
environment for anaerobic microorganisms (e.g. Clos-
tridium, Bacteroides) originating from the gastrointestinal 
tract and respiratory system. After the establishment of 
anaerobiosis, these microorganisms transform carbohy-
drates, lipids and proteins into organic acids (e.g. propi-
onic acid, lactic acid) and gases (e.g. methane, hydrogen 
sulfide, ammonia) that result in color change, odor and 

Figure  1.  Mass loss curves typically associated with the de-
composition of a cadaver on the soil surface (▬), buried ca-
daver (- - -), plant material (▬) or fecal (dung) material (▬). 
Cadaver mass loss data was compiled from previous publi-
cations: cadaver on soil surface (Payne 1965); buried cadaver 
(Carter 2005); plant material (Wardle et al. 1994; Coleman et al. 
2004); fecal matter (Putman 1983; Esse et al. 2001). 
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bloating of the cadaver (Clark et al. 1997). This process 
is putrefaction and leads to the onset of the “Bloated” 
stage (Figure 2a). 

During the “Bloated” stage, internal pressure from 
gas accumulation forces purge fluids to escape from ca-
daveric orifices (mouth, nose, anus) and flow into the 
soil. The effect of purge fluid on below-ground ecology 
is unknown. It is likely that this amendment results in 
a localized  flush of microbial biomass, shift in soil fau-
nal communities, C mineralization (CO2–C evolution) 
and increase in soil nutrient status. This effect would 
be similar to the formation of discrete “islands of fer-
tility” observed in association with plant (Zaady et al. 
1996) and fecal (Willott et al. 2000) resources. Eventu-
ally, putrefactive bloating and maggot feeding activity 
cause ruptures in the skin. These allow oxygen back into 
the cadaver and expose more surface area for the devel-
opment of fly larvae and aerobic microbial activity (Put-
man 1978b) (Figure  2b). This designates the beginning 
of “Active Decay” (Johnson 1975; Micozzi 1986). 

“Active Decay” is characterized by rapid mass loss 
(Figure 1) resulting from peak maggot activity and the 
beginning of a substantial release of cadaveric fluids 
into the soil via skin ruptures and natural orifices (Fig-
ure 2b). This flux of cadaveric material into the soil will 
connect any islands of fertility resulting from purge 

fluid and, thus, lead to the formation of a single cadaver 
decomposition island (CDI). The status of soil nutrients 
and microbial communities during “Active Decay” is 
unknown. However, Bornemissza (1957) observed an 
increase in some members of soil faunal community 
(Calliphoridae, Histeridae, Ptiliidae, Staphylinidae) and 
a decrease in numbers of Collembola and Acari beneath 
a guinea pig (Cavia porcellus L.) cadaver (~620  g) dur-
ing “Active Decay,” although this decomposition stage 
was referred to as “Black Putrefaction.” “Active Decay” 
will continue until maggots have migrated from the ca-
daver to pupate. This phenomenon represents the onset 
of “Advanced Decay.” 

The lateral extent of a CDI during “Advanced Decay” 
is determined by the size of the cadaver, the lateral ex-
tent of the maggot mass (including the path of maggot 
migration: Figure  2c) and soil texture. Soil texture and 
cadaver size also affect the vertical extent of a CDI. For 
example, during “Advanced Decay,” Coe (1978) ob-
served the CDI in sandy loam soil associated with ele-
phant (Loxodonta africana Blumenbach) (~1,629  kg) de-
composition extending to 40  cm below the cadaver, 
35 cm at 1 m from the cadaver, and 8 cm at 2 m from the 
cadaver. No penetration into the soil was observed at 
2.2 m from the cadaver. In contrast, the CDI associated 
with the decomposition of a 633 kg elephant cadaver on 

Figure 2. Decomposition of a 
10 week old (~40 kg) pig (Sus 
scrofa L.) cadaver during the 
summer of 2005 at the University 
of Nebraska-Lincoln Agricul-
tural Research and Development 
Center near Ithaca, NE, USA. (a) 
Depicts the “Bloated” stage ap-
proximately 48 h after death. The 
onset of “Active Decay” (b) can 
be designated by skin ruptures 
that result in the loss of mois-
ture and increased surface area 
for maggot development. The re-
lease of cadaveric fluids and/or 
maggot activity results in the for-
mation of a cadaver decomposi-
tion island (CDI) that is visible as 
dead plant material (c: bar rep-
resents 1 m). The arrow denotes 
the path and direction of mag-
got migration. Approximately 
80 days after death the cadaver 
decomposition island (CDI) is 
surrounded by an area of in-
creased plant growth (d), which 
might be used as a marker for 
the onset of the “Dry” stage of 
decomposition. 
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quartz gravel extended to 1.5 m below the soil surface 
(Coe 1978). By comparison, the CDI associated with the 
decomposition of a 620 g guinea pig (Cavia porcellus L.) 
extended to 14 cm below the cadaver in sandy soil (Bor-
nemissza 1957). 

A CDI during “Advanced Decay” represents an 
area of increased soil carbon (Putman 1978b; Vass et al. 
1992; Carter 2005), nutrients (Vass et al. 1992; Towne 
2000; Carter 2005) and pH (Vass et al. 1992; Carter 
2005). These changes are not surprising when we take 
into account that a cadaver contains a large amount of 
water (50% to 80%) and has a narrow C:N ratio (Tor-
tora and Grabowski 2000; DeSutter and Ham 2005) 
(Table 1). These properties are characteristic of a high 
quality resource that is associated with a significant 
amount of available C, high level of microbial activ-
ity and rapid rate of nutrient input (Swift et al. 1979). 
These characteristics become magnified upon consider-
ation that, for example, a fresh elephant (Loxodonta af-
ricana Blumenbach) cadaver can weigh 1,629  kg (Coe 
1978) while a heap of elephant dung might weigh 
4.5 kg (Anderson and Coe 1974). 

Putman (1976, 1978b) observed that approximately 

1  mg CO2–C per gram (g−1) cadaver (dry weight) was 
evolved from gravesoil associated with rat (Rattus rat-
tus L.) cadavers. If we assume that the soil microbial 
biomass assimilates 20–40% of available C (Smith 1982) 
then a total of 1.25–2.5  mg C g−1 cadaver (dry weight) 
was introduced to the soil during the course of decom-
position. After maggot migration, this input was as-
sociated with an increase of 1.4–2.7  μg CO2–C g−1 ca-
daver (dry weight) per hour (h−1) during cold seasons 
and 41–68 μg CO2–C g−1 cadaver (dry weight) h−1 dur-
ing warm seasons (Putman 1976, 1978b). By comparison 
to other organic resources, Putman (1983) demonstrated 
that similar levels of CO2–C can evolve during the de-
composition of fecal matter (millipede pellets: Glomeris 
marginata Villers, 1789) (Nicholson et al. 1966) and plant 
litter (redbud leaves: Cercis canadensis L.) (Witkamp 
1966). However, peak levels of microbial activity asso-
ciated with fecal and plant resources tend to occur im-
mediately after introduction to the soil when the readily 
available components are accessible. This is in contrast 
to cadaver decomposition where the majority of readily 
available energy and nutrients enter the soil after mag-
got migration (Advanced Decay) (Vass et al. 1992). 

Table 1. Chemical composition of cadaveric, plant and fecal resources 

Organic resource	 H2O	 C:N	 N	 P	 K	 Ca	 Mg	 References 
	 (%)   	 ratio    	 (g kg–1)	 (g kg–1) 	 (g kg–1) 	 (g kg–1) 	 (g kg–1)

Cadaver 
Human age: adult (total mass)	 50–75	 5.8	 32	 10	 4.0	 –	 1.0	 Tortora and Grabowski (2000) 
Human age: neonate	 69	 –	 19	 5.6	 2.1	 10	 2.6	 Widdowson (1950) 
Pig (Sus scrofa L.) age: 56 days 	 80	 7.7	 26	 6.5	 2.9	 10	 0.4	 Spray and Widdowson (1950); 	
								        DeSutter and Ham (2005) 
Rabbit (species unknown) age: 70 days	 78	 –	 29	 7.0	 3.2	 12	 –	 Spray and Widdowson (1950) 
Rat (Rattus rattus L.) age: 70 days 	 75	 –	 32	 6.5	 3.5	 12	 0.5	 Spray and Widdowson (1950) 

Plant material 
Barley straw (Hordegum	 –	 94	 4.5	 –	 13.2	 –	 –	 Christensen (1985)  
    vulgare L. cv. Welam)
Wheat Straw (Triticum 	 –	 61	 7.0	 –	 3.9	 –	 –	 Christensen (1985)  
    aestivum L. cv. Solid)
Tobacco stem (Nicotiana tabacum L.) 	 17	 106	 4.3	 –	 –	 –	 –	 Hopkins et al. (2001) 
Beech litter (Fagus sylvatica L.) 	 10	 –	 12	 1.2	 5.0	 17.3	 2.1	 Vesterdal (1999) 
Norway spruce litter	 7.1	 –	 11	 0.9	 2.2	 16.6	 1.0	 Vesterdal (1999)  
   (Picea abies L. Karst)

Fecal matter 
Pig manure	 –	 16	 31	 22	 11	 26	 10	 Bernal and Kirchmann (1992) 
Poultry manure	 –	 25	 14	 10	 11	 –	 –	 Kaur et al. (2005) 
Dairy manure	 –	 16	 29	 14.5	 14.5	 14.7	 5.3	 Gagnon (2004) 
Cattle manure+urine	 –	 16	 25	 2.0	 –	 –	 –	 Brouwer and Powell (1998) 
Cattle manure	 82	 22.2	 3.8	 –	 –	 –	 –	 Calderón et al. (2005) 
Cow manure	 84	 18.2	 3.9	 –	 –	 –	 –	 Calderón et al. (2005) 
Dairy manure	 85	 16.2	 4.7	 –	 –	 –	 –	 Calderón et al. (2005) 
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“Advanced Decay” is also associated with a significant 
increase in the concentration of soil nitrogen. The decom-
position of a 68 kg human cadaver resulted in an increase 
in approximately 525 μg ammonium g−1 soil (Vass et al. 
1992) by 20  days postmortem. In contrast, the amend-
ment of 10 g soil with 200 mg fresh pig manure can result 
in an increase of approximately 110 μg inorganic N (am-
monium, nitrate) g−1 soil after 63 days (Bernal and Kirch-
mann 1992) while the introduction of 0.6 g fresh oat (Av-
ena sativa L.) roots to 150 g soil (dry weight) resulted in an 
increase of approximately 22 μg inorganic N g−1 soil over 
a period of 112  days (Malpassi et al. 2000). It is impor-
tant to note that the introduction of any organic resource 
with a C:N ratio of greater than 30:1 (e.g. cereal residues, 
straw, woody material) (see Table 1) will usually result in 
an initial decrease in the concentration of soil inorganic 
nitrogen due to immobilization (uptake of inorganic N by 
soil microbes) (e.g. Green et al. 1995). Thus, the C:N ratio 
will narrow during decomposition and inorganic N will 
be released into the soil upon reaching approximately 
20:1 (see Swift et al. 1979; Stevenson and Cole 1999). 
However, C quality can influence this process such that 
a high percentage of oxidizable C can lead to immobili-
zation and low oxidizable C can result in mineralization 
(see Smith and Tibbett 2004). 

Cadaveric, plant and fecal material contains several 
other nutrients, such as P, potassium (K), calcium (Ca) 
and magnesium (Mg) (Table 1), which will enter the soil 
upon decomposition. Soil (3–5 cm) beneath a 68 kg hu-
man cadaver in “Advanced Decay” contained 300 μg K 
g−1 soil, 50 μg Ca g−1 soil and ~10 μg Mg g−1 soil (Vass 
et al. 1992). By comparison, the amendment of 100 g soil 
with fresh dairy manure at a rate of 200 mg N kg−1 (see 
Table 1) resulted in an increase of 14 μg P g−1 soil and 
108 μg K g−1 soil, 159 μg Ca g−1 soil and 81 μg Mg g−1 
soil after 91 days (Gagnon 2004). As much as 8  tons of 
leaf litter per hectare per year can be introduced to the 
soil surface of a tropical rainforest. Annual inputs per 
gram of litter can equate to approximately 14  mg N, 
0.5 mg P, 2 mg K, 8 mg Ca, and 2 mg Mg (Ewel 1976; 
Scott et al. 1992). These nutrient additions, estimated to 
have occurred over a period of approximately 110 years, 
were associated with 81 μg N g−1 soil, 900 μg P g−1 soil, 
8 μg K g−1 soil, 2,400 μg Ca g−1 soil and 365 μg Mg g−1 
soil (Scott et al. 1992). While the effect of cadaver de-
composition on soil nutrient status can be similar to, 
or less than, that observed with plant and fecal break-
down, peak nutrient values associated with cadaver de-
composition can occur in much less time than required 
by fecal or plant materials. 

While an intense pulse allows for a rapid return of 
energy and nutrients to the wider ecosystem, it is not al-
ways associated with a positive effect on soil biology. 
Decreased abundance of Collembola (0–14 cm) and Ac-

ari (0–14 cm) were observed beneath a guinea pig (Ca-
via porcellus L.) cadaver (Bornemissza 1957). “Advanced 
Decay” is also typically associated with the death of 
underlying and nearby vegetation. The cause of plant 
death might be due to nitrogen toxicity, smothering by 
the cadaver, excretion of antibiotics by fly larvae (e.g. 
Thomas et al. 1999) and/or some unknown factor. The 
intense pulse of N associated with cadaver decomposi-
tion might also result in a loss of N from the ecosystem 
through denitrification, volatilization and leaching. 

The transition from “Advanced Decay” to “Dry” 
to “Remains” is difficult to identify (Payne 1965). In-
creased plant growth around the edge of the CDI (Fig-
ure 2d) (Bornemissza 1957) might act as an indicator of 
the “Dry” stage while increased plant growth within 
a CDI might indicate the “Remains” stage. These final 
stages of cadaver decomposition correspond to a sec-
ond period of slow cadaver mass loss (Figure 1), which 
is probably due to the depletion of readily available nu-
trients and moisture. This does not mean, however, that 
concentration of nutrients in gravesoil have returned to 
basal levels. The concentration of phosphorus (Towne 
2000), ammonium, potassium, sulfate, calcium, chloride 
and sodium (Vass et al. 1992) in soil (3–5 cm) associated 
with the decomposition of a 68 kg human cadaver can 
remain as high as 50–150 μg g−1 soil above basal levels 
during “Dry” and “Remains.” Towne (2000) observed 
a concentration of inorganic N approximately 600  μg 
g−1 soil (0–10 cm) above basal levels after 1 year of bi-
son (Bos bison L.) decomposition. The effect of cadaver 
size on C and N status becomes clearer upon the obser-
vation that soils in the center (0–5  cm) of an elephant 
(Loxodonta africana Blumenbach) CDI were observed to 
comprise 0.76% N and 3.25% C after 1  year of decom-
position whereas control soils contained 0.05%–0.13% N 
and 0.20%–0.52% C (Coe 1978). 

The latter stages of cadaver decomposition were also 
associated with a decreased abundance of Collembola 
(0–2  cm) and Acari (0–5  cm) (Bornemissza 1957). Con-
versely, “Dry” and “Remains” can be associated with the 
formation of fruiting structures of the postputrefaction 
fungi (Sagara 1995). It is believed that this chemoecolog-
ical group of fungi fruit in response to the form and con-
centration of N (Tibbett and Carter 2003). “Early Phase” 
fungi comprise zygomycetes, deuteromycetes and asco-
mycetes that fruit in response to high concentrations of 
ammonia (Yamanaka 1995a,b) from 1 to 10 months after 
N addition (Sagara 1992). “Late Phase” postputrefaction 
fungi fruit in response to organic N and high concentra-
tions of ammonium and nitrate (Yamanaka 1995a,b) and 
are present from 1 to 4  years after N addition (Sagara 
1992). These findings, along with the observation that bi-
son (Bos bison L.) (Towne 2000) and muskox (Ovibos mos-
chatus Zimmerman) (Danell et al. 2002) decomposition 
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can affect the structure of plant communities for at least 
5 and 10 years, respectively, show that a CDI is a long-
lasting component of terrestrial ecosystems. This is simi-
lar to the effect of organic and sulfide enrichment of sed-
iments associated with whale falls in deep-sea marine 
ecosystems (Smith et al. 1998). 

Cadaver Burial and Gravesoil Ecology

Although the majority of cadavers that die in na-
ture are located on the soil surface, a number of stud-
ies were conducted to understand cadaver decomposi-
tion after burial in soil (Motter 1898; Mant 1950; Lundt 
1964; Payne et al. 1968; Sagara 1976; Lötterle et al. 1982; 
Rodriguez and Bass 1985; DeGaetano et al. 1992; Child 
1995; Spennemann and Franke 1995; VanLaerhoven and 
Anderson 1999; Hopkins et al. 2000; Fiedler et al. 2004; 
Carter 2005; Forbes et al. 2005a, 2005a–c; Weitzel 2005; 
Carter and Tibbett 2006). While the results from these 
studies might be of little interest to the terrestrial ecol-
ogist, this aspect of below-ground ecology merits atten-
tion because it might be of significance to the archaeolo-
gist, forensic scientist, and those concerned with animal 
composting or the disposal of farm animals. 

The burial of a cadaver in soil restricts the access of 
most insects and scavengers. The absence of these or-
ganisms results in significantly less cadaver decomposi-
tion than observed on the soil surface (Rodriguez and 
Bass 1985; Rodriguez 1997; VanLaerhoven and Ander-
son 1999; Fiedler and Graw 2003). It is generally ac-
cepted that coarse-textured (sandy) soil with a low 
moisture content frequently promotes desiccation (Mant 
1950; Santarsiero et al. 2000; Fiedler and Graw 2003). 
This phenomenon is almost certainly related to the dif-
fusion of gases through the soil matrix (see Tibbett et al. 
2004). Coarse-textured soils are associated with a high 
rate of gas diffusivity (Moldrup et al. 1997), which al-
lows gases and moisture to move relatively rapidly 
through the soil matrix. The ability of coarse-textured 
soil to rapidly lose moisture will also promote desicca-
tion because hydrolytic enzymes associated with the cy-
cling of carbon and nutrients are retarded by low mois-
ture content (Skujins and McLaren 1967). Desiccation 
can inhibit decomposition and result in the natural pres-
ervation of a cadaver for thousands of years (Micozzi 
1991). However, this phenomenon only occurs in a few 
extreme settings such as areas of Egypt (Ruffer 1921; 
Dzierzykray-Rogalsky 1986), Peru (Allison 1979) and Si-
beria (Lundin 1978). Alternatively, burial in coarse-tex-
tured soil with a high water content might result in the 
formation of pseudomorphs (shapes of human cadavers 
primarily in the form of sand), such as those observed at 
Sutton Hoo, England (Bethell and Carver 1987). These 

pseudomorphs are associated with an elevated concen-
tration of calcium, phosphorus and manganese, which is 
likely related to the breakdown of bone. 

Fine-textured (clayey) soil was associated with an in-
hibition of cadaver breakdown (Turner and Wiltshire 
1999; Hopkins et al. 2000; Santarsiero et al. 2000). These 
soils are associated with a low rate of gas diffusivity. The 
burial of a cadaver in a wet, fine-textured soil can result 
in decreased decomposition (Turner and Wiltshire 1999; 
Hopkins et al. 2000) because the rate at which oxygen is 
exchanged with CO2 might not be sufficient to meet aero-
bic microbial demand (Carter 2005). Thus, reducing con-
ditions are established whereby anaerobic microorgan-
isms dominate decomposition. These organisms are less 
efficient decomposers than aerobes (Swift et al. 1979). 

Reducing conditions can also promote the forma-
tion of adipocere (Fiedler and Graw 2003; see Forbes et 
al. 2004, 2005b) around a cadaver and/or internal or-
gans, which significantly slows cadaver decomposi-
tion (Froentjes 1965; Dent et al. 2004; Fiedler et al. 2004). 
Many mammals (human, pig, sheep, cow, rabbit) con-
tain sufficient moisture and fat to form adipocere in 
a moist coarse-textured soil (Forbes et al. 2005a,b). 
Gravesoil associated with adipocere formation was ob-
served to contain elevated levels of dissolved organic C, 
plant available P and total P (Fiedler et al. 2004) relative 
to soils without adipocere. While acidic soil can pro-
mote the leaching of P from bone (Eidt 1977), significant 
amounts can also be released from soil saturated with 
P (such as gravesoils) under reducing conditions (Sca-
lenghe et al. 2002). This release is enhanced by the pres-
ence of organic carbon, which acts as the primary elec-
tron donor (Scalenghe et al. 2002). 

Few estimates of soil microbial biomass associated 
with reducing conditions were reported (Hopkins et al. 
2000; Fiedler et al. 2004). Fiedler et al. (2004) observed a 
decrease in soil microbial biomass carbon estimated us-
ing the chloroform-fumigation extraction (CFE) method 
(Vance et al. 1987; Wu et al. 1990). Hopkins et al. (2000) 
observed an increase in soil microbial biomass carbon 
estimated using the substrate-induced respiration (SIR) 
method (Anderson and Domsch 1978; Hopkins and 
Ferguson 1994). The reason for this discrepancy is un-
known, although a difference in depth of burial was 
suggested (Fiedler et al. 2004). While it is possible that 
soil depth might explain this difference it is critical to 
recognize that each of these methods estimates different 
fractions of the soil microbial biomass. SIR estimates the 
biomass of glucose-responsive microbes whereas CFE 
estimates the extracted carbon associated with fumiga-
tion of soil. Thus, it is possible to have a decrease in the 
whole soil microbial biomass coincide with an increase 
in glucose-responsive biomass (see Dilly and Munch 
1998). It is also important to note that the formation of 
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adipocere is not necessarily an endpoint (Evans 1963a; 
Froentjes 1965). Upon translocation to the soil surface or 
the establishment of an aerobic environment, adipocere 
can undergo decomposition (Evans 1963b). This process 
is typically associated with the bacteria Bacillus spp., 
Cellulomonas spp. and Nocardia spp. (Pfeiffer et al. 1998). 

The Role of Cadaver Decomposition in Terrestrial 
Ecosystems

Cadaver decomposition (and the formation of a 
CDI) is a natural disturbance that can dramatically alter 
steady-state edaphic and biological characteristics (Hop-
kins et al. 2000; Towne 2000). This represents a striking 
example of the linkage between aboveground and be-
low-ground communities whereby the death of aboveg-
round organisms exert positive and negative effects on 
below-ground organisms (e.g. Gehring et al. 2002; War-
dle 2002; Wardle et al. 2004). This linkage almost cer-
tainly represents a vital pathway of carbon and nutri-
ents in terrestrial ecosystems (as proposed by Swift et al. 
(1979), Odum (1959) and Coe (1978)) considering that a 
substantial number of animals can die from causes other 
than predation (Coe 1978; Young 1994) leaving their ca-
davers to decompose and nutrients to be recycled. Al-
though live mammals enrich soils with materials such as 
feces, hair and antlers, the carbon and nutrients immo-
bilized by a mammal are unavailable to the wider eco-
system until death and decomposition occur (Putman 
1983). Because of this, living mammals can be viewed as 
bottlenecks in the cycling of carbon, nutrients and water 
(Putman 1983). 

Every CDI is a discrete, ephemeral “hot spot” (Parkin 
1987; Coleman et al. 2004) of activity, analogous to a rhi-
zosphere and drilosphere, because it represents a small 
proportion of terrestrial area but accounts for a signifi-
cant amount of heterotrophic activity within an ecosys-
tem. Much of this activity is directed towards the cycling 
of cadaveric materials out to the wider ecosystem. How-
ever, a CDI also receives additional organic and inor-
ganic materials resulting from the activity of scavengers, 
grazers and predators. During early stages of cadaver 
breakdown these inputs might include fecal matter 
and/or components (hair, nails, feathers) from scaven-
gers. During later stages of decomposition, the soil can 
be amended with fecal matter from grazers attracted to 
the enhanced plant growth surrounding a CDI (Towne 
2000) or from predators that hunt these grazers (Gray 
1993). Insect and avian materials might represent a sig-
nificant influx of chitin and keratin, respectively. Thus, a 
CDI acts as a highly concentrated hub of carbon and nu-
trient flow (Figure 3) that can be scattered across a land-
scape and, therefore, contribute to landscape complexity 
and heterogeneity. 

The importance of the heterogeneous distribution of 
cadaveric material in soil cannot be understated as it 
can facilitate niche provision and hence biodiversity in 
an ecosystem. A CDI contributes directly to biodiver-
sity by acting as a specialized habitat for the reproduc-
tion of the majority of blow flies (Calliphoridae) (Hall 
1948), Dermestid (Dermestidae) beetles, carrion beetles 
(Silphidae) and burying beetles (Silphidae) (Meierhofer 
et al. 1999; Smith and Merrick 2001). The presence and 
activity of these insects may affect other trophic levels 
(bacteria, fungi, protozoa, nematodes). For example, in-

Figure 3. Diagram of the ca-
daver decomposition island 
(CDI) as a highly concentrated 
hub of energy and nutrient 
flow that contributes to land-
scape heterogeneity, physi-
cal and chemical complexity 
and biodiversity in a terrestrial 
ecosystem. 
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sects can establish phoretic relationships with a number 
of nematodes (Poinar 1983; Richter 1993). Furthermore, 
a CDI supports the establishment of pioneer plant spe-
cies because the pulse of nutrients and death of vegeta-
tion associated with cadaver decomposition is a distur-
bance of high resource quality and reduced competition 
(Towne 2000). A change in plant community structure 
will, in turn, probably affect soil microbial communi-
ties (Johnson et al. 2003) and the organisms that feed 
upon them (e.g. nematodes, protozoa). This cascade ef-
fect, as Towne (2000) pointed out, is part of a cycle of 
disturbance and recovery that has enriched ecosystems 
for eons. 

Cadaveric material has a significant impact on below-
ground ecology when circumstances allow for in situ 
decomposition. The breakdown of cadavers and cadaver 
components (e.g. skeletal muscle tissue, bone) is associ-
ated with an increase in soil microbial biomass (Child 
1995; Hopkins et al. 2000; Carter and Tibbett 2006), soil 
microbial activity (Putman 1978b; Hopkins et al. 2000; 
Carter and Tibbett 2006) and nematode abundance 
(Todd et al. 2006). Cadaveric breakdown also results in 
an increase in the concentration of ammonium (Vass et 
al. 1992; Hopkins et al. 2000; Towne 2000; Carter 2005), 
phosphorus (Bethell and Carver 1987; Towne 2000), cal-
cium, potassium, sulfate, magnesium, chloride, sodium 
(Vass et al. 1992) sulfur (Hopkins et al. 2000), manga-
nese (Bethell and Carver 1987) and base cations (Rodri-
guez and Bass 1985; Vass et al. 1992; Hopkins et al. 2000; 
Carter 2005). 

Clearly, our knowledge of the below-ground ecol-
ogy of cadaver decomposition is limited. This is in di-
rect contrast with the decomposition of other organic re-
sources such as plant leaves (Webster et al. 2000), stems 
(Hopkins et al. 2001), root exudates (Dakora and Phil-
lips 2005), seeds (Tibbett and Sanders 2002) and sew-
age sludge (Ajwa and Tabatabai 1994). This discrepancy 
is probably because forensic taphonomy has primarily 
relied upon case studies, anecdotal evidence and un-
replicated experiments for data (Mant 1950; Morovic-
Budak 1965; Sagara 1976; Rodriguez and Bass 1985; Mi-
cozzi 1986; Galloway et al. 1989; Mann et al. 1990; Prieto 
et al. 2004). Techniques commonplace in ecological re-
search should be applied to the materials relevant to fo-
rensic taphonomy (cadavers, cadaver components). A 
long-term goal of this research should be to more accu-
rately account for the contribution of cadaver decompo-
sition to the cycling of carbon and nutrients in terrestrial 
ecosystems. Since the majority of decomposition in soil 
is microbially mediated (Moorhead and Reynolds 1989) 
future investigations might focus on below-ground 
community assemblages and succession. Several tech-
niques are currently used for studying soil microbial 
communities (Kirk et al. 2004). These can provide a pro-

file of the whole soil community (such as via fatty acid 
methyl esters (Drijber et al. 2000) or phospholipid fatty 
acid methyl esters (Pankhurst et al. 2001; Carter 2005), 
bacterial community (Horswell et al. 2002), or individ-
ual species (Rhodes et al. 1998). A molecular approach 
to the study of microbial diversity has proven helpful 
in the investigation of sediments associated with whale 
falls (Tringe et al. 2005). 

A fundamental understanding of gravesoil ecology 
should, in turn, contribute to forensic taphonomy by 
designating biological and chemical markers with the 
potential to aid in the location or dating of clandestine 
graves such as the fruiting sequence of postputrefac-
tion fungi (Carter and Tibbett 2003) or the nutrient con-
centration of gravesoils (Vass et al. 1992). Forensic sci-
ence could benefit from the development of a method to 
estimate postmortem interval after 1,285 ADDs, when 
the concentration of volatile fatty acids (propionic, va-
leric, butyric) returns to basal levels (Vass et al. 1992). 
This work would likely require investigating the post-
putrefaction fungi, ratios of the longer chained FAMEs, 
or possibly examining the community dynamics of mi-
crofungi (e.g. Lumley et al. 2001). Some strains of mi-
crofungi are capable of breaking down keratin, which is 
the primary component of hair and nails. As such, this 
component is likely to represent a significant portion of 
available carbon and nutrients during “Remains” stage 
decomposition. Whatever research paths are taken, it 
is clear that gravesoil ecology and the ecology of other 
ephemeral resource patches (Blaustein and Schwartz 
2001; Finn 2001; De Meester et al. 2005) has the poten-
tial to become a key area of study in terms of the cycling 
of carbon and nutrients, soil organic matter formation 
and the relationship between biodiversity and ecosys-
tem function. 
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