
Giorgio Dall'Olmo
Oregon State University, giorgiod@science.oregonstate.edu

Anatoly A. Gitelson
University of Nebraska - Lincoln, agitelson2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers
Part of the Natural Resources and Conservation Commons

http://digitalcommons.unl.edu/natrespapers/261

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results—erratum

Giorgio Dall’Olmo and Anatoly A. Gitelson

In the original publication [Dall’Olmo and Gitelson, Appl. Opt. 44, 412 (2005)], certain information was presented inaccurately. These inaccuracies are corrected here. © 2005 Optical Society of America

OCIS codes: 010.4450, 280.0280.

In the original paper by Dall’Olmo and Gitelson,1 please note the following corrections. On page 417, left column, last two lines: “as high as a factor of 1% and 10%, respectively.” should read “as high as a factor of 2 and 10%, respectively.”

On page 420, Table 4, the first and third band combinations (column 1) are incorrect. Also, the \(a_0 \) coefficient for Gons, 1999 is not significant. The corrected Table 4 follows:

<table>
<thead>
<tr>
<th>Band Combination</th>
<th>(a_0) (STE)</th>
<th>(a_1) (STE)</th>
<th>RMSE of [Chla] Prediction (mg m(^{-3}))</th>
<th>RMS</th>
<th>RMS(_{10})</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{rs}^{-1}(673)R_{rs}(735))</td>
<td>-8 (3)</td>
<td>0.99 (0.04)</td>
<td>13.7</td>
<td>0.40</td>
<td>0.30</td>
<td>0.91</td>
</tr>
<tr>
<td>(R_{rs}^{-1}(665)R_{rs}(725))</td>
<td>-9 (3)</td>
<td>1.04 (0.04)</td>
<td>14.2</td>
<td>0.47</td>
<td>0.36</td>
<td>0.91</td>
</tr>
<tr>
<td>([R_{rs}^{-1}(671) - R_{rs}^{-1}(710)]R_{rs}(740))</td>
<td>-</td>
<td>0.93 (0.03)</td>
<td>15.1</td>
<td>0.45</td>
<td>0.25</td>
<td>0.88</td>
</tr>
<tr>
<td>(R_{rs}^{-1}(675)R_{rs}(705))</td>
<td>-13 (5)</td>
<td>1.31 (0.08)</td>
<td>28.3</td>
<td>0.71</td>
<td>0.48</td>
<td>0.84</td>
</tr>
<tr>
<td>Reflectance height</td>
<td>13 (4)</td>
<td>0.55 (0.06)</td>
<td>28.5</td>
<td>0.48</td>
<td>0.43</td>
<td>0.57</td>
</tr>
<tr>
<td>Gons, 1999</td>
<td>-</td>
<td>2.31 (0.16)</td>
<td>77.1</td>
<td>0.77</td>
<td>0.76</td>
<td>0.74</td>
</tr>
</tbody>
</table>

\(a_0 \) and \(a_1 \) are the intercepts and slopes (with corresponding standard errors in brackets), respectively, of the best linear fits between observed and predicted [Chla] values. RMSE is the root-mean-squared error. RMS is the relative RMSE; RMS\(_{10}\) is the RMS computed excluding stations with [Chla] < 10 mg m\(^{-3}\). Slopes in bold were significantly different from one \(p < 0.05 \). Only intercepts significantly different from zero \(p < 0.05 \) were included. The number of samples was 58.

The authors are with the Center for Advanced Land Management Information Technologies, School of Natural Resources, University of Nebraska-Lincoln, 113 Nebraska Hall, Lincoln, Nebraska 68588-0117. G. Dall’Olmo’s e-mail address is gdall@calmit.unl.edu.

Received 25 January 2005; accepted 25 January 2005.

On page 420, left column, second paragraph, line two, “(1.33)” should read “(1.31);” line five, “(p > 0.05)” should read “(p < 0.05);” line six, “the RMS ∼ 0.48” should read “the RMS ∼ 0.71.”

Reference