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Pseudorabies Virus Fast Axonal Transport Occurs by a pUS9-
Independent Mechanism

Gina R. Daniel,a Patricia J. Sollars,b Gary E. Pickard,b Gregory A. Smitha

Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USAa; School of Veterinary Medicine and Biomedical Sciences, University of
Nebraska—Lincoln, Lincoln, Nebraska, USAb

Reactivation from latency results in transmission of neurotropic herpesviruses from the nervous system to body surfaces, re-
ferred to as anterograde axonal trafficking. The virus-encoded protein pUS9 promotes axonal dissemination by sorting virus
particles into axons, but whether it is also an effector of fast axonal transport within axons is unknown. To determine the role of
pUS9 in anterograde trafficking, we analyzed the axonal transport of pseudorabies virus in the presence and absence of pUS9.

All herpesviruses cycle through periods of active and latent in-
fection, with members of the Alphaherpesvirinae subfamily

typically establishing latency in neurons of the peripheral nervous
system. Retrograde transport results in entry into the nervous sys-
tem, transmitting particles from neuron terminals to sensory and
autonomic ganglia. Reactivation from the latent state results in
newly assembled viral particles traveling from the ganglia to sites
of innervation at body surfaces by anterograde axonal trafficking
(1). The resulting infections include presentations such as herpes
labialis (herpes simplex virus 1 [HSV-1]) and shingles (varicella-
zoster virus [VZV]). These viruses also encompass veterinary
pathogens, including the well-studied pseudorabies virus (PRV)
that serves as a model for severe neuroinvasive infections (2).

Anterograde axonal trafficking consists of two steps. Cargoes,
including virus proteins, are sorted into the axon from the neuro-
nal cell body (3). Once in the axon, the cargo moves to the distal
axon terminal by microtubule-dependent fast axonal transport
(4). The best characterized effector of herpesvirus axonal traffick-
ing is the type II transmembrane protein pUS9 (5–11). PRV lack-
ing pUS9 enters the nervous system by retrograde axon transport
but, following replication in neurons, is attenuated for antero-
grade trafficking both in animals and in neuronal cell culture (9,
10, 12, 13). This defect is attributed to a decrease in viral particle
sorting to axons, but whether pUS9 is an effector of fast axonal
transport is unknown (14, 15). The presence of viral particles in
axons and transmission of infection to cells at distal terminals
indicate that rare anterograde trafficking events occur, but the
scarcity of these events has precluded their analysis (9, 14). To
determine whether pUS9 contributes to PRV fast axonal trans-
port, we examined the transport of wild-type (WT) and �US9
PRV particles that encode red fluorescent capsids (16). The fluo-
rescent �US9 mutant used in these studies was confirmed by re-
striction enzyme digest, sequencing across the deletion junction,
absence of pUS9 expression, lack of viral particle accumulation at
axon terminals resulting from anterograde transport in culture,
and inability to spread by anterograde transportation within the
rat visual system following intravitreal eye injection (Fig. 1 and
Table 1) (17–21).

While envelope proteins, such as pUS9, are not expected to be
effectors of the retrograde axon transport that occurs upon entry
into nerve endings, an analysis was performed to confirm that this
initial stage of neuronal infection was unperturbed (22, 23). Ex-
plants of avian dorsal root ganglion (DRG) sensory neurons were

cultured and infected ex vivo. Individual viral particles were im-
aged at 10 frames/s during the first hour postinfection (h.p.i.), and
the kinetics of axonal transport were measured for particles mov-
ing more than 0.5 �m using the kymograph function in the Meta-
Morph software package (Molecular Devices) as described previ-
ously (n � 190) (Table 1) (21, 24–26). As expected, the WT and
�US9 viruses had equivalent retrograde transport profiles based
on run lengths and run velocities (Fig. 2). Because pUS9 supports
the sorting of viral particles from soma to axons following repli-
cation (5–11), examining its subsequent role in fast axonal trans-
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FIG 1 Characterization of WT or �US9 PRV used in this study. (A) Lysates of
PK15 cells infected with either WT or �US9 PRV were collected, run through
SDS-PAGE, and transferred to a membrane as previously described (20). The
membrane was cut at the 25-kDa marker. The upper half of the membrane was
probed with an anti-VP5 monoclonal antibody (clone 3C10) and then with an
anti-gE tail polyclonal antibody, and the lower half of the membrane was
probed with an anti-US9 polyclonal antibody; all antibodies were used at a
dilution of 1:1,000. The blot shown is representative of the results; n � 2. All
antibodies were gifts from Lynn Enquist. (B) Dissociated DRGs were infected
with 5 � 10^6 PFU of either WT or �US9 PRV and imaged at 15 to 18 h.p.i.
(21, 30). Representative images of capsid accumulation at axon growth cones
are shown. Scale bars � 5 �m.
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port of particles to axon terminals was made difficult by the low
frequency of these events (Fig. 1B; note the reduced number of
viral particles accumulated at axon terminals following replica-
tion). We accomplished this analysis by extensive imaging of
�US9 PRV infections in isolated neurons in low-density cultures
to capture a minimum of 30 transport events that were unambig-
uously moving away from an infected neuronal soma. Although
WT events were far more frequent, an equivalent number were
included for the comparative analysis (Table 1). The kinetics of
�US9 PRV microtubule-based anterograde axonal transport were
indistinguishable from the transport kinetics of the wild type (Fig.
3). These results indicate that the well-described reduction in an-
terograde spread noted for �US9 PRV cannot be directly attrib-
uted to a disruption of the fundamental ability of viral particles to
engage in microtubule-based transport within axons (10, 14, 27).

The finding that PRV pUS9 interacts with KIF1A, a kinesin
motor involved in the fast anterograde axonal transport of presyn-
aptic vesicles (4), suggested a direct role for pUS9 in fast axonal
transport (15). However, while a mutant pUS9 (Y49-50A) that
does not interact with KIF1A (15) restricts the anterograde traf-

ficking of capsids in axons, pUS9 (Y49-50A) itself remains com-
petent for anterograde transport (14). Based on the current find-
ings, an explanation for this perplexing observation can be
offered: the pUS9-KIF1A interaction is required for sorting cap-
sid-containing viral particles into axons but is dispensable for sub-
sequent fast axonal transport within axons. Consistent with this, a
protein that can sort into the axon independently from pUS9 and
capsids, gM, also does not require pUS9 for axonal transport (28).
Therefore, in the absence of pUS9, fewer viral particles are sent
down axons due to inefficient sorting from the soma, but the
probability that each individual particle will reach the axon termi-
nal, as assessed by transport dynamics, remains unchanged. Inher-
ent in this conclusion is the prediction that �US9 viruses should
traverse long distances in axons to spread across anterograde neu-
ral circuits in vivo, albeit at reduced frequency due to inefficient
sorting.

In apparent contradiction to this prediction, pUS9 is often re-
garded as an essential determinant for the anterograde trafficking
of PRV. The principle evidence in support of this idea comes from
the complete lack of anterograde transneuronal transmission

TABLE 1 Viruses used in this study

Virus Reporter tag Mutation
No. of rats with visual circuit
transmission/total no. of ratsc

No. of transport events in avian
DRG sensory neurons

Retrograde Anterograde

PRV-GS4284a UL25/mCherry None 5/5 288 38
PRV-GS5469 UL25/mCherry �US9b 0/5 192 35
a PRV-GS4284 was described previously (16).
b A stop codon was inserted after the start ATG, and codons 2 to 72 were deleted, thus removing all internal in-frame ATG codons.
c Following intravitreal injection of WT or mutant virus into the eyes of rats, the number of rats exhibiting virus fluorescence in retinorecipient regions of the brain 48 h.p.i. (either
lateral geniculate nucleus or superior colliculus) was determined (19).

FIG 2 Retrograde transport of WT or �US9 particles during initial infection of primary sensory neurons. E8-E10 chick DRG explants were infected with �1 �
10^7 PFU of either wild-type or �US9 PRV, and incoming particles were imaged between 15 and 60 min postinfection based on red fluorescence emissions from
the UL25/mCherry capsid tags. More than 190 particles each of WT and mutant virus were tracked. (A) Gaussian (velocity) or decaying exponential (run length)
curves were fit to histograms by nonlinear regression; curve-fitting produced R2 values of �0.96. Insets show average velocities (left) and run lengths (right); error
bars indicate standard deviations. (B) Representative kymographs of retrograde-moving WT or �US9 particles.
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from the retina to retinorecipient regions of the brain following
infection of rats with �US9 PRV, a finding that was reproduced
with the fluorescent viruses used in this study (Table 1) (10).
However, this conclusion is tempered by the finding that HSV
remains competent to traverse this visual circuit in the absence of
pUS9 in mice, although at reduced efficiency (5). More impor-
tantly, other neuronal infection models do not support the
conclusion that PRV lacking pUS9 does not participate in an-
terograde axon trafficking and transmission. Whereas an an-
terograde-deficient strain of PRV (PRV Bartha) does not
spread in anterograde circuits within the brain (29), �US9 PRV
does so effectively, although not as robustly as wild-type PRV
(10). Additionally, in cultures of primary neurons infected
with PRV (9) or HSV-1 (7) or in cultures of neuronlike cells
infected with HSV-1 (6), pUS9 is an enhancer of anterograde
transmission but again is not essential for this process. There-
fore, the inability of �US9 PRV to traverse the rat anterograde
visual circuitry may be the manifestation of a reduced ability to
sort particles into axons, combined with the finite probability
of a particle traveling the entire length of these long axons to
reach the presynaptic terminals in the brain.

In conclusion, this study provides a kinetic characterization of
PRV axonal transport in the absence of the pUS9 anterograde
trafficking effector. Deletion of US9 in PRV reduced the number
of capsid-containing viral particles sorted into axons but did not
directly impair the subsequent step of fast axonal transport for
those particles making it past the sorting barrier. The results indi-
cate that the effector function of pUS9 in promoting anterograde
axonal trafficking lies in initial sorting of particles to axons and
not in fast axonal transport of particles from the proximal axon to
terminals.
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