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The activity of the housekeeping ATP:co(I)rrinoid adenosyl-
transferase (CobA) enzyme of Salmonella enterica sv. Typhi-
murium is required to adenosylate de novo biosynthetic intermedi-
ates of adenosylcobalamin and to salvage incomplete and complete
corrinoids from the environment of this bacterium. In vitro,
reduced flavodoxin (FldA) provides an electron to generate the
co(I)rrinoid substrate in the CobA active site. To understand how
CobAandFldA interact, a computermodel of aCobA�FldAcomplex
was generated. This model was used to guide the introduction of
mutations into CobA using site-directed mutagenesis and the syn-
thesis of a peptide mimic of FldA. Residues Arg-9 and Arg-165 of
CobAwere critical for FldA-dependent adenosylation but were cat-
alytically as competent as the wild-type protein when cob(I)alamin
was provided as substrate. These results indicate that Arg-9 and
Arg-165 are important for CobA�FldA docking but not to catalysis.
A truncation of the 9-amino acidN-terminal helix of CobA reduced
its FldA-dependent cobalamin adenosyltransferase activity by
97.4%. The same protein, however, had a 4-fold higher specific
activity than the native enzyme when cob(I)alamin was generated
chemically in situ.

The conversion of vitamin B12 (also known as cyanocobalamin,
CNCbl) to its coenzymic form requires replacing the cyanoCo(�) upper
ligand with an adenosyl moiety. The resulting coenzyme B12 (also
known as adenosylcobalamin (AdoCbl))2 is essential for the function of
AdoCbl-dependent enzymes (1–3). De novo corrin ring biosynthesis
occurs via adenosylated intermediates, and adenosylation is also
required for salvaging complete and incomplete corrinoids from the
environment (4–6). Corrinoid adenosylation has been studied in sev-
eral organisms (7–12), but the best understood system is the one in
Salmonella enterica (13–16). In this bacterium the last step of the cor-
rinoid adenosylation pathway, i.e. the transfer of the adenosyl group
fromATP to the corrin ring, is catalyzed by theATP:co(I)rrinoid adeno-
syltransferase (CobA, EC 2.5.1.17) enzyme (16). In addition to CobA,
the S. enterica genome encodes two other ATP:cob(I)alamin adenosyl-
transferases encoded by the eutT and pduO genes (17–19). However,

unlike the EutT and PudO enzymes, CobA has broad specificity for its
corrinoid substrate, allowing it to adenosylate de novo corrin ring inter-
mediates as well as complete (e.g. cobalamin (Cbl)) and incomplete cor-
rinoids lacking the nucleotide loop (e.g. cobinamide (Cbi)) (4, 16).
The Co-C bond in coenzyme B12 is the result of a nucleophilic attack

by the Co(I) ion on the C5� carbon of ATP. In vitro the Co(I) ion is
generated by the transfer of an electron from reduced flavodoxin A
(FldA) to Co(II), an event that is currently thought to occur in the active
site of CobA (14).
FldA is an electron transfer protein essential to cell survival (20). In

addition to its involvement in the corrinoid adenosylation pathway (14),
FldA provides reducing equivalents for the reactivation of MetH, the
B12-dependent methionine synthase (21). Elegant NMR spectroscopy
studies identified the interacting surfaces of a fragment of MetH with
FldA (22).
One unanswered question regarding the mechanism of catalysis by

CobA is how the redox potential of the Co(II) to Co(I) transition (�610
mV) (23) is increased enough so the electron transfer from reduced
FldA (�450 mV; semiquinonine/hydroquinone) (21, 24) can occur. As
mentioned above, we previously hypothesized that FldA reduces Co(II)
to Co(I) in the CobA active site, triggering the attack of the Co(I)
nucleophile on the 5� carbon of the ribosyl moiety of ATP (14). Stich et
al. (25) recently reported that binding of the corrinoid substrate to the
CobA/MgATP complex increases the Co(II)/Co(I) redox potential to
within the range for FldA reduction (25), leading to the reduction of
Co(II) to Co(I) in the active site of CobA. At present, the interactions of
FldA with CobA are not understood. Here we report results of studies
aimed at advancing our understanding of CobA�FldA interactions high-
lighting the use of computer modeling to generate experimentally test-
able models.

EXPERIMENTAL PROCEDURES

Strains and Plasmids—TABLE ONE lists all strains and plasmids
used in this work. TABLE TWO lists all the mutagenic PCR oligonu-
cleotides used to generate the plasmids used in these studies.

Computer Modeling—The crystal structures of CobA (mmdbId:
15042 code 1G64) (12) and FldA (mmdbId:6851 code 1AHN) (21) were
loaded into Deep View Version 3.7 (26) and aligned to bring CobA
residues Arg-9, Arg-98, and Arg-165 within close proximity to FldA
residues Asp-11, Glu-61, Asp-68, and Asp-93. No structural optimiza-
tion was performed. The figures were generated using PyMOL
(www.pymol.org).

PCRMethods—An Eppendorf Mastercycler� thermocycler was used
to amplify templates listed in TABLE TWO using primers listed in
TABLE TWO. Amplification products were cloned in vector pET15b
(Novagen) to fuse an N-terminal hexahistidine tag to the gene product.

* This work was supported in part by National Institutes of Health Grant GM40313 (to
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Site-directed Mutagenesis—The Stratagene QuikChange� site-di-
rected mutagenesis kit was used to create point mutants in plasmids
pCOBA17 and pFLDA4 (TABLE TWO). Nonradioactive BigDye�
(Amersham Biosciences) protocols for DNA sequencing were used to
verify the presence of mutations. Plasmids were reconstructed and then

sequenced at the DNA sequencing facility at the University of Wiscon-
sin-Madison Biotechnology Center.

Purification of His-tagged CobA Proteins—Plasmids were trans-
formed into Escherichia coli strain BL21(�DE3) for overexpression
(JE3892). Fresh transformants were used to inoculate 2 ml of fresh

TABLE ONE

Strains used in this study
Unless otherwise stated, all strains and plasmids were constructed during the course of this work.

Strain ID Genotype Plasmid Allele Protein encoded Source

E. coli strains
JE3892 BL21(�DE3) Laboratory collection
Derivatives of DH5�

JE4638 pFRE3 fre� H6Fre Laboratory collection
JE5302 pFPR1 fpr� Fpr Laboratory collection
JE7779 pFLDA4 fldA� FldAH6

WT

JE7928 pFLDA6 FldAH6
D68R

JE7929 pFLDA7 FldAH6
D93R

JE7930 pFLDA8 FldAH6
D68R/D93R

JE3544 pET15b Laboratory collection
JE4263 pCOBA17 cobA1316 H6CobAWT Laboratory collection
JE7187 pCOBA58 cobA1317 H6CobAR9A

pCOBA59 cobA1318 H6CobAR9E

JE7190 pCOBA61 cobA1319 H6CobAR98A

JE7191 pCOBA62 cobA1320 H6CobAR98E

JE7473 pCOBA64 cobA1321 H6CobAR165A

JE7474 pCOBA65 cobA1322 H6CobAR165E

JE7475 pCOBA66 cobA1323 H6CobAR9E/R98E

JE7476 pCOBA67 cobA1324 H6CobAR9E/R165E

JE7477 pCOBA68 cobA1325 H6CobAR98E/R165E

JE7478 pCOBA69 cobA1326 H6CobAR9E/R98E/R165E

JE7947 pCOBA71 cobA1327 H6CobAA134L

JE2879 pCOBA16 cobA� CobAWT Laboratory collection
JE6177 pCOBA23 cobA1328 CobA�N2�26 Laboratory collection

S. enterica strains
JE2886 metE205 ara-9 �902(cobA-trp)/pGP1-2

T7 rpo� kan�
pCOBA16 cobA� CobAWT Laboratory collection

Derivatives of JE4182
JE4182 metE205 ara-9/pGP1-2 T7 rpo� kan� Laboratory collection
JE8079 pFLDA4 FldAH6

WT

JE8080 pFLDA6 FldAH6
D68R

JE8081 pFLDA7 FldAH6
D93R

JE8082 pFLDA8 FldAH6
D68R/D93R

Derivatives of JE7180
JE7180 metE205 ara-9 cobA366::Tn10d(cat�)

�eut1141(�eutT)
JE7584 pET15b Laboratory collection
JE7455 pCOBA17 cobA1316 H6CobAWT

JE7572 pCOBA58 cobA1317 H6CobAR9A

JE7573 pCOBA59 cobA1318 H6CobAR9E

JE7575 pCOBA61 cobA1319 H6CobAR98A

JE7576 pCOBA62 cobA1320 H6CobAR98E

JE7578 pCOBA64 cobA1321 H6CobAR165A

JE7579 pCOBA65 cobA1322 H6CobAR165E

JE7580 pCOBA66 cobA1323 H6CobAR9E/R98E

JE7581 pCOBA67 cobA1324 H6CobAR9E/R165E

JE7582 pCOBA68 cobA1325 H6CobAR98E/R165E

JE7583 pCOBA69 cobA1326 H6CobAR9E/R98E/R165E

JE8123 pCOBA71 cobA1327 H6CobAA134L

JE7564 pCOBA23 cobA1328 CobA�N2�26 Laboratory collection
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Luria-Burtani broth (LB)/ampicillin medium. A starter culture (1 ml)
was used to inoculate 100-ml cultures of LB/ampicillin medium. After
overnight growth at 37 °C with shaking, cells were harvested by centrif-
ugation at 15,000 � g at 4 °C in a Beckman/Coulter Avanti J-25I centri-
fuge equipped with a JLA-16.250 rotor. Cell paste was frozen at �80 °C
until use. To purify proteins 5 ml of lysis buffer (1� Bug Buster reagent
(Novagen) in 1� binding buffer, 0.1 mM phenylmethanesulfonyl fluo-
ride) was used to resuspend the cell pellet. Cells were lysed at room
temperature for 20 min and centrifuged for 30 min at 43,667 � g. Cell-
free extract was passed through a 0.45-�m syringe filter before loading
onto HisBind 900 cartridges (Novagen). Protein was purified as per the
manufacturer’s instructions. Protein was eluted into 1mM EDTA. Frac-
tions containing highly purified protein were pooled and dialyzed once
against 50 mM Tris-Cl buffer, pH 8, (at 4 °C) containing 10 mM EDTA.
Subsequent dialyses were performed against buffer without EDTA. In
some cases protein was concentrated using a YM10 Centricon unit
(molecularweight cutoff� 10,000; Amicon). Glycerol was added to 10%
(v/v) and dithiothreitol to 1 mM; 100-�l drops of protein solution were
flash-frozen using liquid N2, and pellets were stored at �80 °C until
used.

Native Wild Type (WT) and CobA�N2–26 Protein Purification—Na-
tiveWTCobA protein was overexpressed on strain JE2886 and purified
as described (15). Allele cobA1328 encoding the mutant CobA protein
with the N-terminal 2–26 amino acids deleted (CobA�N2–26) was
cloned into plasmid pT7-7 (27) and overproduced in E. coli strain
BL21(�DE3); all chromatographic steps were identical to those used to
isolate native WT CobA protein.

FldA Overexpression and Purification—Plasmids encoding WT or
mutant His-tagged FldA proteins were freshly transformed into strain
JE4182. Four 2-liter flasks containing 750 ml of LB medium containing
kanamycin (50 �l/ml) and ampicillin (100 �l/ml) were each inoculated
with 10 ml of an overnight starter culture grown in the same medium.
After the culture reached mid-log phase at 30 °C and 160 rpm shaking,
riboflavin was added to a final concentration of 10 �M, and cultures
were shifted to 42 °C for 1 h and incubated at 37 °C overnight. Cells were
harvested at 4 °C and 15,000 � g for 10 min; cell paste was frozen at
�80 °C until used.
Frozen cell paste was resuspended in 20 mM sodium phosphate

buffer, pH 7.5, (at 4 °C) containing 0.5 M NaCl and 1 mM phenylmeth-
anesulfonyl fluoride. The suspensionwas passed through a French press
twice, 10 mg of DNase was added, and the lysate was incubated on ice
for 10 min. The lysate was centrifuged at 4 °C at 43,667 � g for 30 min,
and soluble protein was passed through a 0.45-�m syringe filter. Pro-
teins were isolated from crude cell extracts using a ÄKTA fast protein
liquid chromatograph equipped with a 5-ml HisTrap column (Amer-
sham Biosciences). After column equilibration, cell-free extract was
loaded onto the column, which was washed with 5 column volumes
(CV) of 20mM sodiumphosphate buffer, pH 7.5, (at 4 °C) containing 0.5
MNaCl.Mutant FldA proteins were elutedwith a 0–50% linear gradient
of 20 mM sodium phosphate, pH 7.5, (at 4 °C), 0.5 M NaCl, 0.5 M imid-
azole over 15 column volumes. Fractions containing pure protein were
pooled, concentrated in an YM10 Centricon unit, and dialyzed against
50 mM Tris-Cl, pH 7.5, (at 4 °C) containing 1 mM EDTA. Protein con-
centration was determined by A466 to measure flavin mononucleotide
(FMN) bound to FldA (�466 � 8250 M�1) (28). Glycerol was added to
10% (v/v), and dithiothreitol was added to 1 mM before protein was
flash-frozen and stored at �80 °C until used. Fpr protein (ferredoxin
(flavodoxin):NADP� reductase) was purified as described (14).

Fre Protein Overexpression and Purification—H6Fre (flavin reduc-
tase; EC 1.5.1.29) protein was overexpressed using E. coli BL21(�DE3)/

pFRE3 (13). The latter was re-constructed before overexpression by
transforming strain JE3892 with plasmid pFRE3. A single colony was
used to inoculate 5 ml of fresh LB/ampicillin medium and incubated to
stationary phase at 37 °C. 2.5 ml of the starter culture was used to inoc-
ulate four 1-liter flasks containing 250 ml of LB/ampicillin medium. All
cultures were incubated at 37 °C to late log phase and induced with 0.5
mM isopropyl-�-D-thiogalactopyranoside with shaking for an addi-
tional 4 h. Cells were harvested at 15,000 � g for 10 min; the cell pellet
was frozen at �80 °C until used. To purify H6Fre (flavin reductase)
protein, 20 ml of lysis buffer (1� Bug Buster reagent (Novagen) in 1�
binding buffer, 1 mM phenylmethanesulfonyl fluoride) was used to
resuspend the cell pellet. Cells were lysed at room temperature for 20
min and centrifuged for 30 min at 43,667 � g. Cell-free extract was
filtered through a 0.45-�mand then a 0.2-�m syringe filter before load-
ing onto HisBind 900® cartridges (Novagen). H6-Fre Protein was puri-
fied as per the manufacturer’s instructions. Protein was eluted directly
into 5 mM EDTA. Fractions containing homogeneous protein were
pooled, concentrated in an YM10 Centricon unit, and dialyzed once
against 50mMTris-Cl buffer, pH 7.5, (at 4 °C) containing 10mMEDTA.
Subsequent dialyses were against buffer without EDTA. Glycerol was
added to 10% (v/v) and dithiothreitol to 1 mM before aliquots were
flash-frozen and stored at �80 °C.

Growth Behavior Analysis—Ten�l of overnight cultures of all strains
was used to inoculate 190 �l of fresh medium in each well of a 96-well
microtiter dish; all strains were cultured in triplicate. Growth media
contained 1� no-carbon E medium (29), 1 mM Mg�2, 0.5 mM methio-
nine, 1� trace minerals (30), 50 mM NH4Cl, 50 mM ethanolamine, pH
7.0. When added, ampicillin was used at 100 �g/ml, kanamycin was
used at 50 �g/ml, and AdoCbl, hydroxycobalamin, or dicyano-cobin-
amidewas used at 200 nM. For growth on glycerol as the sole carbon and
energy source, ethanolamine and methionine were omitted, and glyc-
erol was added to 30 mM. Cultures were incubated with shaking for up
to 96 h at 37 °C in a SpectraMAX Plus automatic plate reader (Molec-
ular Devices). Western blots were performed to determine whether
complementation defects were due to protein expression or stability
issues. However, because of the sensitivity of the growth assay, even
undetectable levels of CobAWT allowed full complementation.

Cobalamin Adenosyltransferase Assays—Fig. 1 shows three different
ways to generate the co(I)rrinoid substrate for CobA. Reactions con-
tained 4 mg of potassium borohydride (KBH4), 50 �M hydroxycobal-
amin, 0.8 mM Mn2�, 0.4 mM ATP, 3 �M, 0.5 �M CobA. AdoCbl forma-
tion was determined by measuring the decrease in A525 after 15 min at
37 °C and after 5 min of photolysis. When FldA was used as the reduc-
tant instead of KBH4, assays contained 50 �M hydroxycobalamin, 0.8
mM Mn2�, 0.5 mM NADPH, 0.4 mM ATP, 3 �M Fpr, 2 �M FldA, 2 �M

CobA and were incubated for 30 min at 37 °C. Peptide inhibition assays
contained concentrations of FldA ranging from 0.25 to 2 �M. For
mutant FldA proteins, Fpr protein was omitted and replaced by 0.5 �M

Fre protein and 50 �M FMN. FldA peptides were synthesized by the
Peptide Sequencing Facility at the University of Wisconsin-Madison
Biotechnology Center.

RESULTS

Modeling CobA�FldA Interactions—We artificially docked CobA
with FldA using ExPasy Deep View (www.expasy.org/spdbv) software
(Fig. 2). Without making any structural modifications, three positively
charged surface residues on CobA (Arg-9, Arg-98, Arg-165) were
alignedwith three negatively charged residues on FldA (Glu-61, Asp-68,
Asp-93). These FldA residueswere previously shown (28) to be involved
in its interactions with the Cbl-dependentmethionine synthase (MetH)
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enzyme. In this hypothetical CobA�FldA complex, the FMN cofactor of
FldA was within 10 Å of the Cbl substrate in the CobA active site, and
hydrophobic patches on both proteins were brought together (Fig. 2D).

Competitive Inhibition of FldA-dependent AdoCbl Synthesis by a
FldA Peptide—Based on our computer model, residues TWYY-
GEAQCDWDD68 of FldAwere predicted to be part of the surface inter-
acting with CobA.We hypothesized that a peptide mimic of this region
should block CobA�FldA interactions. Because the same region of FldA
is known to also interact with Fpr, the latter was present in the reaction
mixture in large excess and was preincubated with FldA before peptide,
ATP, and CobA were added to start the cobalamin adenosyltransferase
assay reaction. The control peptide TWYYGAAQCDWDA68 con-
tained E61A and D68A mutations to determine whether, as predicted,
these two charged residues contributed to any interactions of FldAwith
CobA. A third FldA peptide of similar size and hydrophobicity
(WPTAGYHFEASKG132) was used as negative control. The control
peptide did not contain any residues known to interact withMetH (Fig.
3) and, hence, were predicted to have no effect of the interactions of
FldA with CobA.
The effect of all three peptides on FldA-dependent AdoCbl synthesis

was assayed in vitro. In these assays, AdoCbl formation relied on pro-
ductive CobA�FldA interactions for the generation of the cob(I)alamin
nucleophile. To optimize the assay conditions, various concentrations
of FldA were used in assays where substrates and CobA were held con-
stant. The Km for FldA was 5.65 �M andVmax � 31.8 nmol min�1 mg�1

(Fig. 4). For Lineweaver-Burk analysis, subsaturating levels of FldAwere
used such that the reaction proceeded at a rate between 4 and 50%Vmax
when no peptides were added. Each of the three peptides was then
varied from 2–6 �M for each concentration of FldA.
Peptide TWYYGEAQCDWDD68 inhibited AdoCbl formation by

�30% when present at a 1.5:1 peptide:FldA ratio. At 59% Vmax, the
specific activities were 19 and 13, respectively. This level of inhibition
was significant considering the small size of the peptide. According to
Lineweaver-Burk analysis, this inhibition was competitive (Km pep-
tide� 29�M andKi � 1.3mM). A 13-amino acid peptidemimic of FldA
had only a 5-fold decrease in CobA binding efficiency. This decreased

affinity might be due to several reasons. The peptide could have greater
conformational flexibility than the FldA protein or lack a secondary
structure needed for interactions with CobA. In addition, the peptide
may not span all the residues involved in the CobA�FldA interaction.
In contrast, the mutagenized and control peptides (TWYYGAAQC-

DWDA68 and WPTAGYHFEASKG132, respectively) failed to inhibit
AdoCbl production even when present at 10-fold increase over FldA.
These results suggested that the TWYYGEAQCDWDD68 peptide did
bind to CobA and interfered with the FldA docking. Results with the
mutagenized peptide indicated that this inhibition depended on resi-
dues Glu-61 and Asp-68.

In Vivo Assessment of CobA Activity—To test the effect of mutations
in residues Arg-9, Arg-98, and Arg-165, we site-directed mutagenized
each one of these residues to Ala or Glu. Permutations of mutated res-
idues were also constructed, and their effects were tested in vitro and in
vivo.
Plasmids containing mutant cobA alleles were transformed into a

metE cobA strain of S. enterica (JE7180) to assess their level of function
in vivo. Strainswere grownunder conditions that demanded low or high
levels of cobalamin synthesis. When grown on glycerol as sole carbon
source, ametE cobA strain cannot convert dicyano-cobinamide intoCbl
because enzymes that assemble the nucleotide loop of Cbl require
AdoCbi (4, 31). Therefore, in the absence of Cbl, the Cbl-dependent
methionine synthase (MetH) cannot methylate homocysteine to pro-
duce methionine. Hence, the metE cobA strain is an AdoCbi, Cbl, or
methionine auxotroph. When grown on ethanolamine as the carbon
and energy source, AdoCbl synthesized by CobA is needed to activate
transcription of the ethanolamine utilization (eut) operon and to pro-
vide AdoCbl for ethanolamine ammonia-lyase function (18, 32).
Of the CobA mutant proteins tested, only CobAR98A, CobAR98E, and

CobAR165A supported growth on ethanolamine as carbon and energy
source, albeit to a reduced level relative to the wild-type strain (Fig. 5A).
It was surprising to learn, however, that proteinCobAR98Awith�20%of
the CobAWT activity (TABLE THREE, column C) supported growth on
ethanolamine at �80% that of the growth rate observed with a strain
synthesizing CobAWT enzyme (Fig. 5). Surprisingly, all cobA alleles

FIGURE 1. Assays used to assess the production of AdoCbl by CobA. A, KBH4 is used to reduce Co(III)Cbl to Co(I)Cbl directly. B, the Fpr/FldA system converts cob(III)alamin to
cob(II)alamin. CobA (represented by the shaded box) binds cob(II)alamin and Mg/ATP. Reduced FldA then provides the electron to reduce cob(II)alamin in the CobA active site. C, in
these studies we attempted to bypass Fpr by providing reduced flavins using Fre and NADPH.
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tested complemented the Cbl auxotrophy of the cobA mutant strain
during growth on glycerol (data not shown). We interpret these data to
mean that all mutant CobA proteins sufficiently interacted with FldA to
produce enough Cbl to satisfy the methionine requirement of the cell.
These results indicated that the wild-type CobA enzyme synthesizes an
excess of AdoCbl. The inability of some CobA variants to complement
a cobA strain during growth on ethanolamine (demands more AdoCbl)
reflected the negative effects of the mutations on CobA�FldA interac-
tions rather than being the result of expression problems or unstable
CobA mutant proteins.

In Vitro Assessment of CobAActivity—Having twoways of generating
the Co(I) nucleophile (Fig. 1, A and B) allowed us to determine whether
the CobA residues identified by the model were relevant to docking,
catalysis, or both.

Activity of CobA Variants When the Cob(I)alamin Substrate Was
Generated Using a Chemical Reductant—To distinguish between dock-
ing defects and loss of catalytic activity, we measured the activity of
mutant CobA enzymes independent of CobA�FldA docking. For these
experiments, we reduced cob(III)alamin to cob(I)alamin with potas-
sium borohydride (KBH4) before adding CobA (Fig. 1A). Regardless of
the change at residues Arg-9 or Arg-165 (i.e. R9A, R9E, R165A, or
R165E), the specific activity of the resulting mutant CobA proteins was

FIGURE 2. Computer model of the CobA�FldA complex. A, crystal structures of CobA
(monomers are colored salmon and pink) and FldA (light blue) are shown. Selected basic
surface residues on FldA are colored blue, whereas elected acidic side chains on CobA are
colored red. B, the structures in A are rotated 90° toward each other. C, CobA and FldA

FIGURE 3. Peptide inhibition of the CobA�FldA interaction. A, the primary sequence of
FldA is shown above. A subset of acidic residues known to interact with methionine
synthase (MetH) is shown in boldface. Peptides designed to inhibit CobA�FldA interaction
(TWYYGEAQCDWDD68) and a control peptide (WPTAGYHFEASKG132) are underlined. The
crystal structure of FldA was used to model the structure of each peptide (B and C). FldA
residues Glu-61 and Asp-68 are shaded gray. Peptide TWYYGAAQCDWDA68 is identical to
TWYYGEAQCDWDD68, except that the shaded residues are mutated to Ala.

were aligned so that negatively charged residues on FldA (blue) lined up with positively
charged residues on CobA (red) to create the docked model. D, close-up of the CobA�FldA
complex. At the docking interface FldA residue Asp-68 contacts residue Arg-9 of CobA,
and FldA residue Asp-93 contacts CobA residue Arg-165. Residue Asp-11 of FldA is close
to, but not contacting residue Arg-98 of CobA. Additionally, the FMN cofactor of FldA
(yellow) is within 10 Å of bound Cbl (maroon) and ATP (orange) in the CobA active site.
Surface hydrophobic patches on both proteins overlap (not shown).
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equal or better than that of the wild-type enzyme (TABLE THREE,
column B; lines 2, 3, 6, 7 versus line 1). Although it is a formal possibility
that Arg-9 and Arg-165 mutations negatively affect binding of cob(II)-
alamin but not cob(I)alamin to CobA, we believe such a defect would

have to be pronounced since saturating levels of cob(II)alamin were
used in the FldA-dependent assay.

Activity of CobA Variants When the Cob(I)alamin Substrate Was
Generated Using the Fpr/FldA Reduction System—To determine
whether CobA residues Arg-9 and Arg-165 were involved in docking,
the specific activity of each mutant CobA protein was determined in
assays where CobA�FldA interaction was required for the generation of
the cob(I)alamin substrate (Fig. 1B). The results from these assays
(TABLE THREE, column C) were consistent with the results from in
vivo experiments using these plasmids (Fig. 5). In reactions where
CobAR9A, CobAR9E, and CobAR165E were used, we measured very low
levels of adenosyltransferase specific activity (TABLE THREE, column
C; lines 2, 3, 7 versus line 1). In contrast, whenCobAR98A, CobAR98E, and
CobAR165A proteins were used in the assay, the adenosyltransferase spe-
cific activity we measured was 7–40-fold higher (TABLE THREE, col-
umn C; lines 4, 5, 6 versus line 1). Combinations of the above mutations
resulted in proteins with undetectable activity (TABLETHREE, column
C; lines 8–11). On the basis of the data in Fig. 5 and TABLE THREE, we
conclude that residues Arg-9 and Arg-165 are important to docking but
not to catalysis.
The interpretation of the data regarding residue Arg-98 is less

straightforward. In isolation, the effect of a mutation at Arg-98 depends
on the nature of the substitution. A drastic change in charge and size of
the side chain (R98A) results in a substantial loss of specific activity
relative to thewild-type enzyme (143 versus 10; TABLETHREE, column
B; lines 1 versus 4). A drastic change in charge but not in the size of the
side chain (R98E) reduces the specific activity of the enzyme less than
2-fold relative to the wild type (143 versus 97; TABLE THREE, column
B; lines 1 versus 5). CobAR98A was more active in vivo than in either in
vitro assay. Interestingly, the combination of R98E with R165E mim-
icked the effect of the R98A change (CobAR98E/R165E specific activity �
20; TABLE THREE, column B; lines 1 versus 10), an effect that was
reversed by the introduction of the R9E mutation (CobAR9E/R98E/R165E

specific activity � 108; TABLE THREE, column B; lines 1 versus 11).
With the data in hand we suggest that Arg-98 is necessary for structural
integrity of CobA.

Effect of Compensatory Mutations in FldA—Based on the model of
the CobA�FldA complex (Fig. 2), we hypothesized that changing FldA
residues Asp-68 and Asp-93 to Arg would compensate for the negative

FIGURE 4. Kinetics of FldA-dependent AdoCbl synthesis by CobA. Substrates and
CobA were held constant, whereas FldA concentrations were varied. AdoCbl formation
was determined after 30 min by detecting a change in A525 after photolysis. The Km for
FldA is 5.7 �M, and the Vmax is 31.8 nmol min�1 mg�1. Inset, Lineweaver-Burk plot.

FIGURE 5. In vivo and in vitro assessment of CobA function. Plasmids encoding CobAWT

and variants of it were transformed into strain JE7180 (metE205 ara-9 cobA366::Tn10d(cat�)
�eut1141(�eutT)). When grown on ethanolamine as sole carbon and energy source, only
CobAWT, CobAR98A, CobAR98E, CobAR165A, and CobAA134L proteins produced enough
AdoCbl to support growth. � and � signs indicate whether cultures grew to A650 	0.2 after
12 h on ethanolamine; the bar graph indicates the growth rate compared with strains carry-
ing the WT cobA allele. VOC, vector-only control.

TABLE THREE

Mean specific activities of CobA proteins as a function of the reductant used

Line
no. A CobA variant

B KBH4 reductant
C FldAWT/Fpr

reductant D Complementationc
SAa %SAb SAa %SAb

1 H6CobAWT 143 
 6.0 100 13 
 0.3 100 �

2 H6CobAR9A 154 
 1.4 108 0.8 
 0.3 6 �

3 H6CobAR9E 151 
 1.2 106 0.4 
 0.1 3 �

4 H6CobAR98A 10 
 5.6 7 2 
 0.6 17 �

5 H6CobAR98E 97 
 5.8 68 5 
 0.5 41 �

6 H6CobAR165A 138 
 5.8 97 2 
 0.8 16 �

7 H6CobAR165E 143 
 7.1 100 0.1 
 0.1 1 �

8 H6CobAR9E/R98E 56 
 5.5 40 NDd �

9 H6CobAR9E/R165E 94 
 6.4 66 ND �

10 H6CobAR98E/R165E 20 
 4.4 14 ND �

11 H6CobAR9E/R98E/R165E 108 
 1.5 75 0.3 
 0.2 3 �

12 H6CobAA134L 150 
 5.8 105 15 
 1.2 115 �
a Specific activity in AdoCbl nmol min�1 mg�1.
b SA versus H6CobAWT enzyme.
c Measured by cultures reaching an A650 nm 	 0.2 after 12 h of incubation at 37 °C during growth on ethanolamine as C and energy source.
d ND, not detectable.
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effects of CobAmutations R9E andR165E on FldA-dependent synthesis
of AdoCbl. A problem with these experiments arose when the Fpr
enzyme failed to reduce FldAD68R and FldAD93R mutant proteins (data
not shown). In an attempt to circumvent this problem, we used the
NADH:FMN reductase (Fre) enzyme (13, 33) to reduce free FMN,
which would indirectly reduce the flavin cofactor in mutant FldA
enzymes (Fig. 1C). If the Fre system worked, CobAR9E was predicted to
preferentially interact with either FldAD68R or FldAD93R proteins. Or
else CobAR9E would interact equally well with the FldAD68R and
FldAD93R proteins if the orientation for docking were not important.
However, CobAR9E was not expected to interact with wild-type FldA or
the FldAD68R/D93R proteins. The first observation we made was that
whenwe used the Fre enzyme, the specific activity of CobAR9E increased
12-fold over the level measured when Fpr was used to reduce FldA (4.5
versus 0.4). CobAR9E was not as active when either FldAD68R (specific
activity � 1.7) or FldAD93R (specific activity � 2) was used in the assay.
When FldAD68R/D93R protein was used, the specific activity of CobAR9E

was as high as when wild-type FldA was used (both 4.5). Results from
assays using permutations of CobA and FldA mutant proteins did not
reveal any additional insights into CobA�FldA interactions.

Effect of Changes in the Hydrophobic Topology of the CobA Docking
Surface—The hydrophobic patch of CobA that is proposed to be
involved in CobA�FldA docking has a concave surface. To investigate
the contributions of hydrophobic packing to the interactions of CobA
with FldA, residue Ala-134 was mutated to Leu. Ala-134 was chosen for
mutagenesis because it is the only Ala in the hydrophobic patch. Hence,
a change to Leu would be tolerated by the polypeptide. In contrast,
mutating other residues in the patch (Phe or Trp) to a less bulky side
chain like Ala or Gly would be expected to affect the structural integrity
of the protein. The CobAA134L protein supported growth on glycerol or
on ethanolamine as well as did CobAWT (Fig. 5), and its specific activity
under all assay conditions (KBH4 or Fpr/FldA) was as high as that of the
CobAWT protein (TABLE THREE columns B, C; lines 1 versus 12).
Further mutagenesis of CobA is necessary to determine the contribu-
tions (if any) of the hydrophobic patch of CobA to the interactions of
CobA with FldA.

Deletion of the CobA N-terminal Helix Increases the Specific Activity
of the Enzyme but Decreases CobA�FldA Docking—A striking feature of
the CobA crystal structure is an N-terminal helix of 26 amino acids that
remains disordered unless Mg/ATP and the corrinoid substrate are
bound to the active site (12). The N-terminal helix of CobA may have
several functions. Itmay help secure the corrinoid substrate in the active
site, it may exclude water from the active site, thereby helping to stabi-
lize the co(I)rrinoid nucleophile, or it may be important for FldA recog-
nition or a combination of the above. To gain insights into the role of the
N-terminal helix, we deleted it and tested the ability of the resulting
CobA�N2–26 variant to function in vivo and in vitro. Deletion of this helix
did not affect the ability of the mutant CobA protein to support growth
of a metE cobA strain on glycerol (data not shown). However, the
CobA�N2–26 protein failed to support growth on ethanolamine as sole
carbon source (Fig. 5).
Results from in vitro assays showed that the specific activity of the

CobA�N2–26 enzyme was only 3% of the CobAWT enzyme when FldA
was used as the reductant. The same protein has 4-fold higher specific
activity than the wild-type when cob(I)alamin was generated with
KBH4. Eliminating the N-terminal helix resulted in a more efficient
enzyme as long as cob(I)alamin is in excess. When the concentration of
cob(I)alamin in the active site depends on interaction with FldA, the
absence of the N-terminal helix of CobA affects AdoCbl production.

Deletion of the N-terminal helix of CobA may affect electron transfer,
catalysis, or both.

DISCUSSION

Computer Modeling as a Tool to Investigate Protein-Protein
Interactions—At present, there is a great deal of interest in improving
our molecular understanding of how protein complexes form. Fortu-
nately, the accumulation of data in protein databases is rapidly increas-
ing as a result of structural genomics initiatives. Here we report one
example of how this valuable information can be used to generate exper-
imentally testable models of protein docking. Sophisticated, user-
friendly software for the manipulation of protein structure data is avail-
able to researchers interested in studying enzyme complexes. As shown
here, a computer-assistedmodel facilitates the design of peptidemimics
predicted to strongly inhibit the interactions between partner proteins.
Structure models and peptide mimics can be used to investigate the
contribution of specific amino acid residues to the formation of biolog-
ically relevant protein-protein contacts.

Insights into CobA�FldA Interactions—We have identified part of the
regions of the CobA and FldA proteins that allow electron transfer from
the flavin in FldA to the co(II)rrinoid in the active site of CobA. Four
pieces of evidence support the conclusion that FldA residues TWYY-
GEAQCDWDD68 are part of the FldA structure that interacts with
CobA. First, a 30% inhibition of CobA activity when the TWYY-
GEAQCDWDD68 peptide is present in the assay is significant given the
small size of the peptide (13 amino acids). Second, there was a complete
lack of an inhibitory effect by another FldA-derived peptide of similar
size and hydrophobicity. Third, mutagenized peptide TWYYGAAQC-
DWDA68 failed to inhibit adenosylation, demonstrating that residues
Glu-61 and Asp-68 are key components of the FldA surface interacting
with CobA. Fourth, this peptide is part of the surface of FldA that inter-
acts with MetH and Fpr (28).

Residues of CobA Critical for Docking—We suggest that residue
Arg-9 is essential for docking of CobA with FldA (TABLE THREE).
Regardless of the nature of the change at this position, CobA cannot
dock with FldA if Arg-9 is altered. A strong case for docking can also be
made for residue Arg-165. However, there is more tolerance for change
at this position. A CobAR165A variant still supported growth on ethanol-
amine, indicating that FldA-dependent reduction of the substrate was
sufficient to meet the high demand of AdoCbl required to grow on
ethanolamine. Only a drastic change in the charge of the side chain (e.g.
Arg to Glu) prevented docking of CobA with FldA. The role of residues
Arg-9 and Arg-165 appears to be limited to CobA�FldA interaction,
since the catalytic competence of mutant enzymes unable to dock with
FldA was equal to that of the wild-type protein (TABLE THREE, col-
umn B, lines 1, 2–3, 6–7).
It is not surprising that a truncation of the N-terminal helix results in

poor interactions of CobA with FldA. CobA�N2–26 protein is missing
residue Arg-9 as well as other residues that may be involved in docking.
What is surprising, however, is the substantial increase in the specific
activity of the enzyme (4-fold higher than CobAWT enzyme). We spec-
ulate that this increase in specific activity may be due to an increase in
the rate of substrate binding, product release, or both.
Results from recent EPR and MCD studies by Stich et al. (25) have

provided evidence for the existence of a four-coordinate co(II)rrinoid in
the active site of the wild-type CobA enzyme. The effect that FldA
docking to CobA may have on electron transfer or stability of the
co(II)rrinoid substrate is under investigation. Use of the CobA�N2–26

protein might be especially useful in probing the role of residues in the
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N-terminal helix in activation and stabilization of the corrinoid sub-
strate in the CobA active site.

Differences in the Sensitivity of the in Vivo Assays for AdoCbl Reveal
the Coenzyme B12 Requirement of S. enterica—We typically use low Cbl
levels (1 nM) in the culture medium to satisfy the methionine require-
ment of S. enterica. In contrast, optimal growth rates on ethanolamine
as carbon and energy source require a 	2 orders of magnitude higher
concentration of Cbl in the medium (150 nM (34)). It was surprising to
learn that a mutant CobA protein that is one-tenth as active as the
wild-type enzyme can meet the demand for AdoCbl during growth on
ethanolamine. This result explains why it has been difficult to isolate
cobA alleles that do not contain nonsense or missense mutations that
severely destabilize the protein. The low requirement for endogenous
AdoCbl when growing on ethanolamine means that Salmonella strains
carrying cobA alleles encoding defective CobA variants appear indistin-
guishable from cobA� strains on solid media.
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