Evidence for Millennial-Scale Climate Change During Marine Isotope Stages 2 and 3 at Little Lake, Western Oregon, U.S.A.

Laurie D. Grigg and Cathy Whitlock
Department of Geography, University of Oregon, Eugene, Oregon 97403

and

Walter E. Dean
U.S. Geological Survey, MS 980 Federal Center, Denver, Colorado 80225

Received June 28, 2000; published online May 31, 2001

Pollen and geochemical data from Little Lake, western Oregon, suggest several patterns of millennial-scale environmental change during marine isotope stage (MIS) 2 (14,100–27,600 cal yr B.P.) and the latter part of MIS 3 (27,600–42,500 cal yr B.P.). During MIS 3, a series of transitions between warm- and cold-adapted taxa indicate that temperatures oscillated by ca. 2–4°C every 1000–3000 yr. Highs and lows in summer insolation during MIS 3 are generally associated with the warmest and coldest intervals. Warm periods at Little Lake correlate with warm sea-surface temperatures in the Santa Barbara Basin. Changes in the strength of the subtropical high and the jet stream may account for synchronous changes at the two sites. During MIS 2, shifts between mesic and xeric subalpine forests suggest changes in precipitation every 1000–3000 yr. Increases in Tsuga heterophylla pollen at 25,000 and 22,000 cal yr B.P. imply brief warmings. Minimum summer insolation and maximum global ice-volumes during MIS 2 are generally associated with the warmest and coldest intervals. Warm periods at Little Lake correlate with warm sea-surface temperatures in the Santa Barbara Basin. Changes in the strength of the subtropical high and the jet stream may account for synchronous changes at the two sites. During MIS 2, shifts between mesic and xeric subalpine forests suggest changes in precipitation every 1000–3000 yr. Increases in Tsuga heterophylla pollen at 25,000 and 22,000 cal yr B.P. imply brief warmings. Minimum summer insolation and maximum global ice-volumes during MIS 2 correspond to cold and dry conditions. Fluctuations in precipitation at Little Lake do not correlate with changes in the Santa Barbara Basin and may be explained by variations in the strength of the glacial anticyclone and the position of the jet stream. © 2001 University of Washington.

Key Words: Pacific Northwest; pollen records; millennial-scale climate change; marine isotope stages 2 and 3; paleoecology.

INTRODUCTION

Millennial-scale climate changes are evident in paleoclimate records from the late Holocene to the early Pleistocene (Bond et al., 1997; Raymo et al., 1998). However, much of this research has focused on the last glacial period (125,000–14,000 cal yr B.P.), which in many parts of the world is characterized by a series of abrupt and extreme climate oscillations. Recent studies suggest that some of these changes were global in extent and involved complex interactions between the atmosphere, oceans, biosphere, and cryosphere (see review by Alley, 1998). Despite these advances, questions remain about the origin and global occurrence of millennial-scale climate change.

In western North America, records from the Great Basin and the Pacific Northwest describe millennial-scale changes in pluvial lake levels, glacial extent, and vegetation during the last glacial period (Benson, 1999; Hicock et al., 1999; Lin et al., 1998; Whitlock and Grigg, 1999). In the Northeast Pacific, cores from the Santa Barbara Basin and the central California and southern Oregon margins show variations in sea-surface temperatures and oceanic circulation (Behl and Kennett, 1996; Gardner et al., 1997; Hendy and Kennett, 1999; Lund and Mix, 1998). Millennial-scale variations in these regions have primarily been associated with shifts in the position and strength of the Eastern Pacific subtropical high, the Aleutian low, and the jet stream. However, fluctuations in the ventilation of intermediate and deep water in the North Pacific indicate that changes in North Pacific oceanic circulation may also have been involved (Lund and Mix, 1998). In addition, there is evidence that millennial-scale climate change in western North America may be partially regulated by orbital-scale controls, such as insolation and the size of the Laurentide ice sheet (Clark and Bartlein, 1995).

Vegetation changes in south-central Washington and glacial advances in southwestern British Columbia imply a series of climate oscillations that occurred ca. every 5000–8000 cal yr during the last glacial period in the Pacific Northwest (Hicock et al., 1999; Whitlock and Grigg, 1999). However, records from the Santa Barbara Basin and the Great Basin show a higher frequency of climate change (ca. every 1000–3000 cal yr; Benson, 1999; Lin et al., 1998). The absence of a higher frequency climate change in Pacific Northwest records may reflect a relatively coarse sampling resolution, or it may suggest different patterns of change for separate regions of western North America and the Northeast Pacific. A better understanding of millennial-scale climate change in the Pacific Northwest will...
help identify the mechanisms responsible for these changes in western North America and the Northeast Pacific.

In this study, we present high-resolution palynological, lithologic, and geochemical data from Little Lake in the central Coast Range of Oregon (Fig. 1). This record extends from 42,500 to 27,600 cal yr B.P. and corresponds to the latter part of marine isotope stage (MIS) 3 and MIS 2. We describe the character, timings, and frequency of climate changes at Little Lake and evaluate the influence of orbital-scale climate controls. This study also aims to establish some proximal causes for these changes by comparing the Little Lake record with a high-resolution record from the Santa Barbara Basin (Behl and Kennett, 1996). Similar patterns of climate change in these two regions would imply the occurrence of large-scale shifts in atmospheric circulation over the North Pacific during the last glacial period. Differences would suggest regional-scale changes or the greater influence of specific climate controls, such as a glacial anticyclone, on one region.

Little Lake (44°10′N, 123°35′W, 217 m elevation), located 45 km east of the Pacific Ocean, was formed ca. 42,500 cal yr B.P. by a landslide (Fig. 1; Grigg and Whitlock, 1998; Long et al., 1998; Worona and Whitlock, 1995). At present, Little Lake lies within the *Tsuga heterophylla* zone (250–1000 m elevation), which is dominated by *Pseudotsuga menziesii* (Douglas-fir), *T. heterophylla* (western hemlock), *Thuja plicata* (western red cedar), and *Alnus rubra* (red alder) with minor amounts of *Abies grandis* (grand fir) and *Pinus monticola* (western white pine; Franklin and Dyrness, 1988). The climate of the Coast Range is characterized by mild, wet winters and warm, dry summers. Mid-latitude cyclones associated with the southward displacement of the jet stream result in 75–85% of the annual precipitation occurring in the winter (Mock, 1996). The subtropical high and the jet stream shift northward in the summer, bringing warm, dry conditions to the Pacific Northwest.

METHODS

A 17.25-m-long core was collected with a 5-cm-diameter piston sampler (Wright et al., 1983) from the fen surrounding Little Lake. In the laboratory, cores were sliced longitudinally, and the lithology was described. From 10.56 to 17.22 m depth, samples of 1 cm³ were taken for pollen analysis every 4 to 6 cm. From 11.48 to 17.22 m depth, samples of ca. 6–10 cm³ of sediment were taken every 4 to 8 cm and analyzed for carbon content and major and trace elements. The remaining core was used for magnetic susceptibility measurements, macrofossil analysis, and radiocarbon dating.

Pollen samples were processed using standard procedures (Cwynar et al., 1979; Faegri et al., 1989). A known amount of *Lycopodium* spores was added to each sample to calculate the concentration of pollen (grains/cm³). Pollen was examined at magnifications of 400× and 1000× and identified using modern pollen collections and published atlases (McAndrews et al., 1973; Moore and Webb, 1978). *Pinus* (pine) pollen grains were identified as haploxylon-type and diploxylon-type when the distal membrane of the pollen grain was preserved. Those grains without an intact distal membrane were classified as “undifferentiated.” *Pinus*-types, *Abies* (fir), *Picea* (spruce), and Cupressaceae (juniper family) could not be identified to the species level without the presence of macrofossils. However, modern ecological associations and phytogeography were used to determine which species were the most likely contributors. Pollen percentages were calculated based on the sum of terrestrial pollen and spores. Pollen accumulation rates (PAR; grains/cm²/yr), pollen concentrations (grains/cm³), and deposition times (yr/cm) were calculated using the TILIA program (Grimm, 1988). Pollen zones from Worona and Whitlock (1995) were further divided into subzones based on the results of a constrained cluster analysis (CONISS; Grimm, 1988).

Measurements of sediment magnetism indicate changes in the input or preservation of minerogenic clasts to a lake and imply variations in the allochthonous component or anoxic-vs.-oxic conditions, which can be used to infer environmental changes (Thompson and Oldfield, 1986). Magnetic susceptibility was measured every 2 cm on 6-cm³ subsamples of sediment using a cup-coil magnetic susceptibility instrument. A software program, Magsus.pas (David Adam and Sarah Shafer, personal...
ligible percentage of CaCO₃, which suggests that most of the total C in Little Lake sediments is organic. Nitrogen concentrations were combusted in oxygen at 1000°C, and the resulting NO was reduced to N₂. N₂ was separated by chromatography and measured with a thermal conductivity detector. Sediments were also analyzed for 21 major and trace elements by induction-coupled, argon plasma emission spectrometry (ICP; Litchie et al., 1987).

The reconstruction of vegetation and climate from pollen percentages and accumulation rates was based on recent compilations of modern pollen, vegetation, and climate data from the Pacific Northwest (Minckley and Whitlock, 2000; Pellat et al., 1997). A square-chord measurement of dissimilarity (Overpeck et al., 1985) was used to compare modern and fossil pollen spectra of the 12 most abundant tree types. Square-chord values of less than 0.15, of 0.15–0.20, and of 0.20–0.30 were used to identify “good analogues,” “probable analogues,” and “possible or weak analogues,” respectively (see method described by Anderson et al., 1989). Most analogues between 42,500 and 27,600 cal yr B.P., were good to probable, which allowed for the estimation of specific paleoclimatic parameters (Table 1).

<table>
<thead>
<tr>
<th>Pollen subzone age (cal yr B.P.) depth (m)</th>
<th>Pollen description</th>
<th>Vegetation type and square-chord distances</th>
<th>Inferred climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL-1h 26,400–27,810 cal yr B.P. 14.36–14.64 m</td>
<td>High percentages of Pinus (haploxylon- and diploxylon-types) (20–60%) and Abies (15–20%); increases in percentages of Picea (5–20%), T. mertensiana (5–10%), and herbs (10–25%) at end of subzone. Total accumulation of terrestrial pollen and spores (PAR): 1000–1900 g/cm²/yr.</td>
<td>Montane to subalpine forest; Sq. chord = 0.15–0.20 (probable analogue)</td>
<td>Cold, wet</td>
</tr>
<tr>
<td>LL-1g 27,810–28,300 cal yr B.P. 14.64–14.74 m</td>
<td>High percentages of Tsuga heterophylla (40%) and Abies (15%); small increases in percentages of Cupressaceae (8%) and Pseudotsuga-type (2–5%); PAR: 1700–2900 g/cm²/yr.</td>
<td>Montane forest; Sq. chord <0.15 (good analogue)</td>
<td>Cool, wet</td>
</tr>
<tr>
<td>LL-1f 28,300–32,450 cal yr B.P. 14.74–15.54 m</td>
<td>High percentages of Pinus (haploxylon-type) (30–80%) and small increases in herbs (5–15%) and at the top of the subzone, Picea (2–5%) and Tsuga mertensiana (2–5%) alternate with peaks in Abies (5–25%), T. heterophylla (5–15%), Pseudotsuga-type (2%) and Cupressaceae (2–5%); moderate percentages of Alnus sinuata-type (5–15%) and Alnus rubra-type (2–5%); PAR: 1350–5400 g/cm²/yr.</td>
<td>Alternating Pinus-dominated and temperate forests; Sq. chord = 0.15–0.20 (probable analogue)</td>
<td>Alternating cold, dry and cool, wet</td>
</tr>
<tr>
<td>LL-1e 32,450–33,330 cal yr B.P. 15.54–15.70 m</td>
<td>Significant increases in percentages of Abies (15–25%), T. heterophylla (5–35%), Pseudotsuga-type (5–7%) Cupressaceae (5–10%) and Alnus rubra-type (5–10%); decline in percentages of Pinus (haploxylon-type) (20–35%). PAR: 2500–4600 g/cm²/yr.</td>
<td>Temperate forest; Sq. chord = 0.15–0.20 (probable analogue)</td>
<td>Warm, wet</td>
</tr>
<tr>
<td>LL-1d 33,330–35,870 cal yr B.P. 15.70–16.14 m</td>
<td>Generally high percentages of Pinus (haploxylon-type; 25–60%); herbs (10–20%), and Abies (10–15%); small increases in percentages of Ts. mertensiana (2–5%); Picea (2–5%) and Alnus sinuata-type (5–10%); PAR: 1350–3250 g/cm²/yr.</td>
<td>Pinus-dominated subalpine forest; Sq. chord <0.15 (good analogue)</td>
<td>Cold, wet</td>
</tr>
<tr>
<td>LL-1c 35,870–39,500 cal yr B.P. 16.14–16.74 m</td>
<td>Generally high percentages of Pinus (haploxylon-type; 15–65%) alternate with peaks in T. heterophylla (10–30%) and Abies (5–20%); moderate percentages of herbs (15–20%), Cupressaceae and Alnus sinuata-type (5–10%); percentages of Alnus rubra-type decline and T. mertensiana (5%) and Picea (5–7%) briefly increase toward the bottom of the subzone. PAR: 900–4100 g/cm²/yr.</td>
<td>Alternating Pinus-dominated and montane forests; Sq. chord = 0.15–0.20 (probable analogue)</td>
<td>Alternating cool, wet and cold, dry</td>
</tr>
<tr>
<td>LL-1b 39,500–40,310 cal yr B.P. 16.74–16.86 m</td>
<td>High percentages of T. heterophylla (35%), Pseudotsuga-type (5–10%), and Cupressaceae (10–15%); decline in percentages of Pinus (haploxylon-type; 10–15%) and Alnus sinuata-type (<5%); PAR: 1500–2100 g/cm²/yr.</td>
<td>Temperate forest; Sq. chord = 0.15–0.20 (probable analogue)</td>
<td>Warm, wet</td>
</tr>
<tr>
<td>LL-1a 40,310–42,680 cal yr B.P. 16.86–17.22 m</td>
<td>High percentages of Pinus (haploxylon-type; 25–60%) alternate with high percentages of T. heterophylla (20–30%) and Abies (15–35%); moderate percentages of Alnus sinuata-type (5–10%); PAR: 1000–2600 g/cm²/yr.</td>
<td>Pinus-dominated forest; Sq. chord <0.15 (good analogue)</td>
<td>Cool, wet</td>
</tr>
</tbody>
</table>

Note. PAR, pollen accumulation rate.
TABLE 2
Description, Vegetation Type, and Inferred Climate of Pollen Subzones within Zone LL-2

<table>
<thead>
<tr>
<th>Pollen subzone age (cal yr B.P.) depth (m)</th>
<th>Pollen description</th>
<th>Vegetation type and square-chord distances</th>
<th>Inferred climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL-2h 14,140–15,730 cal yr B.P. 10.56–11.30 m</td>
<td>High percentages of Alnus sinuata-type (10–15%) and herbaceous taxa (20%); increasing percentages of Tsuga heterophylla (10%) and Pteridophytes (10%) toward top of subzone. Total accumulation of terrestrial pollen and spores. PAR: 2100–5300 g/cm²/yr.</td>
<td>Developing montane forest; Sq. chord <0.15 (good analogue)</td>
<td>Cool, wet</td>
</tr>
<tr>
<td>LL-2g 15,730–17,250 cal yr B.P. 11.30–11.88 m</td>
<td>Base of zone begins with high percentages of Picea (20–25%) and is replaced by Tsuga mertensiana (20–25%), Abies (15–35%), and herbaceous taxa (25%); percentages in the above taxa decline after 16,540 cal yr B.P. when percentages of T. heterophylla (10%), A. sinuata-type (5%), and Pteridophytes (15–20%) increase. PAR: 1200–3100 g/cm²/yr.</td>
<td>Wet, subalpine to montane forests; Sq. chord = 0.20–0.30 (possible analogue)</td>
<td>Cold, wet changing to cool, wet</td>
</tr>
<tr>
<td>LL-2f 17,250–20,220 cal yr B.P. 11.88–12.82 m</td>
<td>Generally high percentages of herbs (15–40%) dominate this zone; periodic increases in Pinus (diploxylon-type) (15–35%); Picea (10–20%), T. mertensiana (5–20%), and Abies (10–20%) also characterize this subzone. PAR: 740–2300 g/cm²/yr.</td>
<td>Dry, subalpine forest and parkland; Sq. chord = 0.20–0.30 (possible analogue)</td>
<td>Coldest and driest</td>
</tr>
<tr>
<td>LL-2e 20,220–20,790 cal yr B.P. 12.82–12.98 m</td>
<td>High percentages of herbs (25%), T. mertensiana (20%), and Picea (20%). PAR: 1200–2400 g/cm²/yr.</td>
<td>Wet, subalpine forest; sq. chord = 0.20–0.30 (possible analogue)</td>
<td>Cold, wet</td>
</tr>
<tr>
<td>LL-2d 20,790–23,930 cal yr B.P. 12.98–13.78 m</td>
<td>Generally high percentages of Pinus (diploxylon-type) (20–60%) alternate with peaks in Picea (10–20%), T. mertensiana (5–20%), Abies (5–20%), and small increases in T. heterophylla (5–10%); high percentages of herbs (15–25%) separate peaks in Pinus and associated taxa. PAR: 830–2670 g/cm²/yr.</td>
<td>Alternating wet, subalpine and dry subalpine forests; Sq. chord = 0.20–0.30 (possible analogue)</td>
<td>Alternating cold, wet and cold, dry</td>
</tr>
<tr>
<td>LL-2c 23,930–24,960 cal yr B.P. 13.78–14.02 m</td>
<td>High percentages of Pinus (haploxylon-type; 20–60%) and herbs (5–20%). PAR: 900–2000 g/cm²/yr.</td>
<td>Dry subalpine forest/parkland; Sq. chord = 0.20–0.30 (possible analogue)</td>
<td>Cold, dry</td>
</tr>
<tr>
<td>LL-2b 24,960–25,940 cal yr B.P. 14.02–14.24 m</td>
<td>High percentages of Pinus (diploxylon-type; 20–40%) and Abies (10–20%); moderate increase in percentages of T. heterophylla (5–15%) at end of subzone. PAR: 500–2500 g/cm²/yr.</td>
<td>Montane forest; Sq. chord = 0.20–0.30 (possible analogue)</td>
<td>Cool, wet</td>
</tr>
<tr>
<td>LL-2a 25,940–26,490 cal yr B.P. 14.24–14.36 m</td>
<td>High percentages of Picea (20–30%), T. mertensiana (30%), and Abies (20–30%). PAR: 1200–2100 g/cm²/yr.</td>
<td>Wet, subalpine forest; Sq. chord = 0.15–0.20 (probable analogue)</td>
<td>Cold, wet</td>
</tr>
</tbody>
</table>

Note. PAR, pollen accumulation rate.

Between 27,600 and 14,100 cal yr B.P., most analogues were possible or weak, which limited reconstructions to more qualitative estimates that were based on established relationships between present-day pollen percentages, vegetation abundance, and climate for specific taxa (Table 2; Minckley and Whitlock, 2000; Pellat *et al.*, 1997; Thompson *et al.*, 1999).

CHRONOLOGY

The chronology for the last glacial period at Little Lake is based on 11 accelerator mass spectrometry (AMS) radiocarbon dates of charcoal and plant macrofossils (Table 3). Radiocarbon ages <20,300 ¹⁴C yr B.P. were calibrated using the CALIB 4.0 program (Stuiver and Reimer, 1993). Radiocarbon ages from 20,300 to 28,000 ¹⁴C yr B.P. were calibrated using a lake varve data set from Lake Suigetsu, Japan (Kitagawa and van der Plicht, 1998). Calibrated age-ranges were derived using Method B from CALIB 4.0, which constructs a probability distribution of calibrated ages for any given radiocarbon age (see Stuiver and Reimer, 1993). This method includes both the sample and calibration curve error in the calculation of calibrated age-ranges.

For radiocarbon ages >28,000 ¹⁴C yr B.P., a calibration curve was estimated using the Lake Suigetsu data set, a U/Th and ¹³C dated coral sample from New Guinea, and paleomagnetic data that indicate atmospheric Δ¹³C changes close to zero at 50,000 ¹³C yr B.P. (Kitagawa and van der Plicht, 1988; Bard...
TABLE 3

Radiocarbon Dates and Calibrated Ages from the Last Glacial Period for Little Lake

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Material dated</th>
<th>Lab No.</th>
<th>Radiocarbon age (14C yr B.P.)</th>
<th>aCalibrated age (cal yr B.P.) and 2σ range</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.67–11.70</td>
<td>charcoal, wood</td>
<td>AA-27839</td>
<td>14,200 ± 170</td>
<td>17,030 (16,590–17,540)</td>
</tr>
<tr>
<td>11.89–11.93</td>
<td>charcoal, wood</td>
<td>Beta-111337</td>
<td>13,140 ± 160</td>
<td>15,650 (15,060–16,150)</td>
</tr>
<tr>
<td>11.89–11.93</td>
<td>lake sediment</td>
<td>Beta-111336</td>
<td>15,340 ± 130</td>
<td>18,260 (17,950–18,560)</td>
</tr>
<tr>
<td>12.48–12.51</td>
<td>charcoal, wood</td>
<td>AA-27840</td>
<td>15,220 ± 150</td>
<td>18,140 (17,790–18,480)</td>
</tr>
<tr>
<td>15.49–15.52</td>
<td>charcoal, wood</td>
<td>AA-27844</td>
<td>25,540 ± 700</td>
<td>28,960 (27,370–30,830)</td>
</tr>
<tr>
<td>17.26</td>
<td>wood</td>
<td>AA-27846</td>
<td>42,700 ± 1700</td>
<td>44,720 (43,800–45,780)</td>
</tr>
</tbody>
</table>

aCalibrated ages were used to derive the age model for Little Lake. See text for discussion of calibration.

et al., 1998; Mazuad et al., 1991). From 28,000 to 50,000 14C yr B.P., a discrepancy of 5000 yr exists between the lake and coral data sets (Kitagawa and van der Plicht, 1998). To utilize all existing data sets, a curve was fit that approximated between the coral and lake varve data sets and assumed a $\Delta^{14}C$ of zero at 50,000 14C yr B.P. Calibrated age-ranges were derived using a probability distribution, and a second-order polynomial was used to construct an age vs. depth model for the calibrated ages (Fig. 2).

RESULTS

Lithology, Geochemical, and Magnetic Susceptibility Data

The bedrock surrounding Little Lake consists of noncarbonate volcanic sedimentary rocks. The core contains mostly inorganic clay, silt, and fine sand with discontinuous lenses of organic material (2%–3% organic carbon (OC)) from 10.56 to 14.62 m depth. The sediment from 14.62 to 16.42 m depth is similar but with more discontinuous lenses of organic material (2–4% OC), and a section of gyttja (3–5% OC) from 16.04 to 16.35 m depth. Results of ICP elemental analyses of common lithophile elements (e.g., Al, K, Mg, Ti, Li, Ni, V, and Z) did not reveal any significant patterns of variability, suggesting that the source of detrital clastic material into Little Lake remained constant.

During Zone LL-1, OC and S concentrations are relatively constant with an average of ca. 2% and 0.1%, respectively. Values of N average ca. 0.2, and C/N ratios average 9.5, suggesting that the organic matter is mostly autochthonous (Meyers and Ishiwatari, 1993). Generally high values of magnetic susceptibility in sediments deposited during Zone LL-2, together with low OC and S concentrations, indicate decreased preservation of organic matter and the occurrence of oxic conditions. These data are consistent with high and variable concentrations of Fe and Mn, which imply that the hypolimnion and sediment pore waters were well oxygenated, resulting in the preservation of oxidized Fe and Mn minerals.
Vegetation and Climate Reconstructions

The last glacial period at Little Lake is represented by pollen zones LL-1 (42,500–27,000 cal yr B.P.) and LL-2 (27,000–15,000 cal yr B.P.; Worona and Whitlock, 1995), corresponding to the latter part of MIS 3 and to MIS 2, respectively. Zone LL-1 is generally characterized by high percentages and accumulation rates of Pinus (mostly haploxylon-type), Abies, and T. heterophylla pollen (Table 1; Figs. 4 and 5). Zone LL-2 is dominated by generally high pollen percentages and accumulation rates of Picea, T. mertensiana, Abies, Pinus (mostly diploxylon-type), and herbaceous taxa (Table 2; Figs. 6 and 5).

Picea pollen in Zone LL-1 is most likely from Picea engelmannii (Engelmann spruce) based on its association with T. mertensiana and Abies in Oregon today. However, the presence of P. sitchensis (Sitka spruce) cannot be ruled out, because it currently grows with T. mertensiana in coastal British Columbia (Meidinger and Pajar, 1991). Haploxylon-type Pinus pollen is likely from P. monticola based on its occurrence with T. heterophylla and Abies. Pseudotsuga-type pollen is probably from Pseudotsuga menziesii rather than Larix (larch), which is rare west of the Cascade Range. The association of Cupressaceae with T. heterophylla and Pseudotsuga-type pollen suggests that it is probably from Thuja plicata or Libocedrus decurrens (incense cedar). Abies pollen is not consistently associated with any one taxa, which implies that it could be from a number of common species, including A. amabilis (Pacific silver fir), A. grandis, A. procera (noble fir), and A. lasiocarpa (subalpine fir). Most of the fossil pollen assemblages from Zone LL-1 are similar to modern pollen spectra from montane (ca. 900–1500 m elevation) and subalpine (ca. 1300–2000 m elevation) forests from the Cascade Range in Oregon and Washington (Franklin and Dymess, 1988; Table 1; Figs. 4 and 6). The presence of such forests at Little Lake indicates conditions were ca. 4°–8°C cooler than today and about as wet as present. Wet conditions are consistent with C/N values, which suggest an allochthonous OC source and increased erosion. Generally high but variable values of OC and S and low magnetic susceptibility imply anoxic conditions that were probably related to relatively warm conditions and long periods of thermal stratification.

During Subzone LL-1a, high percentages of T. heterophylla and Cupressaceae pollen are replaced by those of Abies and Pinus (mostly haploxylon-type) pollen at ca. 42,250 cal yr B.P. This shift in dominance reflects a transition from montane to subalpine forest and from cool to cold conditions. High magnetic susceptibility and low percentages of OC suggest oxic conditions that were likely related to a relatively short period of thermal stratification (Fig. 3). The vegetation during Subzone
FIG. 4. Pollen percentage diagram for selected Little Lake taxa during the latter part of marine isotope stage 3. Open curves represent fivefold exaggeration of black curves. *Pinus* includes haploxylon-type (*P. monticola*) and is shown with a stripped curve, diploxylon-type (*P. contorta* or *P. ponderosa*) is represented by an open curve, and total *Pinus* is shown with a black curve. The results of a constrained cluster analysis are illustrated.

FIG. 5. Pollen accumulation rates for selected Little Lake taxa during zones LL-1 and LL-2.
LL-1b was probably similar to modern montane or low-elevation temperate forests based on high pollen percentages of *T. heterophylla*, *Pseudotsuga*-type, and Cupressaceae. These taxa imply some of the warmest conditions of Zone LL-1 (mean annual temperature estimated at 5°–6°C). Low magnetic susceptibility and high percentages of OC indicate a period of increased anoxia.

Subzone LL-1c is characterized by a series of fluctuations between *Pinus* (haploxylon-type) and *T. heterophylla* pollen that probably represent shifts between montane forests of *T. heterophylla* and those of *Pinus* (*P. monticola*). Although *T. heterophylla* and *P. monticola* have overlapping climate ranges, *P. monticola* tends to grow in areas with colder winter temperatures and less summer precipitation than *T. heterophylla* (Thompson et al., 1999). The high frequency fluctuations between *T. heterophylla* and *P. monticola* therefore imply that the climate oscillated three times from cool, wet conditions (mean annual temperatures estimated at 4°–5°C), to colder and possibly drier conditions (mean annual temperatures estimated at 3°–4°C). Peaks in OC and S and low magnetic susceptibility suggest increased anoxia during the *T. heterophylla*-dominated intervals.

Subzone LL-1d contains high percentages of *Pinus* (haploxylon-type) and *Abies* pollen, and minor amounts of *Picea* and *T. mertensiana* pollen, which indicate the establishment of a subalpine forest and one of the coldest periods of Zone LL-1 (annual temperatures estimated at 2°–4°C). Precipitation was probably equivalent to that of the present day, although more of it would have been in the form of snow. Subzone LL-1d is also characterized by low values of OC and S, which suggest relatively oxic conditions.

During Subzone LL-1e, *Pseudotsuga*-type, Cupressaceae, and *T. heterophylla* pollen increase significantly. This shift suggests a transition to a montane or low-elevation temperate forest and to warmer conditions than the previous subzone (mean annual temperatures estimated at 5°–6°C). At the base of this subzone, OC and S percentages increase and magnetic susceptibility values decrease, indicating a period of increased anoxia.

Pinus percentages reach their peak during Subzone LL-1f and imply a montane forest probably dominated by *P. monticola* and colder conditions than the previous subzone (mean annual temperatures estimated at 3°–4°C). Increased pollen percentages of *Abies* and *T. heterophylla* and minor amounts of *Pseudotsuga*-type and Cupressaceae at 30,500 cal yr B.P. indicate the establishment of a mixed montane and temperate forest and slightly warmer conditions. A peak in OC and S at 30,500 cal yr B.P. suggests anoxic conditions and a brief warming. PAR show an increase in *T. heterophylla*, *Pseudotsuga*-type, and Cupressaceae at 29,000 cal yr B.P. that coincides with a second peak in OC and S (Fig. 5). Thus, PAR and geochemical data imply another brief warm interval at 29,000 cal yr B.P. The return of *Pinus* pollen in the top of this subzone reflects the reestablishment...
of *P. monticola* and colder conditions. The latter part of Sub-
zone LL-1f and Subzone LL-1g are characterized by an over-
all decrease in temperate and montane species (*T. heterophylla*,
Pseudotsuga-type, Cupressaceae, and *Abies*-types) and an in-
crease in subalpine types (*Picea, T. mertensiana*, and *Abies*).
This shift marks the transition from zones LL-1 to LL-2 and
an estimated 2°–4°C decrease in temperatures. Superimposed
on this larger-scale trend is an increase in pollen percentages
of *T. heterophylla* during Subzone LL1-g, which indicate a change
to montane forest and warmer conditions than before. By the end
of Subzone LL-1h, temperate and montane taxa are replaced by
subalpine taxa.

Abies pollen in Zone LL-2 could be from several species com-
mon to montane and subalpine forests in the Pacific Northwest
(*A. amabilis*, *A. lasiocarpa*, or *A. procera*). *Picea* pollen is prob-
ably from *P. engelmannii* based on the identification of a macro-
fossil needle at 11.70 m (ca. 16,700 cal yr B.P.). Diplloxylon-
type *Pinus* pollen could either be from *P. contorta* (lodgepole
pine) or *P. ponderosa* (ponderosa pine). However, *P. contorta*
is more commonly associated with subalpine species, such as
T. mertensiana. The fossil pollen spectra from Zone LL-2 are
similar to modern pollen assemblages from subalpine forests (ca.
1300–2000 m elevation) and upper treeline (ca. 1400–2200 m
elevation) in the Pacific Northwest (Franklin and Dyrness, 1988;
Pellat et al., 1997; Table 2: Figs. 5 and 6). Climate estimates
based on these modern analogues suggest that temperatures were
7°–11°C colder and precipitation was 250–500 mm less than
present, values consistent with previous estimates (Worona and
Whitlock, 1995). Dry conditions are also reflected in C/N values
that indicate an autochthonous source for the OC and that im-
ply less erosion. OC and S percentages are considerably lower than
in Zone LL-1, whereas magnetic susceptibility is higher, reflect-
ing more oxic conditions (Fig. 3).

Subzones LL-2a through LL-2e are characterized by repeated
fluctuations between high pollen percentages of *Picea, Abies,*
and *T. mertensiana* and those of *Pinus* (mostly diplloxylon-type).
The spectra dominated by *Picea, Abies,* and *T. mertensiana*
pollen are similar to those from modern mesic subalpine forests
in coastal British Columbia (Pellat et al., 1997). The climate
of this area is characterized by abundant year-round precipi-
tation and cold temperatures. Intervals with abundant *Pinus*
pollen are similar to *P. contorta*-dominated subalpine forests in
Oregon and Washington and suggest a more xeric or seasonably
wet subalpine forest. These fluctuations reflect a series of oscilla-
tions between cold-wet and cold-dry conditions. *T. heterophylla*
pollen increases during subzones LL-2b and LL-2d (ca. 25,000
and 22,000 cal yr B.P.), suggesting more montane forests and
slightly warmer and wetter conditions than before. Minor peaks
in the percentages of OC and S overlap with these peaks in *T.
heterophylla* and suggest relatively anoxic conditions. Increased
herbaceous taxa at ca. 25,000 cal yr B.P. indicate the establish-
ment of a more open forest and the onset of cold-dry conditions.
This increase occurs at about the same time as levels of Fe, Mn,
and magnetic susceptibility increase, implying that the lake was
better mixed and more oxygenated, probably as a result of the
more open forest and increased wind.

Few modern pollen assemblages are similar to Subzone LL-
2f. However, based on the composition of modern alpine com-
munities, this assemblage implies a subalpine parkland domi-
nated by *A. lasiocarpa* and Poaceae (grass family), similar to
those growing at present on the eastern slopes of the Washing-
ton Cascades and Olympic Mountains (Franklin and Dyrness,
1988). These environments suggest the coldest and driest con-
ditions of this zone. Subzone LL-2g marks the return of high
pollen percentages of *Picea, T. mertensiana,* and *Abies* and a
decline in herbaceous taxa, which indicate the development of a
closed and mesic subalpine forest. A sharp decline in Fe and Mn
implies increased lake stratification and anoxia that probably re-
sulted from a more protective forest cover around the lake and
from warmer conditions. Subzone LL-2h shows the first major
increase in warm-adapted taxa (*T. heterophylla* and *Abies*-type)
and a decrease in subalpine taxa. These changes suggest a shift
to montane forest and the onset of the warm-wet conditions that
mark the end of the last glacial period.

DISCUSSION

Summary of Changes at Little Lake and Comparison with Other Pacific Northwest Records

The sum of nonarboreal pollen percentages is used as a mea-
sure of changes in vegetation cover near Little Lake (Fig. 7).
The establishment of a relatively open forest between 25,000 and
17,000 cal yr B.P. is concurrent with an increase in oxidizing con-
ditions in the hypolimnion, perhaps as a result of less protective
forest cover around the margins of the lake. Effective precipita-
tion is represented by the sum of the wet-adapted taxa, *Abies* and
T. mertensiana, which are both currently associated with high
annual precipitation and actual/potential evaporation (Minckley
and Whitlock, 2000). After the establishment of a more open
forest, intervals of high effective precipitation are associated with
peaks in magnetic susceptibility, perhaps indicating in-
creased erosion within the watershed. Millennial-scale changes
in temperature are reflected by the sum of warm-adapted taxa
(*Pseudotsuga*-type, Cupressaceae, and *T. heterophylla*) over the
sum of cold-adapted taxa (*Picea, T. mertensiana,* and Poaceae).
In Zone LL-1, fluctuations in *Pinus* (probably *P. monticola*) par-
ellel the cold-adapted taxa. However, *Pinus* pollen was not in-
cluded in the cold sum because the taxon reflects dry conditions
during Zone LL-2. The warm intervals shown by this ratio are
usually supported by corresponding periods of increased anoxia.

Many of the millennial-scale climate changes identified at
Little Lake are evident in other records from the Pacific North-
west (Fig. 1). A series of peaks in arboreal pollen at Carp Lake
suggests four warm and/or wet periods (39,500, 36,000, 32,500,
and 29,000 cal yr B.P.), which correlate with warm intervals
during Zone LL-1 (Whitlock and Bartlein, 1997). A record from
the Kalaloch sea cliffs on the Olympic Peninsula, Washington,
FIG. 7. Summary of changes in vegetation and climate at Little Lake during marine isotope stages 2 and 3 based on vegetation and climate indexes developed from the pollen data. Significant environmental changes inferred from the geochemical and magnetic susceptibility data are also shown. In the far right graph, variations in northern hemisphere summer insolation (Berger, 1978) are represented by a solid line. Global ice-volume, as inferred from the SPECMAP stacked and smoothed oxygen isotope data, is shown by the dashed line (Imbrie et al., 1984).

shows five fluctuations between arboreal and nonarboreal pollen taxa between ca. 40,000 and 27,000 cal yr B.P. (Heusser, 1972). Increased percentages of *Picea* pollen at Carp Lake suggest cold, wet periods at ca. 26,000, 23,000, and 17,500 cal yr B.P., which are concurrent with the wet periods at Little Lake during Zone LL-2. Advances of the Cordilleran ice sheet in southwestern British Columbia also indicate cold, wet conditions between ca. 18,000 and 16,000 cal yr B.P. (Vashon Stade) and between ca. 24,500 and 22,000 cal yr B.P. (Coquitlam Stade; Hicock et al., 1999). The ca. 22,000 cal yr B.P. warm period at Little Lake is registered at other sites in the Pacific Northwest between 23,000 and 22,000 cal yr B.P. (Hicock et al., 1999; Mathewes, 1991; Whitlock and Grigg, 1999). These similarities in the direction and timing of vegetation changes throughout the Pacific Northwest imply that they represent a response to regional variations in climate.

Influence of Orbital-Scale Climate Controls

The generally moderate climate of the Pacific Northwest during MIS 3 (Alley, 1979; Barnosky, 1981, 1985; Heusser et al., 1999; Warner et al., 1984; Whitlock and Bartlein, 1997) corresponds with intermediate levels of summer insolation and global ice-volume. These orbital-scale controls fluctuated during MIS 3, but the highs and lows were not as dramatic as those of MIS 2 or the Holocene (Fig. 7). A comparison of MIS 3 climate changes at Little Lake with summer insolation and ice-volume suggests that variability in the magnitude of climate change partially reflects orbital-scale variations (Fig. 7). Two of the warmest periods of Zone LL-1 (at 33,000 and 30,500 cal yr B.P.) occurred during a period (33,000 to 30,500 cal yr B.P.,) of high summer insolation and moderate ice volumes whereas the coldest intervals occurred before and after this time. Between 38,000 and 35,000 cal yr B.P.
a series of moderate shifts in climate imply a generally cool and seasonably equable climate, which coincides with relatively low summer and moderate winter insolation. However, some of the warmest conditions occurred (40,000 cal yr B.P.) when summer insolation was low and ice-volumes were moderate, suggesting that variations in millennial-scale climate controls, independent of orbital-scale forcings, also influenced the degree of climate change at Little Lake during MIS 3.

During MIS 2 (27,600–14,100 cal yr B.P.), the presence of subalpine forest and parkland in many low-elevation areas of the Pacific Northwest indicates colder, drier conditions than at present (Alley, 1979; Barnosky, 1981, 1985; Heusser et al., 1999; Woronon and Whitlock, 1995). Paleoclimate model simulations show that such conditions were related to the size of the Laurentide ice-sheet (Bartlein et al., 1998; Thompson et al., 1993) with the climate of the Pacific Northwest being affected by (1) the large extent of the ice-sheet causing a decrease in northern hemisphere temperatures; (2) the height of the ice-sheet displacing the jet stream to the south of its present position and; (3) the presence of a large ice-sheet resulting in a midcontinental, glacial anticyclone that increased easterly flow across western North America. The coldest and driest conditions occurred at Little Lake between ca. 21,000 and 17,000 cal yr B.P., which corresponds to a low in summer insolation and a maximum in global ice-volume.

Causes of Millennial-Scale Climate Change at Little Lake

A comparison of the Little Lake data with a record of sea-surface temperatures and sediment bioturbation from the Santa Barbara Basin (Behl and Kennett, 1996; Hendy and Kennett, 1999) provides an opportunity to evaluate current explanations of millennial-scale climate change in western North America and the Northeast Pacific. The pollen-based temperature proxy from Little Lake, when compared with the bioturbation index from the Santa Barbara Basin, shows that low values coincide with warmer sea-surface temperatures (Fig. 8). The Santa Barbara record, like that from Little Lake, has the greatest frequency and magnitude of millennial-scale climate change during the latter part of MIS 3. Warm intervals are concurrent at both sites with the exception of the 38,500 cal yr B.P. warm period at Little Lake. This event is registered by an increase in *T. heterophylla* pollen and not by the warmest-adapted taxa (*Pseudotsuga*-type or Cupressaceae). Consequently, it may reflect a modest climate warming or one of local extent.

Warmer sea-surface temperatures in the Santa Barbara Basin during MIS 3 have been attributed to northward shifts in the position of the subtropical high, the Aleutian low, and the jet stream (Hendy and Kennett, 1999). A significant northward shift of North Pacific atmospheric circulation patterns would have led to warmer year-round conditions in the Pacific Northwest and to a change from relatively dry to wet winters. Although this explanation is consistent with evidence for warming at Little Lake during the latter part of MIS 3, the lack of a strong precipitation signal implies little change in the position of the jet stream. In addition, strong upwelling along the central California margin suggests that the jet stream and subtropical high were close to their present positions (Gardner et al., 1997). An alternative explanation invokes variations in the strength of the subtropical high and the jet stream, without significant shifts in their position. A stronger subtropical high would explain warmer conditions in both the Santa Barbara Basin and the Pacific Northwest, while an increase in the strength of the jet stream would have caused a shift in the Pacific Northwest from wet to wetter winter conditions. This more subtle change may explain the evidence of only small increases in precipitation during warm intervals at Little Lake.

The correlation of MIS 3 sea-surface temperatures in the Santa Barbara Basin with changes in temperatures and surges in the Laurentide ice-sheet implies that variations in the strength
of the subtropical high and jet stream may have been related to fluctuations in North Atlantic atmospheric and oceanic circulation and ice-sheet size. Other correlations do exist between western North America, Northeast Pacific and North Atlantic paleo-records (Benson, 1999; Hicock et al., 1999; Lin et al., 1998; Lund and Mix, 1998; Whitlock and Grigg, 1999). However, model simulations for western North America and the Northeast Pacific during MIS 2 and the late-glacial period show only small variations in temperature in response to changes in the height of the ice sheet and/or temperatures over the North Atlantic (Hostetler and Bartlein, 1999; Mikolajewicz et al., 1997). Shifts in Pacific sea-surface temperatures that were concurrent with North Atlantic changes may explain the degree of warming evident in the geologic record (Hostetler and Bartlein, 1999; Peteet et al., 1997).

Fluctuations between cold-wet and cold-dry conditions at Little Lake are not apparent in the Santa Barbara Basin during MIS 2 (Fig. 8). Changes in precipitation in the Pacific Northwest may be explained by variations in the strength of the glacial anticyclone and the latitude of the jet stream. A recent model simulation, which describes the potential responses of western North America to large surges in the Laurentide ice-sheet during Heinrich events, shows that a reduction in the height of the ice sheet results in a weakened glacial anticyclone and a less prominent split in the jet stream (Hostetler and Bartlein, 1999). As a result, westerly flow and precipitation increases in the Pacific Northwest, while southern California shows little change in climate. These results are supported by the correlation of cold, wet intervals in the Pacific Northwest at 23,500 and 17,000 cal yr B.P. with Heinrich events 1 and 2 (Bond and Lotti, 1995; Hicock et al., 1999; Whitlock and Grigg, 1999). In addition, cold wet intervals at 26,000 and 21,000 cal yr B.P. at Little Lake correspond to smaller and less established peaks in ice-rafted debris from the North Atlantic.

The warming at Little Lake at 22,500 cal yr B.P. is associated with widespread evidence in the Pacific Northwest for moderate warming between 23,000 and 22,000 cal yr B.P. (Mathews, 1991; Whitlock and Grigg, 1999) and may correspond with a small increase in sea-surface temperatures in the Santa Barbara record at 23,500 cal yr B.P. However, an additional warm period at Little Lake at 25,000 cal yr B.P. is not matched in the Santa Barbara Basin record. Warming along the west coast of North America during MIS 2 may have resulted from a brief expansion of the subtropical high. Small changes in the subtropical high have been attributed to variations in Laurentide ice-sheet size and in North Atlantic atmospheric and oceanic circulation (Clark and Bartlein, 1995; Hendy and Kennett, 1999). However, model simulations of the last glacial maximum do not show warmer conditions along the coast in response to a reduction in ice-sheet height or an increase in sea-surface temperatures in the North Atlantic (Hostetler and Bartlein, 1999). Additional factors, such as an increase in sea-surface temperatures in the North Pacific, may have contributed to warming in western North America and the Northeast Pacific during this time (Hostetler and Bartlein, 1999; Peteet et al., 1997).

ACKNOWLEDGMENTS

We thank P. J. Bartlein for discussion and comments on the manuscript. C. J. Long and T. A. Minckley assisted in coring, and M. Glade provided help in the laboratory. Research was supported by National Science Foundation Grant ATM 9615822 to C. Whitlock.

REFERENCES

