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The precipitation efficiencies (RMPE, CMPE, and LSPE) can be defined as the
ratio of rain rate to rainfall sources in the rain microphysical budget, the cloud
microphysical budget, and the surface rainfall budget, respectively. The estimate of
RMPE from grid-scale data serves as the true precipitation efficiency since the rain
rate is a diagnostic term in the tropical rain microphysical budget. The accuracy of
precipitation efficiency estimates with CMPE and LSPE is compared to that of RMPE
by analyzing data from a 21-day two-dimensional cloud-resolving model simulation
with imposed large-scale vertical velocity, zonal wind, and horizontal advection
obtained from the Tropical Ocean Global Atmosphere Coupled Ocean—Atmosphere
Response Experiment. The results show CMPE is generally smaller than RMPE. The
root-mean-squared difference between RMPE and LSPE is larger than the standard
deviation of RMPE. Thus, water vapour process data cannot be used to estimate
precipitation efficiency. Copyright (©) 2011 Royal Meteorological Society
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1. Introduction

Precipitation efficiency is an important physical parameter
in convective systems and has been applied to determine
the rainfall intensity in operational precipitation forecasts
(e.g. Doswell et al., 1996). Since Braham (1952) calculated
precipitation efficiency with the inflow of water vapour
into the storm through cloud base as the rainfall source
more than half century ago, precipitation efficiency has
been defined as the ratio of the precipitation rate to the
sum of all precipitation sources. This definition of large-
scale precipitation efficiency (LSPE) has been modified
and widely applied in modelling studies and operational
forecasts (e.g. Auer and Marwitz, 1968; Heymsfield and
Schotz, 1985; Chong and Hauser, 1989; Doswell et al,
1996; Ferrier et al., 1996; Li et al. 2002; Tao et al., 2004;
Sui et al, 2005). Due to the fact that prognostic cloud

Copyright (©) 2011 Royal Meteorological Society

microphysical parametrization schemes are used in cloud-
resolving modelling of convective processes, precipitation
efficiency is also defined through cloud microphysical
budgets as cloud microphysics precipitation efficiency
(CMPE; e.g. Weisman and Klemp, 1982; Lipps and Hemler,
1986; Ferrier et al., 1996; Li et al., 2002; Sui et al., 2005).
While estimates of CMPE and LSPE can be more than 100%
and LSPE estimates can be negative, they are altered to fall
within the normal range of 0—100% through the inclusion
of all rainfall sources and the exclusion of all rainfall sinks
from the surface rainfall budget for LSPE (Gao et al., 2005),
and the cloud microphysical budget for CMPE (Sui et al.,
2007).

While the precipitation efficiencies in the previous
studies have been defined in the surface rainfall budget
derived from water vapour and cloud budgets and in the
cloud microphysical budget derived from the microphysical

| This article is a U.S. government work, and is not subject to copyright in the United States.
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budgets of five cloud species (cloud water, rain, cloud
ice, snow, and graupel; e.g. Li ef al., 2002; Sui et al,
2007), we argue that the precipitation efficiency can be
defined only in the budget where precipitation rate is a
diagnostic term. An example of such a primitive budget is
the rain microphysical budget in the Tropics. Thus, the rain
microphysical budget is used to define rain microphysics
precipitation efficiency (RMPE) and its estimate from grid-
scale simulation data serves as the ‘true’ precipitation
efficiency in this study. LSPE and CMPE may deviate from
RMPE because only rainfall sources are used to estimate
precipitation efficiency. Do CMPE and LSPE deviate from
RMPE? What causes the differences? Can water vapour
process data be used to estimate precipitation efficiency?
These questions will be discussed by analyzing a 21-day two-
dimensional (2D) cloud-resolving model simulation that is
forced by the large-scale forcing derived from the Tropical
Ocean Global Atmosphere Coupled Ocean—Atmosphere
Response Experiment (TOGA COARE). In the next section,
the cloud model, forcing, and experiment are described. The
results are presented in section 3. The summary is given in
section 4.

2. Model and experiment

The cloud-resolving model used in this study is the 2D
version of the Goddard Cumulus Ensemble Model, which
was originally developed by Soong and Ogura (1980), Soong
and Tao (1980), and Tao and Simpson (1993) and was
modified by Li et al. (1999). The model has prognostic
equations of potential temperature, specific humidity,
mixing ratios of cloud water, raindrop, cloud ice, snow,
and graupel, and perturbation momentum. The model also
includes the cloud microphysical parametrization schemes
(Lin et al.,, 1983; Rutledge and Hobbs, 1983, 1984; Tao
et al., 1989; Krueger et al., 1995) and interactive solar and
thermal infrared radiation parametrization schemes (Chou
et al., 1991, 1998; Chou and Suarez, 1994). The model uses
cyclic lateral boundaries, a horizontal domain of 768 km, a
horizontal grid resolution of 1.5 km, 33 vertical levels, and a
time step of 12 s. Detailed model descriptions can be found
in Gao and Li (2008).

The model is forced by zonally uniform vertical velocity,
zonal wind, and thermal and moisture advection based on
6-hourly TOGA COARE observations within the Intensive
Flux Array (IFA) region (Zhang, personal communication,
1999). The calculations are based on a constrained,
variational method applied to column-integrated budgets
of mass, heat, moisture, and momentum as proposed by
Zhangand Lin (1997). Hourly sea surface temperature (SST)
at the Improved Meteorological (IMET) surface mooring
buoy (1.75°S, 156°E) (Weller and Anderson, 1996) is also
imposed in the model. The model is integrated from 0400
LST on 18 December 1992 to 1000 LST on 9 January 1993
(a total of 486 h). Figure 1 shows the time evolution of
the vertical distribution of the large-scale vertical velocity
and zonal wind and the time series of the SST, which
are imposed in the model during the integrations. The
21-day simulation data have been applied to the analysis
of precipitation processes including the roles of surface
evaporation (Cui and Li, 2006), ice microphysics (Gao et al.,
2006), precipitation efficiency (Li et al., 2002; Sui et al.,
2005, 2007), and diurnal variation (Gao et al., 2009). Hourly
simulation data are used in this study.

Copyright (© 2011 Royal Meteorological Society
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3. Results
3.1.  RMPE: ‘true’ precipitation efficiency
The mass-integrated rain microphysical budget in the

Tropics is used to define RMPE, which can be written
as

12
Ps— Quv = ) RP;,

(1)
=1
where
Ps = pwreqr =0, (1a)
_ 0lge] 94r 9q:
Qv = ==, _[“ax}_[waz]’ (16)
RPy = {[Psacw(T > To)], [Pravt]; [PrACW ]S
[Poacw (T > Ty)], —[Preve]s [Pracs(T > To)l,
—[Piacr(T < To)], —[Pgacr(T < Top)l,
—[Psacr(T < To)l, =[Pcrr(T < Tp)l,
[Psmrt(T > To)], [Pomer(T > To)1}. (Ic)

Here, Ps is surface rain rate; p is air density, which is
height dependent only; wr, is terminal velocity for rain,
gr is the mixing ratio of rain; z is vertical coordinate; u
and w are the zonal and vertical components of wind,
respectively; RP; denotes the rainfall source/sink terms from
rain microphysical processes, which are defined in Table I,
and Tp = 0°C. [(...)] = fzit 0(...)dz, where z and z, are
the heights of the top and bottom of the model atmosphere
respectively.
Thus, RMPE is defined as

Pg

RMPE = ,
RSRB

)

where RSRB (= RSR + H(Qgrp)Qrum) is the rainfall source
from rain microphysical budget;

12
RSR (: H (RP[)RP1> is the rainfall source from rain
=1
microphysical processes, and

H is the Heaviside function,

1ifF > 0,

HF) = {o ifF < 0.

RMPE is calculated using hourly data and accumulating
rainfall sources (RSRB) from each model grid over the model
domain, which serves as the ‘true’ precipitation efficiency.

3.2.  CMPE versus RMPE
Sui et al. (2007) used the cloud microphysical budget

to define precipitation efficiency (CMPE). The cloud
microphysical budget can be expressed by

7
Ps — Qcm = Zpb

I=1

(3)

Q. J. R. Meteorol. Soc. 137: 969-978 (2011)
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Figure 1. Time — height cross-sections of (a) vertical velocity (cm s~!), and (b) zonal wind speed (m s™!), and time series of (c) sea surface temperature
(°C) observed and derived from TOGA COARE for the 21-day period. Upward motion in (a) and westerly winds in (b) are shaded.

where
PS = ﬁWTrQr |z:0; (33)
__dlal_[9a]_ [0
Qom = =, [Bx] |:82j|’ (30)
P; = ([Pcap)s [Poepls [Pspep]s [Popep]s
—[Prevel, —[Pmrtcl, —[Pmrrs]). (3c)

Here, g = qc +qr + qi + g5 + dg» where de> qr> > s> g are
the mixing ratios of cloud water, raindrops, cloud ice, snow,
and graupel, respectively; P; denotes rainfall source/sink
terms from cloud microphysical processes, which are defined
in Table I. Thus, CMPE is defined as

Pg

CMPE = >
RSC + H(Qcm)QcMm

(4)

Copyright (© 2011 Royal Meteorological Society

7

where RSC (: > H (PI)P1> is the rainfall source from
=1

cloud microphysical processes.

Rainfall sources are used to calculate precipitation
efficiency, whereas rainfall sinks are excluded, which can
yield the difference between RMPE and CMPE. This is
demonstrated in Figure 2 where RMPE is larger than CMPE.
RMPE and CMPE are calculated by accumulating rainfall
sources from each model grid over the model domain in
Figure 2.

Since the cloud microphysical budget is derived by
combining mass-integrated microphysical budgets of cloud
water, rain, cloud ice, snow, and graupel, the difference
between RMPE and CMPE can be contributed to by
microphysical budgets of cloud water, cloud ice, snow,

Q. J. R. Meteorol. Soc. 137: 969-978 (2011)



972 S. Gao and X. Li
Table I. List of microphysical processes and their parametrization schemes.
Notation Growth of: By: Scheme*
Pyvrte Vapour Evaporation of liquid from graupel surface RH84
Pnirrs Vapour Evaporation of melting snow RH83
Prevp Vapour Evaporation of raindrops RHS3
Pt Cloud water Melting of cloud ice RHS3
Pcnp Cloud water Condensation of supersaturated vapour TSM
Pomrr Raindrops Melting of graupel RH84
Psyrt Raindrops Melting of snow RH83
Pracr Raindrops Accretion of cloud ice RHS84
Pracw Raindrops Collection of cloud water RHS83
Pracs Raindrops Accretion of snow RH84
Praut Raindrops Autoconversion of cloud water LFO
Pipw Cloud ice Deposition of cloud water KFLC
Piacr Cloud ice Accretion of rain RHS84
Praom Cloud ice Homogeneous freezing of cloud water
Ppgp Cloud ice Deposition of supersaturated vapour TSM
Psaur Snow Conversion of cloud ice RHS83
Psacr Snow Collection of cloud ice RH83
Psacw Snow Accretion of cloud water RH83
Pspw Snow Deposition of cloud water KFLC
Pgpy Snow Deposition from cloud ice KFLC
Psacr Snow Accretion of raindrops LFO
Pspep Snow Deposition of vapour RH83
Pcacr Graupel Collection of cloud ice RH84
Pcacr Graupel Accretion of raindrops RH84
Pgacs Graupel Accretion of snow RH84
Poacw Graupel Accretion of cloud water RH84
Pwacs Graupel Riming of snow RH84
Pgpep Graupel Deposition of vapour RH84
Pgrr Graupel Freezing of raindrops LFO
*KFLC: Krueger et al. (1995). LFO: Lin et al. (1983).
RH83, RH84: Rutledge and Hobbs (1983,1984). TSM: Tao et al. (1989).
90 .
. 15
: . .. Qsm + Z SP; =0, (5¢)
. sl I=1
60 - TR X
E - - ..., .! " o
= Ry i 3 14
e . %0:,.,?§‘? . Qam + Z GP; =0, (5d)
04, wEEE =
. ';.-"; > where
o
3= _0lgd [ aqc} [
o : : - Qewm = ——— — |u— | — (6a)
0 30 60 90 at 0x
CMPE
Figure 2. RMPE versus CMPE (%). RMPE and CMPE are calculated by
using hourly data and accumulating rainfall sources from each model grid d[qi] 9gi
over the model domain. The diagonal line denotes RMPE=CMPE. Qe = — 9t |:u51| - |:W (6b)
and graupel. The budgets can be written as
_ gl _[ %} _[
9 Qsm = u w (6¢)
_ at dax
Qcwm + Y CWP; =0, (5a)
I=1
° ad 0
Qcim + Z CIP; =0, (5b) Qem = —% - [ug} - [ (6d)

I=1

Copyright (© 2011 Royal Meteorological Society
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Figure 3. (a) Rainfall source from cloud microphysics (RSC) versus rainfall source from rain microphysics (RSR), (b) RSC versus rainfall source from
cloud water microphysics (RSCW), (c) RSC versus rainfall source from cloud ice microphysics (RSCI), (d) RSC versus rainfall source from snow
microphysics (RSS), and (e) RSC versus rainfall source from graupel microphysics (RSG). Calculations are conducted by accumulating rainfall sources
from each model grid over the model domain. The diagonal lines denote 1:1 equivalences.

SP; = {Psaut(T < To), Psaci(T < To),
Psacw (T < To), Pspw (T < To),
Pspi(T < To), Praci(T < Tp),
—Pracs(T > To), —Pcacs»
—Psmur(T > To), —Pracs(T < To),
Psacr(T < To), Pspep(T < To),
—Pyrs(T > To), Pracr(T < To),

CWP; = {—Psacw> —Praut, —Pracw»
—Pspw(T < To), —Pcacw, Peno,
—Pmom(T < Too), Pyt (T > To),
—Pipw(Too < T < To)}, (6e)

CIP; = —Pspur(T < To), —Psaci(T < Top),

—Pwacs(T < To)}, (6g)
—Praci(T < To), =Pspi(T < To),
—Peaci(T < To), PrHom(T < Too), GP = {Praci(T < To), Peaci(T < Ty),
=Pt (T > To), Pow(Too < T < To), Peacw(T < To), Psacw(T < To),
Ppgp}, (6f) Pcacss Pracr(T < Tp), Poacr(T < Ty),

Copyright (© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 137: 969-978 (2011)



974

4
(a)
3.
=
< 27
1_ e
5
0 :
0 1 2 3 4
4 QRM
()
3.
=
< 27
1J
0 : ; :
0 1 2 3 4
4 QCD‘
(e)
3.
32
1_.
e
o MBS ° : :
0 1 2 3 4
QG)‘

S. Gao and X. Li

4
(b)
3_
2
o 27
1_ L)
0 :
0 1 2 3 4
. Qewu
(d)
3_
32
1_.
0 . : :
0 1 2 3 4
QSI‘
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versus H(Qsy)Qspm» and (e) H(Qenm)Qewm versus H(Qeu)Qeum- Caleulations are conducted by accumulating each term from each model grid over the

model domain. The diagonal lines denote 1:1 equivalences.

Pracs(T < To), Porr(T < To),
Pwacs(T < Ty), —Pomrt(T > To),
Pepep(T < To), —Pmrt(T > To),

Pspcr(T < Tp)}. (6h)

CWPy, CIP;, SP;, and GP; denote rainfall source/sink terms
from microphysical processes of cloud water, cloud ice,
snow, and graupel, respectively. The microphysical processes
in (6e)—(6h) are defined in Table I, and Ty = —35°C.

Since the rainfall sources are obtained by taking positive
values for (5a)—(5d), we may get

H(Qcwm)Qcwm + RSCW # 0, (7a)

Copyright (© 2011 Royal Meteorological Society

H(Qcmm)Qcmv + RSCI # 0, (7b)
H(Qsm)Qsm + RSS # 0, (7¢)
H(Qam)QaMm + RSG # 0, (7d)

where RSCW

9
(: H(CWPI)CWPI),
I=1

9 15
RSCI <= > H(CIPI)CIPI), RSS (: > H(SPI)SP1>,
I=1 I=1

14
RSG <= ZH(GPI)GPI> are the rainfall sources from
17

1
cloud water, from cloud ice, from snow and from graupel
microphysical processes, respectively.

Q. J. R. Meteorol. Soc. 137: 969-978 (2011)
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Figure 5. Rainfall source from rain microphysical budget (RSRB) versus rainfall source from water vapour and cloud microphysical budget (RSWVCB).
RSR is calculated by accumulating rainfall sources from each model grid over the model domain with hourly data, whereas RSWVCB is calculated by
using (a) grid data (1.5 km), (b) 12 km, (c) 96 km, (d) 192 km, (e) 384 km, and (f) 768 km (model domain) mean data. Unit is mm h~!. The diagonal

lines denote RSRB = RSWVCB.

Equations (7a)—(7d) show the possible contributions
of microphysical budgets of cloud water, cloud ice,
snow, and graupel to the difference between RMPE and
CMPE. This can be demonstrated in Figure 3, which
shows RSC versus RSR, RSCW, RSCI, RSS, and RSG,
respectively, and in Figure 4, which shows H(Qcm)Qcm
H(Qrm)QrM> H(Qcwm)Qcwm, H(Qcmv)Qcims
H(Qsm)Qsm, and H(Qgm)Qowm, respectively. The graupel
and cloud water microphysical budgets contribute more to
the difference in rainfall sources between RMPE and CMPE
than the cloud ice and snow microphysical budgets do, while

versus

the cloud microphysical budget (3) is primarily attributable
to the rain microphysical budget (1).

Copyright (© 2011 Royal Meteorological Society

3.3.  LSPE versus RMPE

While cloud information is usually unavailable from
conventional data, water vapour processes can be estimated
with available conventional data. Sui et al. (2007) showed
that large-scale precipitation efficiency (LSPE) is defined as

Ps

LSPE = ——,
RSWVCB

(8d)

4
where RSWVCB <= ZH(QI)Q[) is the rainfall
=1

source from water vapour and cloud budgets, Q; =

(QwvT, Qwve, Qwve, Qcm), where Qwyr is the local vapour
change, Qwyvr is vapour convergence, and Qwvg is the sur-
face evaporation rate. LSPE (8) can be derived from the

Q. J. R. Meteorol. Soc. 137: 969-978 (2011)
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Figure 6. RMPE versus LSPE (%). RMPE is calculated by accumulating rainfall sources from each model grid over the model domain with hourly data,
whereas LSPE is calculated by using (a) grid data (1.5 km), (b) 12 km, (c) 96 km, (d) 192 km, (e) 384 km, and (f) 768 km (model domain) mean data.

The diagonal lines denote RMPE = LSPE.

surface rainfall budget (Gao et al., 2005; Cui and Li, 2006),
which combines the mass-integrated cloud microphysical
budget (3) with the mass-integrated water vapour budget,
which can be expressed as

7
Quvr + Qwvi + Quwve = » _Pr=Ps—Qom.  (9)
=1

The comparison between RMPE (2) and LSPE (8) indi-
cates that LSPE=RMPE only when RSRB = RSWVCB.
This is not the case, as indicated in Figure 5. The rain-
fall source from the rain microphysical budget (RSRB =
RSR + H(Qgrpm)Qru) is generally smaller than the rainfall
source from the water vapour and cloud microphysical bud-

4
get (RSWVCB =y H(QI)QI> when the water vapour and

I=1

Copyright (© 2011 Royal Meteorological Society

cloud microphysical budgets are averaged over areas smaller
than 192 km (Figures 5(a)—(d)), whereas it is generally
larger than RSWVCB when the water vapour and cloud
microphysical budget is averaged over areas larger than
384 km (Figures 5(e, f)). As a result, LSPE is significantly
different from RMPE (Figure 6). The root-mean-squared
(RMS) differences between RMPE and LSPE are 20.7 to
37.5% (Table II), which are significantly larger than the
RMS difference between RMPE and CMPE (15.3%) and the
standard deviation of RMPE (18.0%).

Many previous studies showed the effects of vertical
wind shear on the development of convective systems and
associated rainfall (e.g. Pastushkov, 1975; Corbosiero and
Molinari, 2002; Wang et al., 2009; Shen et al., 2011). Vertical
wind shear and its standard deviation, o, is calculated using
the vertical zonal-wind difference between 11 km and 3.7 km
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Table II. RMS differences between RMPE and estimates of LSPE using grid-scale (1.5 km) and model-domain mean
(768 km) data and data averaged over the areas of 12 km, 96 km, 192 km, and 386 km.

1.5 km 12 km

96 km 192 km 384 km 768 km

RMS difference (%) 37.5 31.7

23.1 20.7 21.8 31.0

(maximum westerly wind) and categorized wind-shear data
into three types: strong shear (wind shear larger than 20),
moderate shear (wind shear between o and 20), and weak
shear (wind shear less than o). The RMS differences between
LSPE and RMPE are 22.6% for strong shear, 23.3% for
moderate shear, and 20.5% for weak shear when LSPE is
calculated using large-scale data averaged over the area of
384 km. The standard deviations of RMPE are 18.2% for
strong shear, 17.2% for moderate shear, and 18.1% for weak
shear. The RMS differences between RMPE and LSPE are
larger than the standard deviations of RMPE. The estimate
of precipitation efficiency with water vapor process data may
not capture the variation of the true precipitation efficiency.
Therefore, water vapour process data cannot be used to
estimate precipitation efficiency.

4. Summary

In this study, precipitation efficiency (RMPE) is first defined
through a rain microphysical budget where precipitation
rate is a diagnostic term and is considered to be the ‘true’
precipitation efficiency when it is calculated by accumulating
rainfall source from each model grid over the model
domain. RMPE is then compared with cloud microphysics
precipitation efficiency (CMPE) defined through a cloud
microphysical budget and large-scale precipitation efficiency
(LSPE) through a water vapour budget. The precipitation
efficiencies are calculated using hourly data from a 21-day
2D cloud-resolving model simulation with imposed large-
scale vertical velocity, zonal wind and horizontal advection
obtained from TOGA COARE data. The calculations with
accumulations of rainfall sources from each model grid
over the entire model domain show that CMPE is generally
smaller than RMPE. The difference between RMPE and
CMPE is primarily from the graupel and cloud water
microphysical budgets. The comparison between RMPE and
LSPE shows that their RMS differences are larger than the
standard deviation of RMPE. This suggests that water vapour
process data may not be used to estimate precipitation
efficiency. Since this study only uses 2D simulation data with
idealized cyclic lateral boundaries, 3D model simulations are
needed to investigate temporal and spatial dependence of
precipitation efficiency through analyzing relations between
RMPE, CMPE, and LSPE and to evaluate the calculations of
precipitation efficiency with large-scale water vapour process
data.
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