WHOOPING CRANE RESPONSE TO DISTURBANCES AT THE ARANSAS NATIONAL WILDLIFE REFUGE

Thomas E. Lewis
Texas A & M University

R. Douglas Slack
Texas A & M University

Follow this and additional works at: http://digitalcommons.unl.edu/nacwgproc
Part of the Behavior and Ethology Commons, Biodiversity Commons, Ornithology Commons, Population Biology Commons, and the Terrestrial and Aquatic Ecology Commons

http://digitalcommons.unl.edu/nacwgproc/267

This Article is brought to you for free and open access by the North American Crane Working Group at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in North American Crane Workshop Proceedings by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
WHOOPING CRANE RESPONSE TO DISTURBANCES AT THE ARANSAS NATIONAL WILDLIFE REFUGE

THOMAS E. LEWIS, Department of Wildlife and Fisheries Sciences, Texas A & M University, College Station, TX 77843

R. DOUGLAS SLACK, Department of Wildlife and Fisheries Sciences, Texas A & M University, College Station, TX 77843

Abstract: Many forms of disturbance on and near the Aransas National Wildlife Refuge cause disruptions to wintering whooping cranes (Grus americana). Known forms of disturbance include various boating, aircraft, and automobile traffic. Natural disturbance from other wildlife also occurs. Behavioral observations and disturbance documentation have shown that whooping cranes respond differently to various disturbances. Although airplane overflights, recreational boating, barge traffic, and workboat activity represent the most frequent disturbances to whooping cranes (22, 19, 14, and 13%, respectively, of total disturbances), it appears that frequency of occurrence is less important than the disturbance class and distance from the cranes. Whooping cranes react most strongly to helicopters, airboats, tourboats, and other intruding whooping cranes when the activity is less than 1,000 m away, and flushing rates are 50, 38, 24, and 20%, respectively. Disturbance may severely impact maintenance of optimal energy budgets or cause injury to whooping cranes. These data represent preliminary results from the first year of a 2-year project.

Key Words: behavior, disturbance, Grus americana, Texas, whooping crane, winter