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Abstract

Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and
geologic nuclear waste disposal. Tc is highly mobile in its most oxidized state ½TcðVIIÞO4

�� and less mobile in the reduced
form [Tc(IV)O2�nH2O]. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reac-
tion with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state; unconsolidated Pliocene-age fluvial
sediment from the upper Ringold (RG) Formation at the Hanford Site and a clay-rich saprolite from the Field Research Cen-
ter (FRC) background site on the Oak Ridge Site. Both sediments contained Fe(III) and Mn(III/IV) as redox active phases,
but FRC also contained mass-dominant Fe–phyllosilicates of different types. Shewanella putrefaciens CN32 reduced Mn(III/
IV) oxides and generated Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. After bioreduction and
heat-killing, biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed
in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary
reduction product was a TcO2-like phase in both sediments. The biogenic redox product Tc(IV) oxidized rapidly and com-
pletely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molec-
ular scale speciation of Tc compared to RG. X-ray microprobe, electron microprobe, X-ray absorption spectroscopy, and
micro X-ray diffraction were applied to the whole sediment and isolated Tc-containing particles. These analyses revealed that
non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50–100 lm-
sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared
to RG were attributed to mass-transfer-limited migration of O2 into intra-aggregate and intraparticle domains where Tc(IV)
existed; and the formation of unique, oxidation-resistant, intragrain Tc(IV)–Fe(III) molecular species.
� 2009 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

99Tc is a long-lived (t1/2 = 2.13 � 105 years) fission prod-
uct generated as a result of nuclear production and repro-
cessing. At the US Department of Energy’s Hanford Site
and other DOE sites across the US (Riley and Zachara,

1992) and at nuclear facilities world-wide, 99Tc contamina-
tion is of particular concern because it can migrate rapidly
with vadose zone water and groundwater as pertechnetate
½TcðVIIÞO4

�� (Evans et al., 2007; Zachara et al., 2007a).
At Hanford, over 500 Ci of TcðVIIÞO4

� released to the va-
dose zone in past site operations are forecast to be mobile in
predominantly oxidizing groundwaters with eventual dis-
charge to the Columbia River (Khaleel et al., 2007), making
it one of the site’s major risk-driving contaminants. The
subsurface inventory and behavior of 99Tc at Hanford,
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and associated water quality and health risk issues, have
been well described in a recent journal issue devoted en-
tirely to the Hanford Site (Gee et al., 2007).

Under anoxic conditions, some microorganisms (Lloyd
and Macaskie, 1996; Lloyd et al., 1997; Lloyd et al., 1999;
Wildung et al., 2000; Marshall et al., 2008) can couple the oxi-
dation of H2 or organic compounds to the reduction of
TcðVIIÞO4

�
ðaqÞ to an oxide precipitate [Tc(IV)O2�nH2O with

solubility�10�8 mol/L] and, subject to factors such as bicar-
bonate concentration and pH, soluble Tc(IV) carbonate com-
plexes (Wildung et al., 2000). Depending on the organism and
incubation conditions, Tc(IV)O2�nH2O nanoparticles are the
primary product, typically formed in association with the cell
envelope and periplasm of gram-negative bacteria (Lloyd
et al., 2000; Wildung et al., 2000; Marshall et al., 2009).

In soils and sediments, the complexity of biogeochemical
properties and reactions makes it difficult to predict
whether direct enzymatic or indirect [i.e., by Fe(II)] reduc-
tion reactions of TcðVIIÞO4

�
ðaqÞ will predominate (Wildung

et al., 2004; Burke et al., 2005). Fe(III) and Mn(III/IV) oxi-
des in particular can impart substantial control on reactive
contaminant behavior in soils and sediments, in that they
can constitute a substantial redox buffering capacity (Heron
et al., 1995). As these environments become progressively
reducing, increasing concentrations of Fe(II) are generated
as a result of microbial metabolism. Depending on the form
of Fe(II), it can serve as a facile reductant of TcO4

�. For
example, nanocrystalline magnetite, as a product of micro-
bially reduced ferrihydrite, was shown to effectively reduce
Tc(VII) to an insoluble form (Lloyd et al., 2000), and sed-
iment-associated Fe(II) was implicated as the principal
reductant of TcO4

� in anoxic US Atlantic Coastal Plain
sediments (Wildung et al., 2004). In previous investigations,
we reported the reduction of TcO4

� by biogenic Fe(II) asso-
ciated with subsurface sediments from US DOE sites (Han-
ford and Oak Ridge) and other locations (Fredrickson
et al., 2004). Rates of TcO4

� reduction generally increased
with increasing concentrations of 0.5 N HCl-extractable
Fe(II), but marked differences in rates between sediments
with different mineralogy implied that sorbed Fe(II) associ-
ated with residual Fe(III) oxides was more reactive than
that associated with layer silicates. This hypothesis was ver-
ified by Peretyazhko et al. (2008a), who found that hetero-
geneous reduction rates of Tc(VII) by Fe(II) adsorbed on
hematite and goethite were orders of magnitude more rapid
than for structural Fe(II) in phyllosilicates.

It is clear from these previous reports that reduction of
TcO4

� to poorly soluble Tc(IV)O2�nH2O, either by direct
or indirect microbial-mediated reduction reactions, has the
potential to impede the migration of 99Tc in the subsurface.
In one of the first demonstrations of in situ reduction of
Tc(VII) Istok et al. (2004), stimulated microbial activity,
via the addition of ethanol, glucose or acetate, in contami-
nated subsurface sediments at DOE’s Oak Ridge site and ob-
served decreasing concentrations of Tc(VII) in groundwater,
indicative of reductive immobilization. What remains uncer-
tain is the fate of 99Tc in microbially reduced sediments if and
when aerobic waters infiltrate into reduced sediments.

The purpose of this research was to investigate the po-
tential for O2-promoted oxidation of biogenic Tc(I-

V)O2�nH2O nanoparticles and Tc(IV) resulting from
abiotic reactions with sediment-associated Fe(II). The rates
of oxidation of the various biogenic and abiogenic forms of
Tc(IV) were investigated, as was the form and distribution
of residual, sorbed Tc remaining after an extended period
of air oxidation. This information contributes to the under-
standing of the fate of 99Tc(VII) in subsurface sediments
subject to fluctuating redox conditions or where remedial
actions taken to stimulate reduction are followed by a per-
iod of re-equilibration with aerobic groundwater.

2. EXPERIMENTAL PROCEDURES

2.1. Soils and sediments

Unconsolidated Pliocene-age fluvial sediment from the
upper Ringold (RG) Formation, referred to as Ringold
6–6/6–7, was obtained near the Hanford Site from White
Bluffs outcrops approximately 60 m above the Columbia
River. The Fe(III) and Mn(III/IV) oxide mineralogy of this
sand-textured, mica-containing sediment was reported by
Zachara et al. (1998) and Fredrickson et al. (2004). A
clay-rich saprolite was obtained from the Field Research
Center (FRC) background site located in the West Bear
Creek Valley on the Oak Ridge Site in eastern Tennessee.
This material is referred to as FRC saprolite. Nearby
TcO4

� and UO2
2þ plumes exist in these same sediment

types (Istok et al., 2004; RPP, 2005; Zachara et al.,
2007c). The aggregated, weakly cemented subsurface mate-
rials were air-dried, ground, and passed through a 2 mm
sieve prior to use. The mineralogic and chemical character-
ization of the FRC has been described elsewhere (Fredrick-
son et al., 2004; Kukkadapu et al., 2006).

2.2. Bacteria and media

Shewanella putrefaciens strain CN32 was provided cour-
tesy of Dr. David Boone (Subsurface Microbial Culture
Collection, Portland State University, Portland, OR).
Strain CN32 was isolated from a subsurface core sample
(250 m beneath the surface) from the Morrison Formation
in northwestern New Mexico (Fredrickson et al., 1998) and
was used previously for investigations of the biogenic
Fe(II)-facilitated reduction of Tc(VII) (Fredrickson et al.
2004). For these experiments, CN32 was routinely cultured
aerobically in tryptic soy broth (TSB), 30 g L�1 (Difco Lab-
oratories, Detroit, MI), and stock cultures were maintained
by freezing in 40% glycerol at �80 �C. For batch experi-
ments, CN32 cells were harvested from TSB cultures at
mid to late log phase by centrifugation, washed twice with
30 mM pH 7 PIPES buffer and once with 30 mM pH 7
bicarbonate buffer to remove residual medium. The cells
were then suspended in bicarbonate buffer and purged with
O2-free N2:CO2 (80:20).

2.3. Technetium reduction–oxidation experiments

Bioreduced sediments (in triplicate) were generated by
incubating 0.5 g (RG, 50 g/L) or 1 g (FRC, 100 g/L) sedi-
ment in 10 ml of 30 mM pH 7 bicarbonate or 30 mM pH
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7 PIPES buffer with 7–9 � 107 cells/ml S. putrefaciens

CN32 and 10 mM sodium lactate as electron donor, with
a N2:CO2 (80:20, bicarbonate) or N2 (100%, PIPES) head-
space, both O2-scrubbed, at 30 �C with shaking at 25 rpm.

At select time points, bioreduced sediments were pas-
teurized by heating at 80 �C for 1 h and then frozen at
�20 �C until used. Viable cells of CN32 could not be de-
tected by growth on TSB agar plates following pasteuriza-
tion. Abiotic Tc reduction experiments were initiated by
adding 0.5 ml of a stock of anaerobic ammonium pertech-
netate, NH4

99TcO4, at a concentration needed to give the
final desired concentration. The stock solutions were added
to the 10-ml sediment slurries using a 22-ga. needle and 1-cc
syringe. After abiotic reduction was complete, oxidation in
air was initiated by passive venting of the glass pressure
tube by inserting an 18-ga. needle through the butyl rubber
stopper fitted with a 0.2 lm syringe filter (Gelman) to pre-
vent the entry of airborne microorganisms, with the filter
outlet covered with Parafilm� to retard evaporation. Oxy-
gen entry into the anoxic tube was, consequently, diffusion
controlled. Samples were incubated on their sides on a
gyratory shaker at 25 rpm. The experiments measuring oxi-
dation of biogenic TcO2�nH2O, prepared as previously de-
scribed (Fredrickson et al., 2004), were conducted in air-
saturated 30 mM bicarbonate in sealed pressure tubes with
an air headspace or in anoxic bicarbonate buffer with unre-
duced sediment (1 g) in sealed tubes and a N2:CO2 (80:20)
headspace.

The concentrations of Fe and Mn in aqueous filtrates
(0.2 lm) and 0.5 N HCl extracts (1 h, agitated at 25 rpm)
were measured by ICP-AES and Fe(II) was measured by
the ferrozine assay. Soluble Tc was measured filtering subs-
amples through a 0.2 lm syringe filter (Gelman) and assay-
ing by liquid scintillation counting. The minimum
quantifiable [Tc]aq concentration in the absence of precon-
centration was 0.04 lM, corresponding to a background
of 20 dpm. We note that the solubility of TcO2�nH2O may
increase by a maximum of 0.4 log units from 10�8.15 to
10�7.75 M in the bicarbonate-buffered sediment suspension
through formation of Tc(IV)–carbonate complexes (Liu
et al., 2007). Our liquid scintillation counting procedure
for Tc aqueous phase quantification was not of sufficient
precision or accuracy at these concentrations to distinguish
any difference in Tc(IV) solubility in the two buffers used.

2.4. Mössbauer spectroscopy

Samples were prepared for analysis by filtration
(0.22 lm), washing with acetone, and drying in an anaero-
bic glovebox with <0.5 ppm O2. Random orientation
absorbers were prepared by mixing 100–200 mg of dried
sample with petroleum jelly in a 0.5-in. thick and 0.5-in.
ID Cu holder sealed at one end with clear scotch tape.
The sample space was filled with petroleum jelly and the
ends sealed with the tape. The bioreduced samples were
handled under an anaerobic atmosphere. Spectra were col-
lected at room temperature (RT) using �50 mCi
(1.85 GBq) (initial strength) 57Co/Rh single-line thin
sources. The velocity transducer (MVT-1000; WissEL)
was operated in the constant-acceleration mode. Data were

acquired on 1024 channels and then folded to 512 channels
to give a flat background and a zero-velocity position cor-
responding to the center shift (CSd) of a metallic-Fe foil at
room temperature. Calibration spectra were obtained with
a 20-lm thick a-Fe foil (Amersham, England) placed in ex-
actly the same position as the samples to minimize any er-
ror due to changes in geometry. The transmitted radiation
was recorded with an Ar–Kr proportional counter. The un-
folded spectra obtained were folded and evaluated with the
Recoil program (University of Ottawa, Canada) using a
Voigt-based hyperfine parameter distribution method.

2.5. XANES, EXAFS, X-ray microprobe (XRM), and micro

X-ray diffraction analyses

Synchrotron based measurements were performed at
Sector 20 of the Advanced Photon Source (APS) at Ar-
gonne National Laboratory including: (i) bulk Tc-K edge
XANES and EXAFS on bioreduced/Tc(VII)-reacted FRC
and Ringold sediments before oxidation, and the Tc(VII)-
reacted FRC sediment after oxidation on bending magnet
beamline 20-BM, (ii) micro-Tc XANES and XRM elemen-
tal mapping of Tc, Fe, and Rb (based on Ka-fluorescence)
of 60 lm thin sections of the oxidized FRC sediment
(mounted on high purity fused silica slides) on insertion de-
vice beamline 20-ID, and (iii) XRM elemental mapping, mi-
cro-Tc XANES, and micro-Tc EXAFS of 27, mm-sized
particles isolated from the oxidized, Tc(VII)-reacted FRC
sediment on beamline 20-ID [including those suspected
and not suspected to contain oxidation-resistant Tc(IV)].
These measurements used anaerobic sample mounting pro-
cedures; incident X-ray fluxes, beam-line procedures, and
calibration methods; and a variety of Tc(IV) standards de-
scribed in Fredrickson et al. (2004), Zachara et al. (2007b),
Peretyazhko et al. (2008a,b).

Four Tc-containing particles of approximate 50–100 lm
size that were isolated from oxidized FRC sediment and
that yielded good micro-Tc EXAFS spectra as described
above were individually mounted on a flat metallic plan-
chette and analyzed in reflection mode on a Rigaku (The
Woodlands, TX) D/MAX-RAPID II X-ray microdiffrac-
tion system. Copper Ka X-rays were generated using a
1200 W rotating anode source and collimated to 100 lm
on the sample surface, with diffraction pattern collection
onto a 2-D detector. Data reduction and phase identifica-
tion was by Jade software (Molecular Dynamics, Liver-
more, CA) against the ICDD PDF-2 X-ray diffraction
database.

3. RESULTS

3.1. Oxidation of biogenic Tc(IV)O2�nH2O

Previously, we reported the oxidation of nanoparticu-
late, biogenic Tc(IV)O2�nH2O in anoxic but unreduced
FRC saprolite, with 70% of an initial 20 lM suspension
being oxidized to TcO4

� over the course of a 41 d equilibra-
tion period (Fredrickson et al., 2004). This oxidation was
apparently promoted by solid-phase electron transfer be-
tween Tc(IV)O2�nH2O and Mn(III/IV) oxide particles in
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the sediment. In the current study, we extended these exper-
iments to include equilibrations of biogenic Tc(IV)O2�nH2O
with: (i) anoxic, unreduced Ringold sediment, and (ii) air-
saturated suspensions. The oxidation of Tc(IV)O2�nH2O
in air-saturated buffer was relatively rapid (Fredrickson
et al., 2004), with >75% of the initial 20 lM suspension
being oxidized to TcO4

�
ðaqÞ within 6 d; the remainder was

oxidized more slowly over the remaining 33 d of the exper-
iment (Fig. 1a), suggesting the presence of a less reactive
fraction. In anoxic, unreduced Ringold suspension, the oxi-
dation was slower than in air-saturated water, but more ra-
pid than previously reported for anoxic, unreduced FRC
saprolite. This difference was likely due to the relative abun-
dance and exposure of Mn oxides in these two samples,
with 171 and 33 lmol/g sediment of hydroxylamine–HCl
extractable Mn (readily reducible hydrous Mn oxide; Chao,
1972; Gambrell, 1996) in the Ringold and FRC materials,
respectively.

In a separate experiment, 1.0 mM of biogenic Tc(IV)
O2�nH2O was added to an unreduced anoxic FRC saprolite
suspension to investigate its potential for oxidizing Tc(IV).
Assuming that the hydroxylamine–HCl extractable Mn in
the FRC sediment (33.2 lmol/g; Fredrickson et al., 2004)

was all Mn(IV), there would have been approximately a
twofold stoichiometric excess of Mn(IV) for oxidizing
Tc(IV) to Tc(VII). Over an extended 312 d equilibration
period, slightly less than 50% of the biogenic Tc(I-
V)O2�nH2O was oxidized to soluble Tc(VII), indicating that
factors other than total electron equivalents from Mn(III/
IV) were controlling Tc(IV) oxidation (Fig. 1b). However,
these sediments have been previously shown to be highly
aggregated (Fredrickson et al., 2004; Kukkadapu et al.,
2006), and it is possible that hydroxylamine–HCl extract-
able Mn(III/IV) oxides existed in intra-aggregate domains
that prevented contact with non-diffusible Tc(IV)O2�nH2O.

3.2. TcO4
� reduction capacity of bioreduced FRC sediment

Given the previous report of near-instantaneous reduc-
tion of 20 lM TcO4

� in 36 d bioreduced FRC sediment
(Fredrickson et al., 2004), the capacity for Tc(VII) reduc-
tion was further investigated in bioreduced FRC (60 d)
and Ringold (120 d) materials via consecutive additions,
within a 17 d period, of increasing concentrations (50,
500, and 1250 lM) of ammonium pertechnetate (Fig. 2).
The initial data point for each concentration in series repre-
sents the Tc(VII)aq concentration remaining after 2–4 min
of contact with the pasteurized, bioreduced sediment. The
reduction of the initial 50 lM and 500 lM TcO4

� in the
Ringold sediment was near instantaneous (Fig. 2, inset)
whereas reduction of the subsequent high concentration
spike (1250 lM) occurred rapidly over an approximate 11
d period. The Tc(VII) reduction rate was slower in the
FRC for all spike concentrations, but all Tc(VII) was even-
tually reduced. In the Ringold sediment following the addi-
tion of a total of 1.8 mM TcO4

�, the concentration of
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Fig. 1. (a) Oxidative solubilization of biogenic TcO2�H2O(s)

(20 lM) in air or anaerobically (N2:CO2, 80:20) with or without
RG sediment in 30 mM NaHCO3, pH 7 buffer, and (b) oxidative
solubilization of biogenic TcO2�H2O(s) (1.0 mM) in anaerobic (O2-
scrubbed N2) FRC sediment suspension in 30 mM, pH 7, PIPES.
Solid and dashed lines represent pseudo first-order kinetic model
fitting of the data with results in Table 1.
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soluble Tc was <40 lM after 12 d whereas in the FRC sap-
rolite an equilibration period of >98 d was required to bring
the TcO4

�
ðaqÞ concentration to below 40 lM. The pH over

the course of the reduction phase of the experiment ranged
from 7.4 to 7.9 for both sediments and the 0.5 N HCl-
extractable Fe(II) concentrations were 12.0 ± 0.9 mM (or
0.12 mmol/g) and 5.4 ± 0.8 mM (or 0.11 mmol/g) for the
FRC and Ringold materials, respectively. For the Ringold
sediment at least 95% of the biogenic Fe(II) pool had ther-
modynamic power to reduce Tc(VII), and was fast to react.
Consequently, both sediments have an extensive capacity
for Fe(II)-facilitated TcO4

� reduction given that typical
Tc(VII) environmental concentrations are generally less
than 10�5 mol/L, and often much less. These results are
also consistent with previous findings (Fredrickson et al.,
2004) in that the solid-phase 0.5 N HCl extractable Fe(II)
in the FRC saprolite was much less reactive than Ringold
Fe(II).

3.3. Oxidation of Tc(IV) reduced by biogenic Fe(II)

TcO4
�, added as 20 lM ammonium pertechnetate, was

reacted with pasteurized, bioreduced FRC and Ringold
materials in 30 mM NaHCO3 (pH � 7, and N2:CO2 of
80:20), to allow for quantitative reduction to Tc(IV). After
reduction was confirmed by a decrease in the concentration
of aqueous Tc to below detection (�0.04 lM), pressure
tubes were vented to the atmosphere and the oxidative sol-
ubilization of Tc measured with time. In the pasteurized
Ringold sediment, 65% of the Tc(IV) was released to the
aqueous phase within 14 d, followed by a slower oxidation
period, where all of the initial 20 lM Tc was solubilized
within 112 d (Fig. 3a). In contrast, the rate of oxidative sol-
ubilization of Tc(IV) from bioreduced FRC saprolite was
considerably slower, with <35% of the initial Tc(IV) re-
leased after 97 d of air exposure.

Significant differences were therefore noted in the oxida-
tion of abiotically, heterogeneously reduced/precipitated
Tc(IV) in the two sediments. We reasoned that this effect
may have resulted, in part, from differences in the concen-
tration of biogenic Fe(II) in the two sediments that influ-
enced their redox buffering capacities. The rate of
oxidation of biogenic Fe(II) was investigated in a separate
experiment in the absence of Tc. In this experiment, 0.5 N
HCl-extractable Fe(II) declined from 10.7 mM to 3.2 mM
after 38 d in the FRC saprolite, and then to 1.3 mM after
270 d. Biogenic Fe(II) declined from 4.7 mM in the Ringold
sediment to less than 240 lM in 34 d (Fig. 3b).

In a separate experiment, �1 mM TcO4
� was added to

bioreduced FRC and Ringold materials, equilibrated until
the concentration of soluble Tc was below 1 lM
(0.28 ± 0.19 and 0.26 ± 0.06 lM for FRC and RG, respec-
tively), and then exposed to air to probe the rate and extent
of oxidative solubilization of Tc(IV). Consistent with the
results from experiments where increasing concentrations
of TcO4

� were consecutively added to sediments, the rate
of Tc reduction was much more rapid in the 120 d biore-
duced Ringold sediment than the 60 d bioreduced FRC sed-
iment, with the former being quantitatively reduced in
2 days and the later requiring approximately 40 d

(Fig. 4a). During the oxidation phase, Tc(IV) associated
with the Ringold sediment was released more rapidly and
extensively than in the FRC saprolite (Fig. 4b) with essen-
tially all of the Tc originally added being released within 40
d. In contrast, approximately 25% of the Tc remained asso-
ciated with the FRC saprolite even after equilibration for
227 d.

Room temperature Mössbauer spectroscopy measure-
ments on the FRC sediment provided additional insights
on Fe valence dynamics during bioreduction and oxidation
by both Tc(VII) and O2 (Fig. 5). The unreduced FRC sed-
iment contained two Mössbauer doublets (Fig. 5a) resulting
from Fe(III) (90% Fe-total; in phyllosilicates, small-particle
or Al-goethite, and minor peaks 3 and 4 of hematite sextet)
and Fe(II) [10% Fe-total; residing in both large and small
sized phyllosilicates, (Kukkadapu et al., 2006)]. Bioreduc-
tion increased the Fe(II) doublet (to 28%) relative to Fe(III)
(72%), Fig. 5b, through both Fe(III) oxide and phyllosili-
cate reduction (Kukkadapu et al., 2006). Reaction with
TcðVIIÞO4

� proportionally decreased Fe(II) (to 20%,
Fig. 5c), while air contact returned the Fe valence distribu-
tion back to the original state (Fig. 5d) (Komlos et al.,
2007). It was not resolved whether the residual Fe(II) noted
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Fig. 3. (a) Oxidative solubilization of biogenic Fe(II)-reduced
TcO4

� (20 lM) in 30 mM NaHCO3 pH 7 buffer (N2:CO2, 80:20
headspace) in FRC, bioreduced for 75 d, and RG, bioreduced for
127 d, sediment continuously exposed to air; solid and dashed lines
represent pseudo first-order kinetic model fitting of the data with
results in Table 1, and (b) oxidation of 0.5 N HCl-extractable
Fe(II) in 30 mM, pH 7, PIPES buffer in FRC, bioreduced for 60 d,
and RG, bioreduced for 120 d, sediment continuously exposed to
air.
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in Fig. 3b (e.g., 1.3 mM) was the same mineral component
as that observed in Fig. 5d.

3.4. Kinetic analysis

The reduction and oxidation experiments in Figs. 1a and
b, 3a, 4a and b were described with a pseudo first-order ki-
netic model (Zachara et al., 2007b; Peretyazhko et al.,
2008a) that fit the data well. The intent of this modeling
was to quantitatively compare the rates of Tc oxidation
(primarily) and reduction at different Tc concentrations
and under different conditions. Four primary conclusions
were evident through comparisons of the resulting first-or-
der rate constants (Table 1). Tc(VII) reduction rates in both
sediments were over an order of magnitude more rapid than
Tc(IV) oxidation. Second, Tc reduction and oxidation rates
in the FRC sediment were approximately 10-fold slower
than in the Ringold sediment. Moreover, two of the Tc(IV)
oxidation experiments with the FRC required a two-param-
eter fit where only a fraction of the Tc(IV) was considered
oxidizable. Third, Tc(IV) oxidation rates in both sediments
increased by a factor of 3 with a 50-fold increase in Tc(IV)

concentration. Fourth, the Tc(IV) oxidation rate in the
Ringold sediment at the highest concentration (1000 lM)
was equivalent to that of biogenic Tc(IV)�nH2O in air-satu-
rated buffer suspension.

3.5. Molecular speciation and mineral association of

recalcitrant Tc(IV)

Bulk K-edge Tc-XANES analyses of the Tc(VII)-spiked
FRC (after 50 d) and the RG (after 3 d) revealed that all
sorbed Tc was in the tetravalent state [Tc(IV), see Elec-
tronic Annex Fig. EA-1-1]. The transforms of bulk Tc-EX-
AFS of the two sediments were virtually identical to one
another (Fig. 6), and to that of heterogeneously precipi-
tated Tc on a dithionite–citrate–bicarbonate (DCB)-re-
duced phyllosilicate isolate from the FRC sediment
(Peretyazhko et al., 2008a) that contained smectite, vermic-
ulite, illite, and micas (Kukkadapu et al., 2006) [see Elec-
tronic Annex Fig. EA-1-2 for k2 weighted v(k) data]. The
spectra bore similarities to that of abiotic standard Tc(IV)
O2�nH2O (Fig. 6), but were different from heterogeneously
reduced/precipitated Tc on Fe(III) oxides (Peretyazhko
et al., 2008a). The Tc-EXAFS spectra for the two sediments
were modeled with the Tc-chain model approach described
by Peretyazhko et al. (2008a) and originally by Lukens et
al. (2002). The fitting details are provided in Electronic An-
nex Table EA-1-1 and an example of such a fit in Fig. EA-1-
3. This approach interprets the Tc-EXAFS spectra of both
sediments to result from sorbed polymeric chains of TcO2

octahedra with average chain length above that of a dimer,
but below that of homogeneous, abiotic Tc(IV)O2�nH2O
precipitate. In these samples the average chain length was
approximately 3 (trimers). The molecular speciation of het-
erogeneous Tc(IV) in both sediments was the same within
error. The unshifted FT-peak at 1.5 Å results from first
shell octahedral O, the peak at 2.3 Å from second shell
Tc–Tc interactions and Tc–metal interactions with the sub-
strate, and the peaks at 2.7–3.2 Å from multiple scattering
within the Tc–O octahedra and axial O in the neighboring
octahedra. The intensity of the second peak is determined
by interference between the Tc–Tc signals and the Tc–metal
bond in the substrate. These tend to cancel each other when
the amount of Tc–Tc bonding (small average chain length)
is reduced.

Bulk XANES analyses of water-extracted FRC sedi-
ment from Fig. 4b after 270 d of air oxidation revealed
that all residual, sorbed Tc in the sediment existed as
Tc(IV) (data not shown). Thin sections of the oxidized
sediment were analyzed by X-ray microprobe (XRM).
Tc was clearly visible in thin section as isolated ‘‘hot-
spots” of 25–100 lm size (see Electronic Annex Figs.
EA-1-4 and EA-1-5), invariably in association with dis-
crete mineral grains or aggregates that contained Fe
and Rb. Rubidium (Rb+) is a common trace substituent
for K+ in micas that is accessible to XRM through its
Ka fluorescence at 13,395 eV. The comparable Ka fluo-
rescence for K+ at 3314 eV is blocked by the kapton win-
dows used for containment of the radioactive sample.
Consequently, Rb was used as a surrogate for K+, with
the reasonable assumption that Rb distribution and
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Fig. 4. (a) Reduction of �1 mM TcO4
� in pasteurized FRC and

RG sediment in 30 mM, pH 7 PIPES buffer, and (b) Oxidative
solubilization of biogenic Fe(II)-reduced TcO4

� (�1 mM) in FRC,
bioreduced for 60 d, and RG, bioreduced for 120d, sediment
continuously exposed to air. Solid and dashed lines represent
pseudo first-order kinetic model fitting of the data with results in
Table 1.
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spatial location mimicked that of K. Micro-XANES anal-
yses of these ‘‘hot-spots” displayed that all were com-
prised of Tc(IV) (Fig. 7). Further characterization of
the Tc-containing particles in thin section proved chal-
lenging, because typically only a small portion of each
particle was exposed at the section surface. The Tc-con-
taining phase was hypothesized to be Fe-containing mica,
because of its size, Rb signal indicating high K content,
and previous identification of mica in the FRC sediment
(Kukkadapu et al., 2006).

Individual mineral grains (18) with size and morphology
consistent with that of mica were hand-picked from the Tc-

containing, air-oxidized sediment using a binocular, optical
microscope. These were mounted, grouped to the left side
of a thin plastic disc, within kapton-faced wells, which were
numbered and labeled as ‘‘probable.” Another set of min-
eral grains (9) of similar size were randomly picked from
the sediment, mounted comparably and grouped to the
right side of the disc, and labeled as ‘‘other”. Thirteen of
the ‘‘probable” wells were surveyed for Tc (along with se-
lected, co-associated elements), using XMP. Particles were
located within 11 of the 13 wells, of which 10 were positive
for Tc (and Fe). For the ‘‘other” particles, 3 of 5 surveyed
wells also showed the presence of Tc (and Fe).

While all Tc-containing particles contained Fe and Rb in
association, three particle types were qualitatively differentiated
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Fig. 5. 57Fe Mössbauer spectroscopy of FRC sediment: (a) unreduced, (b) bioreduced in 30 mM pH 7 PIPES buffer for 60 d, (c) bioreduced
for 60 d and then exposed to 1 mM TcO4

�, and (d) bioreduced, exposed to 1 mM TcO4
�, and subsequently exposed to air for 270 d.

Table 1
Pseudo first-order rate constants for the Tc reduction/oxidation
reactions.

Initial First-order rate constant (d�1)

Biogenic Tc(IV) oxidation (Fig. 1)

Air Tc(IV) = 20 lM 3.42 � 10�1

RG Tc(IV) = 20 lM 5.87 � 10�2

FRC Tc(IV) = 1000 lMa 1.09 � 10�2

Tc(IV) oxidation in bioreduced sediment (Fig. 3a)

RG Tc(IV) = 20 lM 6.45 � 10�2

FRC Tc(IV) = 20 lM 4.51 � 10�3

Tc(VII) reduction by bioreduced sediment (Fig. 4a)

RG Tc(VII) = 1000 lM 3.50
FRC Tc(VII) = 1000 lM 3.15 � 10�1

Tc(IV) oxidation in bioreduced sediment (Fig. 4b)

RG Tc(IV) = 1000 lM 2.09 � 10�1

FRC Tc(IV) = 1000 lMb 1.45 � 10�2

a 477 lM was oxidizable.
b 819 lM was oxidizable.
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Fig. 6. Fourier transform (FT) EXAFS spectra for sorbed Tc on
bioreduced FRC and Ringold sediments as compared to abiotic
standard TcO2�nH2O, and heterogeneously reduced Tc on a DCB-
reduced, phyllosilicate isolate from the FRC 1 sediment [from
Peretyazhko et al. (2008b)].
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(Fig. 8). Discrete particles with intense co-incident signals
of all three elements were represented by particle #7. Dis-
crete particles with spatially variable Rb, and coincident
Fe and Tc were represented by particle #15. Smaller/thin-
ner particle aggregates with lower Tc concentration were
represented by particle #13. Clearly, these were all variants
on a common geochemical theme. The relative concentra-
tion intensities for Tc and Fe within each pixel of each par-
ticle were quantified from the XRM images. These two
variables showed good correlation for many particles, with
oxidation-resistant Tc concentration increasing with associ-
ated Fe concentration (Fig. 9). The correlation structure
implied the presence of three types of Fe-containing zones
within the measured particles, including those with low,
intermediate, and high potential to stabilize Tc(IV). All of
the points with Tc intensity > 0.4 in Fig. 9 were from parti-

Fig. 8. X-ray microprobe (XRM) chemical distribution maps for three representative types of Tc-containing particles isolated from oxidized
FRC sediment. Fluorescence intensity maps are shown for the noted particles for Tc, Fe, and Rb, with red denoting the highest signal
(proportional to elemental concentration). Rb is a chemical surrogate for K. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this paper.)
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60 lm thin section of oxidized, water-extracted FRC sediment. The
labels refer to the locations of the particles (see the Electronic
Annex for the corresponding images).
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cle #7, where many pixels within this grain displayed uni-
form correlation between Fe and Tc regardless of their spa-
tial location.

Electron microprobe backscattered electron imaging of
particle morphology (Fig. 10a) and chemical analysis
(Fig. 10b) of example particle #7 were consistent with the
Tc(IV)-bearing particles being Fe-containing micas in vari-
ous stages of weathering. Iron containing micas of compa-
rable dimension and composition were previously observed
in porous weathered clasts of the FRC sediment [Fig. 1b in
Kukkadapu et al. (2006)]. Tc spatial distribution did not
show obvious correlation with morphologic features of
the particle, but there was some evidence that oxidation-
resistant Tc was concentrated (dark-red1) near basal plane
edge steps or corrugated edge features (upper right,
Fig. 10c). Each of these locations is an entry point to mica
interlaminar space where diffusionally restricted domains
occur. Hot spots at the lower left show no apparent mor-
phologic relationship.

Micro-EXAFS of good quality was collected on five of
the particles (Fig. 11, see Electronic Annex Fig. EA-1-6
for the v(k) data). The FT-spectra were similar for five of
the particles and dissimilar for the sixth (particle #13).
The common spectra observed for the four samples was dif-
ferent from that of the initial redox product (Fig. 6), but
similar to that for heterogeneously reduced Tc on Fe(III)
oxide surfaces with sorbed Fe(II) (Zachara et al., 2007b;
Peretyazhko et al., 2008a). The small peak at 2.3 Å

0
is char-

acteristic of a predominance of Fe(III) in the second coor-
dination shell of Tc(IV) implying that the average Tc–Tc
chain length was small (less than 2). All of these spectra
[heterogeneous Tc on Fe(III) oxides and the five common
sediment particles resistant to oxidation] were well de-
scribed with a model containing adsorbed octahedral
monomers and dimers of TcO2 that were complexed in
edge-sharing fashion to Fe(III)–O octahedra. The dissimilar

spectra for particle #13 implied significant disorder in the
second coordination sphere and beyond.

Four of the five particles in Fig. 11 were successfully
transferred to a sample mount for single particle, micro-
XRD analyses. Three of these yielded interpretable diffrac-
tion patterns (Fig. 12). Two of the particles (#7 and #11)
exhibited reflections consistent with the 1 M mica polytype
of celadonite. Celadonite is a dioctahedral Fe(III)–mica of
ideal composition KMgFe3+Si4O10(OH)2 with Fe(III) occu-
pying octahedral sites (Odom, 1987). It is an end-member in
the muscovite-celadonite series of true K micas that display
considerable solid-solution behavior involving Mg2+, Al3+,
and Fe(III)/Fe(II) (Li et al., 1997; Tischendorf et al., 2007).
The diffraction pattern for the third particle (#27) was less
conclusive, but it also appeared to contain some celadonite
as well as quartz and possibly muscovite. Quartz was a
dominant mineral phase associated with Fe-micas in weath-
ered FRC clasts (Kukkadapu et al., 2006). Residual crystal-
line graphitic carbon from EMP analysis was also evident
in the particle XRD patterns.

All three of these particles exhibited common EXAFS
spectra for the apparently oxidation-resistant Tc(IV)
(Fig. 11), implying that celadonite might be the stabilizing
mineral phase. Celadonites also contain significant Rb
(Booij et al., 1995; Innocent et al., 1997), an element that
was consistently found in association with oxidation-resis-
tant Tc(IV) (Fig. 8). The presumptive identification of cela-
donite in particle #7 by XRD was fully consistent with: (i)
the EMP analyses (Fig. 10b), as Al and other ion substitu-
tions are common and extensive in celadonites as they are
in other micas (Weaver and Pollard, 1975; Li et al., 1997;
Tischendorf et al., 2007), and (ii) 57Fe Mössbauer analyses
of the FRC sediment indicating presence of Fe(III)/Fe(II)-
containing phyllosilicates (Kukkadapu et al., 2006).

4. DISCUSSION

4.1. TcO4
� reduction in FRC vs. Ringold sediment

The Ringold and FRC materials both exhibited substan-
tial capacities for biogenic Fe(II)-facilitated TcO4

� reduc-
tion but varied considerably with regard to the rate at
which the consecutive spikes of TcO4

� were reduced
(Fig. 2). This result was in direct contrast to the relative
concentrations of 0.5 N HCl-extractable Fe(II) in the two
sediments, 12 and 5.4 mM for the FRC and Ringold mate-
rials, respectively. The results were consistent, however,
with previous observations that 20 lM TcO4

� was reduced
more rapidly in the Ringold relative to the FRC saprolite
even when the Ringold sediment contained significantly
lower concentrations of HCl-extractable Fe(II) (Fredrick-
son et al., 2004). Our initial interpretation of this result
was that the FRC saprolite has an abundance of Fe-con-
taining layer silicates including mica, illite, vermiculite,
and smectite; and that the Fe(II) associated with these
phases was kinetically slower to react with TcO4

� than
Fe(II) sorbed to Fe(III) oxides coating quartz grains in
Ringold sediment. The slow redox reactivity of the FRC
phyllosilicate fraction, relative to goethite and hematite with
adsorbed Fe(II), has been recently demonstrated

1 For interpretation of the references to color in Fig. 10, the
reader is referred to the web version of this paper.

Fig. 9. XRM concentration intensity of Fe and Tc for all isolated
Tc-containing particles from oxidized, water-washed FRC sedi-
ment. Concentration intensities calculated from single pixels in
each particle containing high-Tc. Particle #7 had particularly high
Fe and Tc concentrations that are noted.
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(Peretyazhko et al., 2008a). However, the molecular specia-
tion of heterogeneous Tc(IV) in both sediments was identi-
cal, and more similar to that observed for heterogeneous Tc
on phyllosilicate and Al-oxide surfaces, rather than Fe(III)
oxides (Peretyazhko et al., 2008a,b). It was not resolved
whether this common speciation was due to the same reduc-
tion mechanism, or to the use of significantly higher (e.g.,
10�) Tc(VII) concentrations in comparison to the previous
studies. In addition, the FRC saprolite is comprised of sand
and silt-sized aggregates consisting of clay and silt-sized
particles that were variably cemented. Based on these char-
acteristics we also postulated that the slower rates of TcO4

�

reduction may have been due to intra-aggregate diffusion of
TcO4

� into regions that were sufficiently high in Fe(II) to
facilitate electron transfer from Fe(II) and subsequent
reduction of Tc(VII) to Tc(IV).

Backscattered electron imaging and electron microprobe
analyses of the <2.0-mm fraction of the FRC saprolite re-
vealed two distinct clast types: one containing relatively lar-
ger crystallites with significant ‘‘sponge-like” internal pore
space and 50–100 lm Fe-containing micas; and a second
type that was more compact with limited internal porosity,
very small crystallites, and a significant Fe mass (average
6.12 wt%; Kukkadapu et al., 2006). Anoxic incubation of
the FRC sediment with electron donor and CN32 reduced
approximately 10–15% of Fe(III)TOT, with reduction being
equally distributed between the phyllosilicate and goethite
fractions. Fe(II) resulting from bioreduction remained in a
layer silicate environment that exhibited enhanced solubility
in weak acid, and as a discrete, unidentified biotransforma-
tion product of goethite. These results indicated that S.

putrefaciens CN32, the same organism used in the current
experiments, was able to reduce intra-aggregate Fe(III). In
the experiments presented herein, conducted under essen-
tially identical conditions as the previous study (Kukkadapu
et al., 2006), biogenic Fe(II) would have been present in both
types of clasts. The intrinsic reactivity of these two classes of
biogenic Fe(II) with regard to the heterogeneous reduction
of Tc(VII) is unknown.

Although we believe that mineralogically-controlled dif-
ferences existed in the intrinsic reactivity of biogenic Fe(II)
in the two sediments, we also suggest that the slow (�100 d)

Fig. 10. Characterization of Tc-containing particle #7 isolated from oxidized FRC sediment: (a) backscattered electron (BSE) micrograph,
(b) electron microprobe EDS analysis, and (c) BSE image with XRM, Tc-concentration overlay.
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Fig. 11. Technetium micro-EXAFS analysis (FT spectra) of Tc-
containing particles #7, 11, 13, 15, and 27 isolated from oxidized,
water-washed oxidized FRC sediment.
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rate of reduction observed upon the third spike (1.25 mM) of
TcO4

� into the FRC saprolite, relative to the Ringold sedi-
ment (�12 d), resulted from slow mass transfer of TcO4

� into
compact aggregates. As the initial and more physically acces-
sible Fe(II) is oxidized by TcO4

�, the remaining reactive
Fe(II) is likely to be associated with aggregate interiors. Con-
sequently, the distance for diffusion, and hence the extended
time require for Tc(VII) reduction, becomes increasingly
longer as the readily accessible Fe(II) is depleted.

4.2. Biogenic and abiogenic Tc(IV) susceptibility to oxidative

solubilization

In the absence of sediment, biogenic TcO2�nH2O(s) is rap-
idly oxidized in air to TcO4

�, as would be expected based on
thermodynamic considerations. In unreduced Ringold and
FRC sediment biogenic TcO2�nH2O(s) is also oxidized to
TcO4

�, but as these experiments were conducted in the ab-
sence of air, O2 could not have been the oxidant. As the Rin-
gold sediment contains an appreciable concentration of
NH2OH–HCl extractable Mn (171 lmol/g), mainly as tod-
orokite Na0:2Ca0:05K0:02Mn4

4þMn2
3þO12 � 3ðH2OÞ (Zachara

et al., 1995; Fredrickson et al., 2002), it is likely that this
Mn(III/IV) phyllomanganate was the oxidant. It is well
established that Mn oxides are effective oxidants of or-
ganic compounds (Stone and Morgan, 1984) and reduced
metals such as uraninite (UO2) (Fredrickson et al., 2002)
and Co(II)-EDTA complexes (Zachara et al., 1995). In
previous investigations, 20 lM biogenic TcO2�nH2O(s)

was oxidized in anoxic but unreduced FRC saprolite,
and an unidentified Mn(III/IV) oxide component
(33.2 lmol/g of NH2OH–HCl extractable Mn) was simi-
larly implicated (Fredrickson et al., 2002). Herein, we
investigated the capacity for the Mn oxide fraction of

the FRC saprolite to oxidize biogenic TcO2�nH2O(s) and
although extensive oxidation was observed, it was less
than predicted based on the stoichiometric reaction of
Mn(III/IV) with the added TcO2. For these experiments,
the sediments were continuously mixed (shaking at
25 rpm), a factor that likely facilitated the reaction be-
tween TcO2�nH2O(s) and the Mn oxides, both solid
phases. In the absence of mixing, there would have been
limited contact between these solids and hence, the kinetics of
oxidation likely would have been much slower and poten-
tially less extensive. Additionally, available surface area
and accessibility of the Mn oxide component could have been
an important factor limiting the oxidation of the TcO2�
nH2O(s) in the FRC saprolite. For example, if Mn is distrib-
uted among both the weathered and compact clast types in
the FRC saprolite, Mn oxide residing in the interior of the
compact clasts would have been inaccessible to TcO2�
nH2O(s). X-ray microprobe analytical transects revealed a
relatively equal Mn abundance between the two clast types
(data not shown), and hence approximately one-half of the
Mn would have been distributed in the compact fraction
and likely unable to come in physical contact with the exog-
enously added TcO2�nH2O(s).

The rapid kinetics of TcO4
� reduction observed in the

bioreduced Ringold sediment relative to the FRC saprolite
were also observed during the reverse (oxidation) reaction,
albeit at slower rates (Table 1). There was little resistance to
air oxidation of the Tc(IV) phase in the Ringold sediment.
At the same concentration (1000 lM), sediment-associated
Tc(IV) was oxidized by air at an equivalent rate to biogenic
TcO2�nH2O(s) in the absence of sediment (Table 1), with all
product TcðVIIÞO4

� released quantitatively to the aqueous
phase. This suggests that Tc reduced by the Ringold bio-
genic Fe(II) was readily accessible to dissolved O2.
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Fig. 12. Micro X-ray diffraction analyses of three individual sediments particles exhibiting air oxidation-resistant Tc(IV).
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In contrast to the Ringold sediment, oxidative solubili-
zation of the Tc(IV) phase was slow and incomplete in
the FRC sediment (Figs. 3a and 4b and Table 1). Differ-
ences in redox product speciation could not be the cause,
as speciation was apparently the same in both sediments
(Fig. 6). In a microcosm study also using sediments from
the FRC background site, 0.5 lM Tc(VII) was removed
from solution under Fe(III)-reducing conditions with hy-
drous TcO2 as the predominant reduction product (McBeth
et al., 2007). Although the mechanism of reduction was not
directly established, i.e., direct enzymatic vs. indirect via
biogenic Fe(II), Tc(VII) reduction did not commence until
the onset of Fe(III) reduction. McBeth et al. (2007) and
Morris et al. (2008) also observed significant (�80%) re-
mobilization of Tc from reduced FRC sediment to solution
upon air oxidation, comparable to the �75% remobiliza-
tion of Tc upon air oxidation observed in this study. It is
possible that a Fe-containing mica fraction in the FRC sed-
iment in the cited studies may have been responsible for the
observed Tc(IV) air oxidation-resistance, similar to the
observations reported herein. Burke et al. (2006) observed
in estuarine sediment that �50% of reduced Tc was remo-
bilized to solution as TcO4

�. Their EXAFS analyses indi-
cated that the air-oxidized sediment contained a mixture
of Tc(IV), as TcO2�nH2O, and Tc(VII), as TcO4

�. We ob-
served a similar result with the FRC saprolite, in which
�25% of the sorbed/reduced Tc remained associated with
the solid phase even after extensive air oxidation. XANES
analyses of the unwashed sediment after oxidation yielded
a mixed distribution of Tc(IV) and Tc(VII) similar to that
observed by Burke et al. Extensive water extraction of the
oxidized sediment removed soluble Tc(VII), leaving a sta-
ble, oxidation-resistant sorbed Tc(IV) phase. We therefore
concluded that mass transfer limitations slowing O2 ingress
into compact aggregates, and the formation of a stable,
Tc(IV) phase, possibly in association with Fe(III) oxidation
products, caused the noted differences in FRC oxidation
behavior in comparison to the RG sediment.

4.3. Factors contributing to TcO2 resistance to air oxidation

in FRC sediment

In experiments where TcO4
� was reduced by structural

Fe(II) associated with subsurface fracture fill containing
granite, hornblende and magnetite and then exposed to
air-saturated groundwater, the oxidative release of Tc into
solution over a 3 week period was very slow (Cui and Erik-
sen, 1996). It was suggested that competing reaction be-
tween mineral-associated Fe(II) and O2 suppressed Tc(IV)
oxidation. In our experiments with the Ringold sediment,
there was an initial rapid oxidation of Fe(II) followed by
what appeared to be a much slower oxidation phase.
Although the sparse sample points do not allow precise
determination of Fe(II) oxidation relative to Tc, it is possi-
ble that residual Fe(II) may have provided some buffering
against O2 oxidation of Tc(IV) in the FRC saprolite.

Residual Tc(IV) that was recalcitrant to oxidation in the
FRC sediment was clearly evident as 25–100-lm hot spots
by XRM. Recalcitrant Tc(IV) appeared to concentrate in
association with Fe and Rb (a proxy for K), and to mimic

their spatial distribution. The size, morphology, and chem-
ical composition of the host mineral phases suggested that
they were Fe-containing micas. Moreover, the isolation
and analysis of Tc-containing mineral particle micas indi-
cated a structure and chemical composition consistent with
celadonite, a relatively uncommon mica form typically
associated with oceanic and continental basalts (Innocent
et al., 1997; Li et al., 1997). Celadonite can exist as a detrital
phase in sediments derived from these sources (Odom,
1987). The Fe(III)/Fe(II) ratio of the FRC celadonite was
not directly determined, but 57Fe Mössbauer measurements
indicated that the FRC micaceous fraction (specific phases
undetermined) contained both Fe(II) and Fe(III) (Kukk-
adapu et al., 2006). Comparable Fe-containing micas were
not evident in the specific Hanford Ringold sediment stud-
ied in spite of its sizable content of lithic fragments of con-
tinental flood basalt origin; instead, muscovite was
dominant with lessor amounts of biotite (Zachara et al.,
1995; Fredrickson et al., 2004). Celadonite can weather to
Fe-rich smectite (Reid et al., 1988), and mineralogic studies
of the FRC sediment found a sizable content of Fe–phyllo-
silicates in the <2.0 lm clay fraction (Kukkadapu et al.,
2006).

Tc(IV) was observed through cross sections of the host
mica by XRM and not simply along their periphery as
would occur if they were surface precipitates. However, de-
tails of the internal Tc(IV) elemental and structural associ-
ation were not evident given the XRM measurement scale.
Presumptive evidence was observed in certain cases for dif-
fusion-controlled profiles where Tc appeared depleted
around particle peripheries, and enriched in interiors. The
Fe(III)/Fe(II)-containing micas present in the FRC sapro-
lite (now presumed to be celadonite) have persisted over
long periods of oxidative weathering (Kukkadapu et al.,
2006). Consistent with their apparent limited reactivity to-
ward O2, the Fe-micas do not exhibit heterogeneous redox
reactivity toward Tc(VII) in the absence of bioreduction
(Fredrickson et al., 2004; Peretyazhko et al., 2008a). The
DCB-treated phyllosilicate fraction of the FRC sediment
(including the 50–100 lm mica fraction and clay-sized phyl-
losilicates) heterogeneously reduces Tc(VII) (Peretyazhko
et al., 2008a). This reactivity, however, was attributed to
reductive genesis of Fe(II)-containing phyllosilicates in the
clay-sized fraction, and not to the coarser-textured micas
whose Mössbauer spectra were unchanged with either
reduction or oxidation (Peretyazhko et al., 2008a).

It is not clear why the large particle Fe-micas or celado-
nites host oxidation-stable Tc(IV). Tc(IV) is remarkably
stable in these phases, resisting oxidation for over one year
in contact with air. EXAFS measurements of the recalci-
trant Tc(IV) indicated that it was associated with octahe-
dral Fe(III) within the Fe-mica. The EXAFS spectra were
similar to heterogeneously reduced/precipitated Tc(IV)
resulting from reaction with Fe(II)-sorbed goethite, hema-
tite, and ferrihydrite (Zachara et al., 2007b; Peretyazhko
et al., 2008a). Whether this Fe(III) was a structural constit-
uent in the octahedral layer of celadonite, or nanoparticu-
late Fe(III) oxide resulting from in-situ weathering, or
oxidation following laboratory bioreduction, was not deter-
mined by our analysis. This Tc(IV)–Fe(III) molecular speci-
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ation form oxidizes more slowly and less extensively than
either biogenic or abiotic TcO2�nH2O (Zachara et al.,
2007b). Perhaps Tc(IV) at the end of TcO2 chains is more
readily oxidized than Tc(IV) directly bonded to Fe–O octa-
hedral sites. Oxidation resistance of Tc(IV) appears to re-
sult from short chain length.

It was not resolved whether the recalcitrant Tc(IV)–
Fe(III) association or phase was an initial minor redox
product that was masked in EXAFS by larger concentra-
tions of the TcO2-like phase, or an oxidation-induced trans-
formation product. The experimental evidence suggests that
oxidation-recalcitrant Tc(IV) was generated by Tc(VII)
reaction with celadonite-associated Fe(II) generated
through bioreduction of octahedral Fe(III) sites. Further
mechanistic details on the formation of this molecular asso-
ciation and the nature of its surrounding structural environ-
ment that inhibits oxidation are unknown and require
additional study. Nonetheless, it appears that a complex
transformation involving Tc(IV), Fe(II), and Fe(III) in
physically restricted interlamellar space of Fe-mica is
responsible for the unexpected long-term stability of the
Tc(IV) mineral association. It is curious and remains unex-
plained, why similar oxidation-resistant micaceous phase
associations did not form in the Ringold sediment, as this
sediment contains a diverse mica fraction derived from
basaltic and granitic sources (Fredrickson et al., 2004).
Mössbauer analyses, however, indicate that the FRC micas
contain more Fe than do those in the Ringold (Fredrickson
et al., 2004; Kukkadapu et al., 2006), and this appears to be
the key variable inhibiting Tc(IV) oxidation.

5. ENVIRONMENTAL IMPLICATIONS

At DOE’s Hanford Site, where it is a contaminant of
major concern, 99Tc has migrated to significant depths in
the vadose zone which, in the central plateau area of Han-
ford, is close to 60 m. Experiments with contaminated va-
dose zone sediments collected beneath tank T-106 at
Hanford (that released 2.11 Ci of 99Tc) indicate that 99Tc
is freely mobile (RPP, 2005), yielding aqueous concentra-
tions of >15 lmol/L (�2.0 � 107 pCi/L) in contacting pore-
water. Larger in-ground inventories of 99Tc exist within
Hanford’s S-SX tank farm [�30 Ci; Khaleel et al. (2007)]
and the BC cribs [410 Ci; Serne and Mann, 2004; Kincaid
et al., 2006; Rucker and Fink, 2007]. In the absence of bar-
riers to prevent infiltration or as yet untried deep vadose
zone remediation techniques, there is little to prevent this
mobile 99Tc from eventually entering Hanford’s unconfined
aquifer and traveling with groundwater that to the Colum-
bia River. Contamination of the Columbia River by 99Tc
represents a serious concern as the drinking water standard
is low (900 pCi/L or <10�9 mol/L). At Hanford’s Waste
Management Area T, 99Tc has already entered the ground-
water, yielding concentrations of 182,000 pCi/L at 10 m be-
low the water table (Hartman et al., 2006).

The in situ reduction of TcO4
� to poorly soluble Tc(IV)

in the subsurface is a potential means for limiting the
migration of 99Tc into surface waters. For example, the
in situ stimulation of an extant subsurface microbial com-
munity at DOE’s Oak Ridge site was achieved by the injec-

tion of electron donor (acetate, ethanol or glucose) resulting
in the reduction of TcO4

�, with consequent immobilization,
that occurred concurrently with NO3

- utilization (Istok
et al., 2004). While these results demonstrate the feasibility
of in situ stimulation of TcO4

� reduction, the experiment
was performed at shallow depth and over a relatively small
area. The practicality and efficacy of achieving a sufficiently
extensive in situ stimulation of the subsurface microbial
community at a scale and depth that would be required at
Hanford to be impactful is questionable. The unconfined
aquifer at Hanford is oligotrophic and limited measure-
ments suggest that subsurface microbial populations are
sparse (Kieft et al., 1995); increasing the size of the biomass
and sustaining activity over an extended area would be
technically challenging and costly.

It is currently unclear whether localized anoxic regions
exist, at either macroscopic or microscopic scales, within
the Hanford unconfined aquifer, which reaches over 30 m
in thickness in certain locations and exhibits considerable
heterogeneity in hydrogeologic properties. Aqueous and
sorbed ferrous iron could be generated by low but sustained
microbial activities and/or the weathering of Fe(II)-bearing
minerals present such as Fe(II)–basaltic glass, pyroxene,
ilmenite/magnetite, or chlorite/lizardite (Zachara et al.,
2007c) in restricted environments to favor heterogeneous
Tc(VII) reduction. Over 60% of the sizable total Fe concen-
tration in Hanford sediment exists as structural Fe(II),
underscoring the plausibility of such reactions. US Atlantic
coastal plain sediments that were naturally anoxic with
Fe(II) concentrations exceeding a ratio of 4.3 Fe(II):Tc(-
VII) (TcO4

� added at concentrations of 1–2.5 lmol g dry
wt. sediment) exhibited relatively rapid reduction to
TcO2�nH2O(s) (Wildung et al., 2004), demonstrating the fea-
sibility of intrinsic Tc(VII) reduction. Given the low total
concentration of contaminant Tc Hanford pore- and
groundwaters (10�8–10�5 mol/L); a relatively small amount
of soluble/sorbed Fe(II) could have a profound effect on Tc
valence speciation and effective solubility.

Regardless of whether Tc solubility is reduced via direct
microbial reduction or indirectly by adsorbed Fe(II), the
susceptibility of TcO2�nH2O(s) to oxidation by O2 remains
a concern for long-term stability. In shallow or deep sub-
surface environments that are naturally oxic and require
either stimulation of microbial activity or treatment with
a chemical reductant such as dithionite (Fruchter et al.,
2000) to achieve sufficient Fe(II) concentrations to facilitate
Tc(VII) reduction, the treated zone must remain anoxic to
prevent re-mobilization of Tc(IV) via oxidation by O2.
However, as observed herein, there may be situations where
sediment physical properties, Fe mineralogy, or the chemi-
cal nature of Tc or Tc–Fe molecular interactions during
reduction–oxidation processes limit or prevent mobilization
into groundwater. The findings presented herein indicate
that certain forms and/or locations of Tc(IV) generated
via reduction by sediment-associated Fe(II), especially Fe
in association with phyllosilicates, may be exceedingly resis-
tant to oxidative remobilization. These processes may have
a significant impact on the long-term fate and transport of
Tc in the subsurface at locations such as Hanford but re-
main poorly understood. Their understanding will be
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critical for ensuring the long-term immobilization of Tc in
the subsurface to impede or prevent its mobility in the sub-
surface and contamination of surface waters such as the
Columbia River.
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the Mössbauer analysis and modeling. PNNL is operated for the
Department of Energy by Battelle.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.gca.
2009.01.027.

REFERENCES

Booij E., Gallahan W. E. and Staudigel H. (1995) Ion-exchange
experiments and Rb/Sr dating on celadonites from the Troodos
ophiolite, Cyprus. Chem. Geol. 126, 155–167.

Burke I. T., Boothman C., Lloyd J. R., Mortimer R. J. G., Livens
F. R. and Morris K. (2005) Effects of progressive anoxia on the
solubility of technetium in sediments. Environ. Sci. Technol. 39,

4109–4116.

Burke I. T., Boothman C., Lloyd J. R., Livens F. R., Charnock J.
M., McBeth J. M., Mortimer R. J. G. and Morris K. (2006)
Reoxidation behavior of technetium, iron, and sulfur in
estuarine sediments. Environ. Sci. Technol. 40, 3529–3535.

Chao T. T. (1972) Selective dissolution of manganese oxides from
soils and sediments with acidified hydroxylamine hydrochlo-
ride. Soil Sci. Soc. Am. Proc. 36, 764–768.

Cui D. and Eriksen T. E. (1996) Reduction of pertechnetate by
ferrous iron in solution: influence of sorbed and precipitated
Fe(II). Environ. Sci. Technol. 30, 2259–2262.

Evans J. C., Dresel P. E. and Farmer O. T. (2007) Inductively
coupled plasma, mass spectrometric isotopic determination of
nuclear wastes sources associated with Hanford tank leaks.
Vadose Zone J. 64, 1042–1049.

Fredrickson J. K., Zachara J. M., Kennedy D. W., Dong H.,
Onstott T. C., Hinman N. W. and Li S. W. (1998) Biogenic iron
mineralization accompanying the dissimilatory reduction of
hydrous ferric oxide by a groundwater bacterium. Geochim.

Cosmochim. Acta 62, 3239–3257.

Fredrickson J. K., Zachara J. M., Kennedy D. W., Liu C., Duff M.
C., Hunter D. B. and Dohnalkova A. (2002) Influence of Mn
oxides on the reduction of uranium(VI) by the metal-reducing

bacterium Shewanella putrefaciens. Geochim. Cosmochim. Acta

66, 3247–3262.

Fredrickson J. K., Zachara J. M., Kennedy D. W., Kukkadapu R.
K., McKinley J. P., Heald S. M., Liu C. and Plymale A. E.
(2004) Reduction of TcO4

�by sediment-associated biogenic
Fe(II). Geochim. Cosmochim. Acta 68, 3171–3187.

Fruchter J. S., Cole C. R., Williams M. D., Vermeul V. R.,
Amonette J. E., Szecsody J. E., Istok J. D. and Humphrey M.
D. (2000) Creation of a subsurface permeable treatment zone
for aqueous chromate contamination using in situ redox
manipulation. Ground Water Monitor. Remed. 20,

66–77.

Gambrell R. P. (1996) Manganese in methods of soil analysis. Part
3. In Chemical Methods (ed. D. L. Sparks). Soil Science Society
of American and American Society of Agronomy, Madison,

WI.

Gee G. W., Oostrom M., Freshley M. D., Rockhold M. L. and
Zachara J. M. (2007) Special section: Hanford Site. Vadose

Zone J. 64, 899–1056.

Hartman M. J., Morasch L. F. and Webber W. D. (2006) Summary
of Hanford Site Groundwater Monitoring for Fiscal Year 2005.
Pacific Northwest National Laboratory, Richland, WA.

Heron G., Bjerg P. L. and Christensen T. H. (1995) Redox
buffering in shallow aquifers contaminated by leachate. In
Intrinsic Bioremediation (eds. R. E. T. W. J. Hinchee and D. C.
Downey). Battelle Press, Columbus, OH.

Innocent C., Parron C. and Hamelin B. (1997) Rb/Sr chronology
and crystal chemistry of celadonites from the Parana continen-
tal tholeiites, Brazil. Geochim. Cosmochim. Acta 61, 3753–3761.

Istok J. D., Senko J. M., Krumholz L. R., Watson D., Bogle M. A.,
Peacock A., Chang Y. J. and White D. C. (2004) In situ
bioreduction of technetium and uranium in a nitrate-contam-
inated aquifer. Environ. Sci. Technol. 38, 468–475.

Khaleel R., White M. D., Oostrom M., Wood M. I., Mann F. M.
and Kristofzski J. G. (2007) Impact assessment of existing
vadose zone contamination at the Hanford Site SX tank farm.
Vadose Zone J. 64, 935–945.

Kieft T. L., Fredrickson J. K., McKinley J. P., Bjornstad B. N.,
Rawson S. A., Phelps T. J., Brockman F. J. and Pfiffner S. M.
(1995) Microbiological comparisons within and across contig-
uous lacustrine, paleosol, and fluvial subsurface sediments.
Appl. Environ. Microbiol. 61, 749–757.

Kincaid C. T., Eslinger P. W., Aaberg R. L., Miley T. B., Nelson I.
C., Strenge D. L. and Evans J. C. (2006). Inventory Data
Package for Hanford Assessments. PNNL-15829, Pacific
Northwest National Laboratory, Richland, WA.

Komlos J., Kukkadapu R. K., Zachara J. M. and Jaffe P. R. (2007)
Biostimulation of iron reduction and subsequent oxidation of
sediment containing Fe-silicates and Fe-oxides: effect of redox
cycling on Fe(III) bioreduction. Water Resour. 41,

2996–3004.

Kukkadapu R. K., Zachara J. M., Fredrickson J. K., McKinley J.
P., Kennedy D. W., Smith S. C. and Dong H. (2006) Reductive
biotransformation of Fe in shale-limestone saprolite containing
Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates. Geochim.

Cosmochim. Acta 70, 3662–3676.

Li G., Peacor D. R., Coombs D. S. and Kawachi Y. (1997) Solid
solution in the celadonite family: the new minerals ferrocelad-
onite, K2Fe2

2þFe2
3þSi8O20ðOH4Þ, and ferroaluminoceladonite,

K2Fe2
2þAl2Si8O20ðOH4Þ. Am. Mineral. 82, 503–511.

Liu D. J., Yao J., Wang B., Bruggeman C. and Maes N. (2007)
Solubility study of Tc(IV) in a granitic water. Radiochim. Acta

95, 523–528.

Lloyd J. R. and Macaskie L. E. (1996) A novel phosphorimager-
based technique for monitoring the microbial reduction of
technetium. Appl. Environ. Microbiol. 62, 578–582.

2312 J.K. Fredrickson et al. / Geochimica et Cosmochimica Acta 73 (2009) 2299–2313

http://dx.doi.org/10.1016/j.gca.2009.01.027
http://dx.doi.org/10.1016/j.gca.2009.01.027


Lloyd J. R., Cole J. A. and Macaskie L. E. (1997) Reduction and
removal of heptavalent technetium from solution by Esche-

richia coli. J. Bacteriol. 179, 2014–2021.

Lloyd J. R., Ridley J., Khizniak T., Lyalikova N. N. and Macaskie
L. E. (1999) Reduction of technetium by Desulfovibrio desul-

furicans: biocatalyst characterization and use in a flowthrough
bioreactor. Appl. Environ. Microbiol. 65, 2691–2696.

Lloyd J. R., Sole V. A., Van Praagh C. V. G. and Lovley D. R.
(2000) Direct and Fe(II)-mediated reduction of technetium by
Fe(III)-reducing bacteria. Appl. Environ. Microbiol. 66, 3743–

3749.

Lukens, Jr., W. W., Bucher J. J., Edelstein N. M. and Shuh D. K.
(2002) Products of pertechnetate radiolysis in highly alkaline
solution: structure of TcO2xH2O. Environ. Sci. Technol. 36,

1124–1129.

Marshall M. J., Plymale A. E., Kennedy D. W., Wang Z., Reed S.
B., Dohnalkova A. C., Simonson C. J., Liu C., Saffarini D. A.,
Romine M. F., Zachara J. M., Beliaev A. S. and Fredrickson J.
K. (2008) Hydrogenase- and outer membrane c-type cyto-
chrome-facilitated reduction of technetium(VII) by Shewanella

oneidensis MR-1. Environ. Microbiol. 10, 125–136.

Marshall M. J., Dohnalkova A. C., Kennedy D. W., Plymale A. E.,
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