
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

2014

A Comparison of a Campus Cluster and Open
Science Grid Platforms for Protein- Guided
Assembly using Pegasus Workflow Management
System
Natasha Pavlovikj
University of Nebraska-Lincoln, npavlovikj@cse.unl.edu

Kevin Begcy
University of Nebraska-Lincoln, kevinbegcy@gmail.com

Sairam Behera
University of Nebraska-Lincoln, sbehera@cse.unl.edu

Malachy Campbell
University of Nebraska-Lincoln, campbell.malachy@gmail.com

Harkamal Walia
University of Nebraska-Lincoln, hwalia2@unl.edu

See next page for additional authorsFollow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
and the Other Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Pavlovikj, Natasha; Begcy, Kevin; Behera, Sairam; Campbell, Malachy; Walia, Harkamal; and Deogun, Jitender S., "A Comparison of a
Campus Cluster and Open Science Grid Platforms for Protein- Guided Assembly using Pegasus Workflow Management System"
(2014). CSE Conference and Workshop Papers. 266.
https://digitalcommons.unl.edu/cseconfwork/266

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/266?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Natasha Pavlovikj, Kevin Begcy, Sairam Behera, Malachy Campbell, Harkamal Walia, and Jitender S. Deogun

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/cseconfwork/266

https://digitalcommons.unl.edu/cseconfwork/266?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F266&utm_medium=PDF&utm_campaign=PDFCoverPages

A Comparison of a Campus Cluster and Open Science Grid Platforms for Protein-
Guided Assembly using Pegasus Workflow Management System

Natasha Pavlovikj1, Kevin Begcy2, Sairam Behera1, Malachy Campbell2, Harkamal Walia2, Jitender S. Deogun1

1Department of Computer Science and Engineering,

University of Nebraska-Lincoln
Lincoln, NE 66588-0115

Email: {npavlovikj, sbehera, deogun}@cse.unl.edu

2Department of Agronomy and Horticulture,
University of Nebraska-Lincoln

Lincoln, NE 68583
Email: {kevinbegcy, campbell.malachy, harkamal.walia}@gmail.com

Abstract—Scientific workflows are a useful tool for managing
large and complex computational tasks. Due to its intensive
resource requirements, the scientific workflows are often
executed on distributed platforms, including campus clusters,
grids and clouds. In this paper we build a scientific workflow
for blast2cap3, the protein-guided assembly, using the Pegasus
Workflow Management System (Pegasus WMS). The
modularity of blast2cap3 allows us to decompose the existing
serial approach on multiple tasks, some of which can be run in
parallel. Afterwards, this workflow is deployed on two
distributed execution platforms: Sandhills, the University of
Nebraska Campus Cluster, and the Open Science Grid (OSG).
We compare and evaluate the performance of the built
workflow for the both platforms. Furthermore, we also
investigate the influence of the number of clusters of
transcripts in the blast2cap3 workflow over the total running
time. The performed experiments show that the Pegasus WMS
implementation of blast2cap3 significantly reduces the running
time compared to the current serial implementation of
blast2cap3 for more than 95 %. Although OSG provides more
computational resources than Sandhills, our workflow
experimental runs have better running time on Sandhills.
Moreover, the selection of 300 clusters of transcripts gives the
optimum performance with the resources allocated from
Sandhills.

Keywords—scientific workflow; pegasus workflow
management system; transcriptome assembly; protein-guided
assembly; blast2cap3; campus cluster; open science grid

I. INTRODUCTION
The advances in life sciences and information

technologies have led to proliferation of scientific data that
needs to be stored and analyzed. The analysis of this so
called “big data” is done by using a complex set of multitude
of software tools. A sequential series of these tools is known
as an analysis pipeline [29]. The “big data” is too large to be
processed by using only local computational resources. A
possible approach to this problem is to make better use of

multiple distributed resources including multi-core
computers.

Scientists use various workflow systems to conduct their
research modularly. This indicates that the whole scientific
workflow can be decomposed into multiple sub-workflows
that can be executed in parallel on distributed resources.
Each workflow is composed of computational tasks, the
order of execution of which is determined by the
dependencies among the tasks [1]. The advantages of
scientific workflows include automated complex analysis,
real-time results and improved time performance that allow
scientists to easily design, execute, debug, modify and re-run
their experiments [17].

Over the past decade, several scientific workflows have
been created and introduced. Pegasus Workflow
Management System (Pegasus WMS) automatically maps
high-level scientific workflows organized as directed acyclic
graph (DAG) onto available distributed resources [2].
DAGMan (Directed Acyclic Graph Manager) is a meta-
scheduler that submits jobs to Condor [4] in an order defined
in DAG, and processes the results afterwards [3]. Taverna
[5] is an open source workflow system that graphically
connects bioinformatics web services together into a
coherent flow. Kepler [6] also has a visual interface and
separates the structure of the workflow model from its model
of computation. The number of applications using scientific
workflow systems has been steadily increasing [7].

The resources required by scientific workflows may
exceed the capabilities of the local computational resources.
Therefore, the scientific workflows are usually executed on
distributed platforms, such as campus clusters or grids. Grids
such as Open Science Grid (OSG) [8] and XSEDE [9] allow
distributed computing where the computational resources are
spread on a geographically remote location. Beside the
cluster and grid execution platforms, lately the scientists are
analyzing the benefits of using clouds for these scientific
workflows. Cloud computing platforms like the commercial
Amazon Elastic Compute Cloud [10] or the academic

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.66

546

kasyma
Typewritten Text
Pages: 546 - 555, DOI: 10.1109/IPDPSW.2014.66
IEEE Conference Publications

kasyma
Typewritten Text

kasyma
Typewritten Text

FutureGrid [11] provide rentable computational and storage
resources over the Internet. Despite the advantages and
disadvantages of clusters, grids and clouds [30], the
execution of scientific workflows deals with different
challenges depending on the chosen computational platform.

In this paper we build a scientific workflow for
blast2cap3, the protein-guided assembly, using Pegasus
WMS. We chose two execution platforms for this workflow
that represent the campus cluster, Sandhills, and the Open
Science Grid. Furthermore, we compare the running time
and used resources for the both platforms when the workflow
is executed serially and parallel with alternating number of
tasks.

This paper is organized as follows. In Section 2 we
describe blast2cap3, the protein-guided assembly. Pegasus
Workflow Management System is described briefly in
Section 3. Section 4 includes overview of the used execution
platforms, the campus cluster and the Open Science Grid.
The implementation of the experiments used in this paper is
presented in Section 5. In Section 6 we evaluate the built
workflow and in Section 7 we draw conclusions based on
our results and performed evaluation.

II. BLAST2CAP3: PROTEIN-GUIDED ASSEMBLY
Gene expression and transcriptome analysis are currently

one of the main focuses of research for a great number of
biologists and scientists. However, the assembly of raw
sequence data to obtain a draft transcriptome of an organism
is a complex multi-stage process usually composed of
preprocessing, assembling, and post-processing. Each of
these stages includes multiple steps such as data cleaning,
contaminant removal, error correction, de novo assembly,
redundancy reduction, and assembly validation. An assembly
pipeline is used to simplify the entire assembly process by
automating the most steps of the pipeline for producing
correct transcripts [15]. A general transcriptome assembly
pipeline with some common steps and the tools used for
those steps is shown on Fig. 1.

After the data is cleaned and filtered in the preprocessing
stage, the next step is to generate transcriptome assembly
from the filtered reads. Multiple approaches used for
assembling the filtered reads [12] produce high redundancy
of the resulting transcripts. Therefore, these transcripts need
to be merged into larger ones in order to remove redundancy.
Overlap-based assembly program CAP3 is used to merge
transcripts based on the overlapping region with specified
identity [13]. However, the number of transcripts that need to
be merged sometimes overwhelms the memory and time
limits of CAP3. Additionally, CAP3 merges transcripts
based on only nucleotide similarity that can lead to incorrect
results because most of the generated transcripts code for a
protein. Hence, protein similarity should be considered when
the transcripts are merged.

Blast2cap3 [14] is a protein-guided assembly approach
that first clusters the transcripts based on similarity to a
common protein and then passes each cluster to CAP3. The
recent use of blast2cap3 on the wheat transcriptome
assembly shows that blast2cap3 generates fewer artificially
fused sequences compared to assembling the entire dataset

with CAP3. Moreover, it also reduces the total number of
transcripts by 8-9% [15].

Figure 1. General transcriptome assembly pipeline with some common

steps and the tools used for those steps.

Before running blast2cap3, the assembled transcripts are

aligned with protein datasets closely related to the organism
for which the transcripts are generated. BLASTX [16] is
used for this alignment. Afterwards, transcripts sharing a
common protein hit are merged using CAP3. Therefore,
blast2cap3 uses the assembled transcripts and the BLASTX
alignments as an input files.

III. PEGASUS WORKFLOW MANAGEMENT SYSTEM
Pegasus Workflow Management System (Pegasus WMS)

stands for Planning for Execution in Grids. Pegasus WMS is
a framework that automatically maps high-level scientific
workflows organized as directed acyclic graph (DAG) onto
wide range of execution platforms, including clusters, grids,
and clouds [2]. Pegasus receives an abstract workflow and
tries to simplify it before mapping it into a concrete
workflow. The abstract workflow of Pegasus contains
information and description of all executable files
(transformations) and logical names of the input files used by
the workflow. On the other hand, the concrete workflow
specifies the location of the data and the execution platform
[20]. The concrete workflow is then submitted to Condor’s
DAGMan meta-scheduler [3] for execution [18]. The high-
level of abstraction of Pegasus allows scientists to ignore
low-level configurations required by the middleware and the
underlying execution platform [20].

DAG-based workflows use nodes to define the tasks and
use edges to denote the task dependencies. In DAG-based
workflows, the structure can be characterized as sequence
and parallel [17]. The sequence structure is defined as an
ordered series of tasks, where one task starts after the

547

previous task is completed. The parallel structure allows
concurrently execution of tasks. Pegasus also allows
clustering of small tasks into larger clusters that are
scheduled and executed to the same remote site. This setting
allows improvement of the performance and reducing the
remote execution overheads [19].

Pegasus uses DAX (directed acyclic graph in XML) files
to specify an abstract workflow. The DAX file contains
syntax for defining jobs, arguments, input and output files,
and dependencies between the various tasks. This format is
shared by many workflow tools. The DAX file can be
created manually, or by using the Pegasus API. Pegasus uses
Java, Perl, or Python libraries for writing DAX generators
[19]. The abstract DAX is then mapped to one or more
execution sites. This step is known as the planning stage.

Pegasus comes with a set of useful command-line tools
that help users to submit and analyze the workflows, and
generate useful statistics and plots about the workflow
performance, running time, execution results, machines used,
as well as for succeeded and failed tasks [19]. Pegasus-plan
is used to plan the workflow, while pegasus-run is used to
submit the workflow to DAGMan. After the workflow is
submitted, it can be monitored using the pegasus-status
command that shows information about the running jobs and
the percentage of finished jobs. The whole workflow and the
failed jobs can be debugged using the pegasus-analyzer tool.
After the workflow execution ends, the resulting data can be
summarized using pegasus-statistics and pegasus-plots.

Pegasus is used in a number of large scientific
applications built for physics, astronomy, biology,
earthquake sciences, ocean sciences, limnology and many
other domains [20][21][22][23]. Pegasus can use both single
systems and heterogeneous set of resources for executing the
scientific workflows. The used resources can be distributed
across laptops, campus clusters, grids and cloud platforms.
Furthermore, Pegasus can support workflows ranging from a
few computational tasks to a few millions.

Scalability and handling large sets of data and
computations, portability and ease of use are just part of the
advantages that Pegasus has. In case of a job or data transfer
failure, Pegasus can retry the job or the entire workflow
given number of times. If the job fails again, then Pegasus
generates a rescue workflow that contains information of the
work that remains to be done such that it can be modified
and resubmitted later. Therefore, Pegasus has capabilities for
provenance tracking, execution monitoring and management,
and error recovery.

IV. EXECUTION PLATFORMS
The resources that these scientific workflows require can

exceed the capabilities of the local computational resources.
Therefore, the scientific workflows are usually executed on
distributed platforms, such as campus clusters, grids or
clouds. These platforms are usually a set of heterogeneous
hosts that are connected via a network. The host that is able
to schedule remote jobs and has the appropriate software for
execution of these jobs is known as a submit host. The
submit host also maintains an information about the remote

hosts and the software installed there, and serves for
debugging purposes.

A. University of Nebraska Campus Cluster
A campus cluster is a campus wide resource in a

university that allows faculty and students to use the
resources of the cluster for their computational needs.

Campus clusters may not be highly I/O friendly.
Moreover, campus clusters are not instantly available, and
thus there is a long waiting time to access nodes with
required memory and time resources.

Sandhills is one of the High Performance Computing
(HPC) Clusters at the University of Nebraska-Lincoln
Holland Computing Center (HCC) [24]. Sandhills was
acquired by combining grants from various research groups
at University of Nebraska. It is used by faculty and students
in disciplines like bioinformatics, nanoscale chemistry,
subatomic physics, meteorology, genomics, crashworthiness
and artificial intelligence. Sandhills was constructed in 2011
and it has 1,440 AMD cores housed in a total of 44 nodes.
Each node has storage of approximately 1.5 TB. Sandhills is
a heterogeneous cluster in terms of individual node
resources.

Every new user account of HCC is required to be
associated with a faculty or research group. The allocation of
computing resources at HCC is done on group basis where
the group owner has ownership of all files in the group
account.

B. Open Science Grid (OSG)
The Open Science Grid (OSG) is a national consortium

of geographically distributed academic institutions and
laboratories that provide hundreds computing and storage
resources to the OSG users.

The OSG is organized into Virtual Organizations (VO’s)
which include not only the people from an academic
community, but also their services, software and policies
[25]. OSG does not own any computing or storage resources,
but allows users to use the resources contributed by the other
members of the OSG and VO’s.

Every new user of OSG first needs to apply for an OSG
certificate. This step helps sites identify users and their
VO’s. Once the certificate is verified and approved, the user
can import it in the Web Browser. Furthermore, the user
requests membership in the community group in which the
user belongs by using VOMS (Virtual Organization
Membership Service). After this request for registration is
approved by one of the community VOMS admins, the user
can use the OSG resources.

V. EXPERIMENTS
In this paper, our objective is to evaluate the performance

of a built scientific workflow for protein-guided assembly
on a campus cluster and OSG.

The experiment for this paper includes creating and
running a scientific workflow for blast2cap3, the protein-
guided assembly. The workflow is run on two different
execution platforms: Sandhills, the campus cluster, and the

548

OSG. Furthermore, the influence of the number of clusters
of transcripts in blast2cap3 over the execution time is also
investigated and compared.

A. Experimental Data
For this experiment, we created an assembly pipeline

with the steps shown on Fig. 1 using diploid wheat Triticum
urartu dataset. The NCBI BioProject PRJNA191053 [26]
contains all the sequence libraries submitted by UCD group.

The description given on NCBI for this library
construction and sequencing is as follows: “The sequencing
libraries were prepared from shoot and root tissues
harvested from 2-3 week old seedlings. All sequencing was
carried out on the Illumina HiSeq platform. All libraries
were sequenced using the 100 bp paired-end protocol on
four lanes of Illumina HiSeq2000 machines at the University
of California Davis (UCD) Genome Center. Base quality
calls and demultiplexing was done with the CASAVA 1.8.0
pipeline (Illumina).” [26].

The generated assembly after transcripts merging and
redundancy removal, “transcripts.fasta”, is 404 MB big and
contains 236,529 transcripts. In order to use blast2cap3, the
protein-guided assembly, the next step is to align the
transcripts with protein datasets closely related to the wheat
[15] using BLASTX. The BLASTX tabular output,
“alignments.out”, is 155 MB big and contains 1,717,454
protein hits.

B. Current Implementation of blast2cap3
Blast2cap3, the protein-guided assembly, is a Python

script written by Vince Buffalo [14]. Beside Python’s
modules [27], blast2cap3 also uses Biopython, a set of
available tools for biological computation written in Python
[28], and CAP3 [13].

The current implementation of blast2cap3 supports only
serial execution. This means that first one cluster of similar
transcripts is created and then is sent to CAP3. After the
CAP3 program terminates, this process is repeated
consecutively for all possible clusters of transcripts.

When the existing implementation of blast2cap3 was run
on Sandhills for the given input files “transcripts.fasta” and
“alignments.out” with size of 404 MB and 155 MB
respectively, the running time was 100 hours. Considering
larger input files and datasets, the time requirements and
complexity of running the protein-guided assembly grow.

Each cluster of transcripts that is generated from
blast2cap3 and uses CAP3 is an individual process. This
means that as long as the final results from CAP3 for each
cluster are concatenated at the end, the transcripts within the
cluster can be generated and merged independently.

Therefore, an additional approach to blast2cap3
execution should be considered that requires not just a single
computer, but multiple computational nodes that will use the
modularity of blast2cap3 execution.

C. Pegasus Workflow Management System Implementation
of blast2cap3 for Sandhills
The modularity of blast2cap3 allows us to decompose

the existing approach on multiple tasks, some of which can

be run in parallel. Therefore, this protein-guided assembly
can be structured into a scientific workflow using the
Pegasus Workflow Management System. The main
reduction in the running time of the current implementation
of blast2cap3 is expected to be reached when the merging of
transcripts belonging in a cluster is done in parallel for all
clusters.

The Pegasus WMS implementation of blast2cap3 for
Sandhills is shown on Fig. 2.

For this workflow, we first create lists of both input files,
“transcripts.fasta” and “alignments.out”, respectively. These
two tasks are independent of each other, and can be run at
the same time. Furthermore, in order to create multiple
clusters of transcripts, the split() task is used to divide the big
“alignments.out” file on “n” smaller files. For the purpose of
this paper, we use different values of “n”, such as 10, 100,
300, and 500.

The number of tasks that merge the transcripts within a
cluster depends on “n”, the number of clusters. From the
workflow shown on Fig. 2, we can notice that this task,
run_cap3(), uses two input files, “transcripts_dict.txt” and
“protein_n.txt”.

After “n” output files are generated from run_cap3(), the
next step is to merge all these joined transcripts into one file.
Knowing the transcripts that are joined helps us to combine
all transcripts that are not joined into a new file.

The DAG structure of the workflow is helpful to define
dependencies, and execute a task if and only if its
predecessor tasks have finished.

D. Pegasus Workflow Management System Implementation
of blast2cap3 for OSG

The Pegasus WMS implementation of blast2cap3 for
OSG is shown on Fig. 3. The workflow and the logic behind
both execution platforms differ only in the way how certain
tasks are defined. The resources provided by Sandhills, the
campus cluster, contain the most frequently used libraries,
modules and software tools. This means that the Python and
Biopython libraries and the CAP3 executable required by
blast2cap3 are already set and maintained on the campus
cluster. On the other hand, the resources provided by OSG
are more heterogeneous and most of the time belong to
other academic institutions and laboratories that may
provide different software and system configurations.

When the required libraries and executables like Python,
Biopython and CAP3 are not installed on the remote node,
the workflow execution fails. In order to avoid workflow
failures, additional tasks that download and install the
necessary software are executed before the main tasks in the
workflow. These modified tasks are represented with red
rectangles on Fig. 3.

Therefore, we can say that the Pegasus WMS
implementation of blast2cap3 for OSG is a slightly
modified version of the implementation of blast2cap3 for
Sandhills.

549

Figure 2. Pegasus WMS implementation of blast2cap3 for Sandhills, where the squares represent the input and output files, the ovals represent the tasks,

and the arrows represent the dependencies between the tasks.

VI. PERFORMANCE EVALUATION
After the scientific workflow was created using Pegasus

WMS, it was run on each platform multiple times with
different values for “n”. As mentioned previously, “n”
determines the number of clusters of transcripts on which the
input data, “alignments.out”, is divided. For the purpose of
this paper, we used “n” with values of 10, 100, 300, and 500.

A. Comparing Running Time on Sandhills and OSG for
Different Values of “n”
In order to compare the running time of the Pegasus

WMS implementation of blast2cap3, we run the workflows
when “n” is 10, 100, 300, and 500 respectively. After the
workflow terminates, pegasus-statistics is used to generate
general statistics for the workflow execution. We use these
statistics to compare the running time when blast2cap3 is
run serially and when is run as a scientific workflow with
different values of “n”.

The “Workflow Wall Time” statistic defines the total
running time of the workflow from the start to its end. The

comparison of this variable’s value for the different
workflows executed on the different platforms is shown on
Fig. 4.

On Fig. 4 we can notice that the Pegasus WMS
implementation of blast2cap3 significantly reduces the time
execution for approximately more than 95%. If the current
sequential implementation of blast2cap3 for the given input
files runs for 100 hours, the Pegasus WMS implementation
runs for 3 hours in average.

Beside the difference between the serial and inherently
parallel execution of blast2cap3, on Fig. 4 we can also
observe the difference in the running time on Sandhills and
OSG platforms.

Although OSG provides bigger variety of computational
resources than Sandhills, for the experimental runs of our
workflows, Sandhills resulted in better running time. This
difference is especially noticeable when “n”, the number of
clusters used, is 10, 100, and 300.

Some possible reasons for this occurrence are the
additional tasks required for setting the proper software
configuration on the OSG resources, as well as the common

550

Figure 3. Pegasus WMS implementation of blast2cap3 for OSG, where the squares represent the input and output files, the ovals represent the tasks, the
rectangles represent the tasks that has an additional step of downloading and installing the required libraries, and the arrows represent the dependencies

between the tasks.

failures and workflow retries that happen when OSG is
used as a platform. The OSG users use the resources that
belong to other VO groups, and if the members of that group
submit jobs in meanwhile, the OSG user job may be
cancelled or held. On the other hand, we encountered no
failures when the workflow was executed on Sandhills. The
campus cluster may need a long waiting time to access nodes
with required memory and time resources, but after these
resources are allocated, they are utilized until the tasks
terminate.

The running time on Sandhills when “n” is 10 is 41,593
seconds. On the other hand, when “n” has value of 100, 300,
and 500, the running time on Sandhills is around 10,000
seconds. The usage of 100 or more clusters of transcripts
improves the running time on Sandhills for approximately
80% compared to the running time of 10 clusters. Although
the usage of more than 100 clusters doesn’t decrease this
running time significantly, the selection of 300 clusters gives
the optimum performance with the resources allocated from
Sandhills for this experiment. We must emphasize that the
running time for the both platforms and the optimal number

of used clusters of transcripts may vary for every new run
due to the availability of the current resources.

Figure 4. Comparing workflow running time on Sandhills and OSG when
blast2cap3 is executed serially and as a scientific workflow with “n” is 10,

100, 300, and 500 respectively.

551

B. Comparing Running Time Per Task on Sandhills and
OSG for Different Values of “n”
The running time of the submitted tasks and jobs varies

among the two execution platforms and “n”, the number of
clusters of transcripts. In addition of this Section, we will
analyze the running time of the individual tasks from the
workflow, both for Sandhills and OSG when “n” is 10, 100,
300, and 500.

In order to achieve this, we use “Kickstart Time”,
“Waiting Time” and “Download/Install Time” statistics.
The “Kickstart Time” statistic defines the actual duration
and running time of a job on the remote node.
The “Waiting Time” statistic is a sum of the time spent
waiting on the submit host and the time spent waiting on the
remote host before the actual execution starts.
The “Download/Install Time” statistic refers to the Pegasus
WMS implementation of blast2cap3 for OSG and indicates
the time spent for downloading and installing the Python
and Biopython libraries and CAP3 executable required for
this experiment.
 On Fig. 5 the running times per tasks are shown for both
Sandhills and OSG execution platforms when “n” is 10,
100, 300, and 500 respectively.

While the tasks for creating lists of the input files and for
merging the final results have running time of few minutes,
the higher consumption of time occurs when CAP3 is used
for merging the transcripts within the clusters.

The “Waiting Time” value for the tasks ran on Sandhills
is small and negligible. On the other hand, this value
unevenly changes, increases and decreases, for the tasks ran
on OSG. This observation once again shows that the
resources available on OSG are opportunistic, and the OSG
user can not control the availability or the lack of resources
over time. Unlike Sandhills, failures and retries of the
workflow were observed on OSG. This occurrence that is
generally common and frequent on grids also increases the
value of the “Waiting Time” statistic.

The “Kickstart Time” value per task on Sandhills slowly
decreases when “n” increases. Higher values of “n” induce
even more significantly greater reduction of the running
time of the tasks ran on OSG.

However, the “Download/Install Time” value influences
over the total running time of the tasks ran on OSG.
Although some tasks on OSG have smaller running time
than the tasks ran on Sandhills for the same value of “n”,
they still exceed the running time of the tasks on Sandhills.

552

 Figure 5. Comparing blast2cap3 workflow running time per task on Sandhills and OSG when “n” is 10, 100, 300, and 500 respectively.

This happens because an additional time is required for
the tasks on OSG to download and install the necessary
libraries and executables on the OSG resources.

VII. CONCLUSION
The expansion of scientific data leads to research that

requires complex and data-intensive analyses and
simulations. Therefore, many scientists use workflows over
distributed resources to manage these large and complex
computational tasks. Workflow applications can be used in
different scientific fields, such as biology, physics,
astronomy, and many others.

In this paper we build a scientific workflow for
blast2cap3, the protein-guided assembly, using the Pegasus
Workflow Management System (Pegasus WMS).
Furthermore, we describe our experience deploying this
workflow on two different distributed execution platforms:
Sandhills, the University of Nebraska Campus Cluster, and
the Open Science Grid (OSG). Our objective was to compare
and evaluate the performance of the built scientific workflow
for both platforms used. Furthermore, we wanted to show the
importance of using scientific workflows for executing
computationally demanding granular tasks and pipelines.

The performed experiments for this paper show that the
Pegasus WMS implementation of blast2cap3 ran on both
platforms significantly reduces the running time of the
current serial implementation of blast2cap3 for more than 95
%. This high percentage shows the importance and the
efficiency of using scientific workflows.

Beside the difference between the serial and parallel
execution of blast2cap3, we also observed the difference in
the running times on both Sandhills and OSG execution
platforms. Although OSG provides bigger variety of
computational resources than Sandhills, for our experiments,
the workflows ran on the campus cluster resulted in better
running time. Moreover, the selection of 300 clusters of
transcripts gives the optimum performance with the
resources allocated from Sandhills for the completed
experiment.

While the Sandhills resources contain the most frequently
used software tools, the OSG resources may have different
software configuration. Therefore, the tasks on OSG used
more running time than the tasks running on Sandhills
because of downloading and installing the required libraries
and tools for blast2cap3. In addition, the availability of
resources on OSG is highly variable and opportunistic, and
therefore the performance and the running time of the tasks

553

vary significantly. Workflows running on OSG may result
with excellent or very poor results depending whether there
are plenty or few available resources. In addition, workflow
failures and retries were observed on OSG that also increase
the running time.

However, if comparing only the actual duration and
running time of tasks on both platforms, ignoring the
“Waiting Time” and the “Download/Install Time”, OSG
gives significantly better results. Hence, setting the proper
software configuration on the OSG resources for less time
will be considered as part of the future work.

Despite campus clusters and grids, recently the scientists
are investigating the use of clouds for deploying scientific
workflows. Using academic and commercial clouds as an
execution platform for the blast2cap3 workflow built in this
paper will be challenging, but important and useful further
step of this research.

Developing scientific workflows for applications from
different scientific fields is a valuable and crucial step that
connects complex and large granular tasks with thousands
available powerful computational and distributed resources.
The outcome of this process are automated complex analysis,
real-time results and improved time performance that allow
scientists to easily design, execute, modify and re-run their
experiments.

ACKNOWLEDGMENT
We would like to thank Dr. Adam Caprez, HPC

Applications Specialist at the University of Nebraska
Holland Computing Center, for his extensive help and useful
suggestions during the preparation of the experiments for this
paper.

This work was completed utilizing the Holland
Computing Center of the University of Nebraska, as well as
using resources provided by the Open Science Grid, which is
supported by the National Science Foundation and the U.S.
Department of Energy's Office of Science.

REFERENCES
[1] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D.

Gannon, C. Goble, M. Livny, L. Moreau, J. Myers,
“Examining the Challenges of Scientific Workflows,”
Computer 40.12 (2007): 24-32.

[2] E. Deelman, G. Singha, M. Sua, J. Blythea, Y. Gila, C.
Kesselmana, G. Mehtaa, K. Vahia, G. Berrimanb, J. Goodb,
A. Laityb, J. Jacobc, D. Katzc, “Pegasus: a Framework for
Mapping Complex Scientific Workflows onto Distributed
Systems,” Scientific Programming Journal, Vol 13(3), pages
219-237, 2005.

[3] P. Couvares, T. Kosar, A. Roy, Jeff Weber and Kent Wenger,
"Workflow in Condor", in In Workflows for e-Science,
Editors: I.Taylor, E.Deelman, D.Gannon, M.Shields, Springer
Press, January 2007 (ISBN: 1-84628-519-4).

[4] D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing
in Practice: The Condor Experience," Concurrency and
Computation: Practice and Experience, Vol. 17, No. 2-4,
pages 323-356, February-April, 2005.

[5] T. Oinn, M. Greenwood, M. Addis, M Alpdemir, J. Ferris, K.
Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P.
Lord, M. Pocock, M. Senger, R. Stevens, A. Wipat, C. Wroe,

“Taverna: lessons in creating a workflow environment for the
life sciences,” Concurrency Computat: Pract. Exper., 18:
1067–1100 (2006). doi: 10.1002/cpe.993.

[6] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. Lee, J. Tao, Y. Zhao, “Scientific workflow
management and the Kepler system,” Concurrency
Computat.: Pract. Exper., 18: 1039–1065, (2006). doi:
10.1002/cpe.994.

[7] S. Cohen-Boulakia, U. Leser, “Search, Adapt, and Reuse: The
Future of Scientific Workflow,” SIGMOD Record 40(2):6-16,
2011.

[8] Open Science Grid. [http://www.opensciencegrid.org/].
[9] Extreme Science and Engineering Discovery Environment

(XSEDE). [http://www.xsede.org/].
[10] Amazon Elastic Compute Cloud.

[http://aws.amazon.com/ec2/].
[11] FutureGrid. [http://futuregrid.org/].
[12] Y. Surget-Groba, J. Montoya-Burgos, “Optimization of de

novo transcriptome assembly from next-generation
sequencing data,” Genome Res. 2010 Oct;20(10):1432-40.
doi: 10.1101/gr.103846.109.

[13] H. Xiaoqiu, M. Anup, “CAP3: A DNA Sequence Assembly
Program,” Genome Res. 1999 September; 9(9): 868–877.

[14] Buffalo V: Blast2cap3 software .
[https://github.com/vsbuffalo/blast2cap3/].

[15] K. Krasileva, V. Buffalo, P. Bailey, S. Pearce, S. Ayling, F.
Tabbita, M. Soria, S. Wang, IWGS Consortium, E. Akhunov,
C. Uauy, J. Dubcovsky, “Separating homeologs by phasing in
the tetraploid wheat transcriptome,” Genome Biology 2013,
14:R66 doi:10.1186/gb-2013-14-6-r66.

[16] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, “Basic
local alignment search tool, J Mol Biol 1990, 215:403-410.

[17] J. Yu, R. Buyya, “A taxonomy of scientific workflow systems
for grid computing,” SIGMOD Rec., vol. 34, pages 44–49,
September 2005, 2, 13, 56.

[18] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K.
Vahi, K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh,
S. Koranda, “Mapping Abstract Complex Workflows onto
Grid Environments,” Journal of Grid Computing 2003,
Volume 1, Issue 1, pp 25-39.

[19] Pegasus 4.3 User Guide.
[https://pegasus.isi.edu/wms/docs/latest/pegasus-user-
guide.pdf/].

[20] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, “Pegasus:
Planning for Execution in Grids,” GriPhyN technical report
20(17):12-22

[21] J. C. Good, J. C. Jacob, C. Kesselman, A. C. Laity, T. A.
Prince, G. Singh, M. Su, and R. Williams, "Astronomical
Image Mosaicking on a Grid: Initial Experiences," in
Engineering the Grid: Status and Perspective, B. D.Martino, J.
Dongarra, A. Hoisie, L. T. Yang, and H. Zima, Eds.:
American Scientific Publishers, 2006.

[22] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman, "Workflow
Management in GriPhyN," in Grid Resource Management:
State of the Art and Future Trends, J. Nabrzyski, J. M.
Schopf, and J. Weglarz, Eds.: Springer, 2003.

[23] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R.Graves,
N. Gupta, V. Gupta, T. H. Jordan, C. Kesselman,P.
Maechling, J. Mehringer, G. Mehta, D. Okaya, K. Vahi,and L.
Zhao, "Managing Large-Scale Workflow Execution from
Resource Provisioning to Provenance Tracking: The
CyberShake Example," presented at Second IEEE
International Conference on e-Science and Grid Computing,
2006.

[24] Sandhills UNL HPC Cluster. [http://hcc.unl.edu/sandhills/].

554

[25] M. Altunay, P. Avery, K. Blackburn, B. Bockelman, M.
Ernst, D. Draser, R. Quick, R. Gardner, S. Goasguen, T.
Levshina, M. Livny, J. McGee, D. Olson, R. Pordes, M.
Potekhin, A. Rana, A. Roy, C. Sehgal, I. Sfiligoi, F.
Wuerthwein, The Open Science Grid Executive Board, “A
Science Driven Production Cyberinfrastructure - the Open
Science Grid,” Journal of Grid Computing (Impact Factor:
1.6). 9(2):201-218. DOI:10.1007/s10723-010-9176-6 Source:
dx.doi.org.

[26] NCBI BioProjects
[http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA19105
3/]/

[27] Python Programming Language. [http://www.python.org/].
[28] Biopython. [http://biopython.org/].
[29] R. Littauer, K. Ram, B. Ludascher, W. Michener, R. Koskela,

“Trends in Use of Scientific Workflows: Insights from a
Public Repository and Recommendations for Best Practice,”
The International Journal of Digital Curation, Volume 7, Issue
2 | 2012.

[30] H. AlHakami, H. Aldabbas, T. Alwada’n, “Comparison
Between Cloud and Grid Computing: Review Paper,”
International Journal on Cloud Computing: Services and
Architecture (IJCCSA),Vol.2, No.4, August 2012.

555

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2014

	A Comparison of a Campus Cluster and Open Science Grid Platforms for Protein- Guided Assembly using Pegasus Workflow Management System
	Natasha Pavlovikj
	Kevin Begcy
	Sairam Behera
	Malachy Campbell
	Harkamal Walia
	See next page for additional authors
	Authors

	A Comparison of a Campus Cluster and Open Science Grid Platforms for Protein-Guided Assembly Using Pegasus Workflow Management System

