Crop Watch No. 2004-9, May 14, 2004

Lisa Brown Jasa
University of Nebraska-Lincoln, ljasa@unlnotes.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cropwatch

Part of the Agriculture Commons

http://digitalcommons.unl.edu/cropwatch/268

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Crop Watch by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
In western Nebraska

Lack of rainfall takes a toll on wheat

Wheat is developing quickly, but wheat condition, especially in western and southwest Nebraska, is becoming quite varied due to little or no rain in recent weeks.

“The wheat crop is maturing ahead of normal with flag leaves beginning to emerge in many fields,” reported Karen DeBoer, Extension educator in Cheyenne County. While few insect and disease problems have been reported, “recent warm temperatures and a lack of soil moisture are causing the wheat to be stressed.”

Jim Schild, Extension educator in Scotts Bluff county, shared a similar report regarding the lack of moisture as well as pests.

“In some fields the wheat is starting to head and is only 12 inches tall. A lot of wheat is showing stress from the high temps and winds of the last two weeks. If we don’t get significant rain this week in most of the area, the wheat yields will decline rather significantly.”

Following a mid-week visit to Morrill and Cheyenne counties, Drew Lyon, Extension cropping systems specialist, reported that much of the wheat was already in the boot stage, about two weeks ahead of normal.

“Many wheat fields have areas showing drought stress symptoms, including death of lower leaves, curling flag leaves, and a graying or purpling of leaves.”

“Even the weeds are suffering. I saw downy brome and rye plants that had sloughed all their tillers except one or two where they are (Continued on page 81)

In southeast Nebraska

Conditions promote growth of powdery mildew in wheat

Powdery mildew continues to be the most prominent disease in southeast and south central Nebraska. Although I have never seen it severe enough to affect yields, this year could be the exception. Overcast, humid, mild weather is ideal for the reproduction and spread of powdery mildew, and these conditions have occurred often enough to promote its development.

Infection is moving up in the canopy and could reach the flag leaves in the next week to 10 days. If powdery mildew gets established on the flag leaves this early in the season and we continue to have weekly periods of overcast, wet, humid weather, yields could be threatened. In addition, leaf rust is present and will continue to develop under these conditions as well. At this point in wheat development, both diseases could threaten yields.

For irrigated wheat, particularly seed production fields, it may be advisable to apply a fungicide in the next week or so to protect the upper leaves from infection by mildew and rust. The two most popular varieties in the state, Jaganleene and Wesley, are both susceptible to powdery mildew but resistant to leaf rust.

The decision to treat dryland wheat with a fungicide is not as clear cut as it is for irrigated wheat. In the eastern Nebraska stands look good and yields could be similar to last year’s excellent numbers. The one difference is that this year April was dry and the crop needs rain to maintain yield potential. This week’s rain will help, but the crop will continue to need added moisture through May and into early June. If we knew we were going to get the key rains and moderate (Continued on page 81)
Ralph Kulm, Extension educator in Holt and Boyd counties: Dry weather continues to be a major concern here. Dryland alfalfa is very short and starting to bud. Producers are wondering whether they will just clip it or try to graze it off as much of it is too short to pick up with a baler. Brome is very short and starting to head. Some dryland farmers haven’t planted corn, feeling that it would be a waste of time while others are going through the motions, buying crop insurance. Irrigators are concerned that they will again be pumping +1500 hours (like last year) with much higher fuel costs. Pastures are looking very short and many producers are selling livestock to compensate.

Andy Christiansen, Extension Educator in Hamilton County: I caught European corn borers moths Monday night at Aurora, a little earlier than normal. We might have caught them even earlier than that, but I just turned on the trap Sunday (May 9). For the last four years, the first catch in my trap was May 18, May 24, May 16, and May 16 for 2003, 2002, 2001 and 2000, respectively.

Jennifer Chaky, Coordinator of the UNL Pest and Plant Disease Diagnostic Clinic, diagnostic sample report for May 3-7:

Alfalfa — Rhizoctonia crown rot from Lincoln County and Rhizoctonia root and stem rot from Cass County.

Wheat — powdery mildew from Adams County; Tan Spot and Wheat Streak Mosaic Virus from Red Willow County and High Plains Virus and Leaf Rust from Saline County.

Hot off the press

A new Cooperative Extension publication, Brown Mustard Production (EC04-183), will be released next week. Brown mustard has been tested at the Panhandle Research and Development Center in Scottsbluff. Its primary market is for biodiesel fuel.

This publication covers uses, general agronomics, seedbed preparation; planting; soil fertility; weed, disease and insect management; irrigation; harvest and storage; marketing and sample production budgets.

CropWatch is published from March to November by Cooperative Extension and Communications and Information Technology in the University of Nebraska Institute of Agriculture and Natural Resources, PO Box 830918, 108 Agricultural Communications Bldg., UNL, Lincoln, NE 68583-0918. To order a print subscription or to change your address, write to CropWatch at the above address or call (402) 472-7981. The newsletter also is available on the Web at cropwatch.unl.edu

Disclaimer: Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by University of Nebraska Cooperative Extension is implied.

Lisa Jasa, Editor; Email: ljasa1@unl.edu
Wheat (Continued from pag 79)

now putting all of their limited resources.”

“We need significant rainfall soon or our wheat crop will not amount to much in the Panhandle. The cooler temperatures expected during the second half of the week will help, but most wheat fields have or soon will have exhausted the soil water reserve just as the critical time for grain development is about to arrive. Substantial precipitation is needed in the next 7-10 days,” Lyon said.

Last year conditions initially were quite similar to this year’s and average overall yield for Nebraska was good -- 49 bushels per acre, said Ron Stoddard, executive director of the Nebraska Wheat Board.

“That just shows how wheat can endure with a little moisture at the right time. Last year’s moisture came at the time it was needed most,” Stoddard said. For this year’s crop, that time would be soon, in the next 10 days.

“We hope this year’s yield is equal to last year’s yield, but right now we’re just crossing our fingers,” Stoddard said.

Unusually high temperatures and high winds last week and early this week have only intensified the need for precipitation. Much of the state’s wheat is now in the boot stage and using 0.25 inch of moisture a day, if it’s available. Wheat should be heading in the next week or so across much of the state.

Last fall, winter wheat was sown on 1.95 million acres, up 3% from a year earlier and 18% from two years ago. While there has been an increase in irrigated wheat acres, Stoddard estimated the level at just 5% of total acres.

Part of the increase in irrigated winter wheat is due to a shift in crops on irrigated acres likely to receive only limited irrigation water this year. Some producers are planting wheat for a couple years and saving some of their water allocation for when they plant corn, Stoddard said.

Note: See story on page 80 regarding USDA’s revised estimate of wheat production in Nebraska for 2004.

Lisa Jasa
CropWatch Editor

Precipitation since April 1

Most of the state’s wheat production areas have received just 50-75% of normal precipitation since April 1. Scottsbluff has received just 1.09 inches of precipitation. That’s 46% of normal.

Other western Nebraska areas are showing similar precipitation deficits: Valentine, 1.26 inches (49%); Chambers, 2.02 inches (66%); Potter, 2.24 inches (96%); North Platte, 1.54 inches (52%); Benkelman, 2.83 inches (116%).

Southeast Nebraska has received slightly more precipitation since April 1 but has only received about half of what it normally receives. Precipitation reports for the area include Beatrice, 1.72 inches (44%); Fairbury, 2 inches (53%); and Nebraska City, 2.24 inches (51%).

Average precipitation since April 1 for the three reporting districts where the most Nebraska wheat is grown are: Northwest, 1.46 inches (55%); Southwest, 2.16 inches (77%); and Southeast, 1.90 (48%).

Overall, the state is reporting just 58% of normal precipitation since April 1.

Powdery mildew (Continued from page 79)

temperatures needed for the wheat to finish in good condition, then treatment with a fungicide to protect the upper leaves from mildew and rust would likely pay off. However, if the weather the next six weeks turns predominately hot, dry and windy, yields are going to decrease and the beneficial effects of fungicide treatment will not be as attractive. Unfortunately, none of us has a magic crystal ball that will accurately forecast weather conditions for the next two months.

To help dryland growers make this decision, if the stand and yield potential are good, and powdery mildew is currently present above the middle leaves of the plant but not yet on the flag or flag-leaves, applying a fungicide to protect the yield potential could be a good investment. The products Headline, PropiMax and Quadris can be applied up to heading or flowering, so growers do have a little more time to make the decision. However, don’t wait too long because the purpose of treatment is to keep the flag and flag-leaves along with the head free of infection or at least keep it to a low severity. Treatment costs range from $16 to $20 per acre. With wheat at $4 per bushel, the treatment cost is a little more attractive than when wheat was at $3 per bushel.

The early loss of flag leaves to powdery mildew and or leaf rust could easily reduce yields by 10% or more. For example, if a field has a 70 bushel per acre yield potential, a 10% loss due to disease would be 7 bushels which at $4 per bushel would be a $28 per acre loss. If it costs $18 per acre for the fungicide treatment, then the net gain of protecting the yield would be $10 per acre. Weather conditions from now through grain fill will be the overriding factor for both disease development and yield.

John Watkins
Extension Plant Pathologist
Ranking weed competitiveness to improve weed management

Weed scientists have developed the concept of competitive indices as a scale for ranking competitiveness of different weed species. Competitive indices are usually based on the dry matter produced by weed plants. Weed competitiveness is highly influenced by cropping practices, including crop row spacing. For example, narrower crop rows can reduce the competitiveness of weed species by 20-50% compared to crops planted in wider rows. Weed competitiveness also depends on the weed emergence time relative to the crop growth stage. In general, later emerging weeds are much less competitive than earlier emerging ones.

We conducted field studies in eastern Nebraska at two locations in 2002 and 2003 to determine and compare the values for competitive indices among weed species as influenced by soybean row spacing and the weed emergence time relative to the crop’s growth stage. This study is also a Master’s Degree research project for Shawn Hock.

Soybeans were planted in 7.5- and 30-inch rows. Seven broadleaf and four grassy species were planted at three soybean growth stages, crop planting (VP), crop emergence (VE), and 2nd trifoliate stage (V2). These weeds included common lambsquarters, redroot pigweed, common waterhemp, common sunflower, common cocklebur, Pennsylvania smartweed, giant ragweed, yellow foxtail, giant foxtail, fall panicum, and barnyardgrass. Soybean yield data, weed biomass, and weed seed production were collected at the season end.

The most competitive weed found in this study was common sunflower, producing twice as much dry matter than any other species. Common cocklebur was the next most competitive weed followed by giant ragweed and then velvetleaf. Common waterhemp was more competitive than redroot pigweed but less competitive than velvetleaf. Common lambsquarters was the next competitive and slightly more competitive than the grassy species. Giant foxtail was the most competitive grass, followed by barnyardgrass, fall panicum and yellow foxtail. In general, competitive indices were affected by row spacing and its emergence date. Weed species growing in 30-inch rows were more competitive than weeds in 7.5-inch rows. Weeds also were more competitive when emerging with the crop than when they emerged a week or two later.

Conclusions

The major practical implications of this study are:
1) It is important to properly identify weed species and their composition before making weed management decisions because weed species do differ in their competitiveness.
2) Planting soybean in narrower rows will reduce the competitiveness of most weed species, thus providing a competitive advantage to the crop.
3) Scout fields to determine weed emergence times relative to the crop stage. Our data shows that weeds emerging a week or two after the crop are much less competitive than those emerging with the crop.

This study was partially funded by a North Central Regional Weed Science grant.

Steve Knezevic
Extension Weeds Specialist
Haskell Ag Lab, Northeast REC

If water’s limited, consider planting a forage crop

Many irrigated acres may not receive enough water this summer to grow a grain or root crop. Forage crops also need water for high production, but unlike most annual crops, at least some useful yield can be gathered when total available water is very low.

When deciding whether to use a crop as a forage, consider your short-term and long-term options.
Do you expect water limits to continue for several more years?
If so, a perennial forage would eliminate the cost and time of establishing a new crop each year. Switchgrass is a good choice because it is less expensive to plant, its primary water needs occur in early summer when water is available, and it can be managed successfully for hay or pasture.

Other good warm-season grass options include big or sand bluestem and indiangrass, especially for grazing. Some of the wheatgrasses and bromegrasses as well as alfalfa can work with limited irrigation, but these cool-season plants respond best to water applied in spring. Some irrigators, however, won’t have water available until after the most efficient time has passed.

Of course, annual forages like pearl and foxtail millet, cane, and sorghum-sudangrass are relatively water efficient and will yield proportionately to the amount of water they receive. Small grains like rye, triticale, and oats can be planted for fall and spring forage if you have moisture at those times.

Maybe it’s not what you hoped for, but growing forages under limited irrigation will help you make the best out of a bad situation.

Bruce Anderson
Extension Forage Specialist
Impact of increasing fuel prices on operation costs

Question. Diesel prices have increased about $0.40 per gallon in recent months. What effect will this have on production costs?

Answer. To determine this, first you need to estimate fuel consumption. If you routinely track fuel use during farming operations for your tractors and combines, you probably already have the information you need. Simply multiply your historical fuel use by the former price per gallon and by current price and compare.

Most folks, however, don’t track fuel consumption by enterprise and need a research-based estimate to compute the effect of a price increase on overall production costs. A good reference for fuel use estimates is *Minnesota Farm Machinery Economic Cost Estimates for 2003*.

Table 1 presents the estimated fuel use per hour for power units, based on estimates in the Minnesota publications. Table 2 presents estimates of fuel consumption per acre for field operations.

Note: The fuel use per acre for field operations is independent of implement width. If one compared two disks for example, one with a 20-foot width and one with a 30-width, the 30-foot disk would require a tractor with 50% more horsepower to pull it, but since one would be covering 50% more acres per pass, the fuel use per acre would be the same for either scenario.

Acknowledgement

Fuel consumption information in Tables 1 and 2 is taken from *Minnesota Farm Machinery Economic Cost Estimates for 2003* FO-6696, by William Lazarus, Extension Economist, University of Minnesota, and Roger Selley, Extension Agricultural Economist, University of Nebraska.

This publication is available online at http://www.apec.umn.edu/faculty/wlazarus/MF2003.PDF.

Tom Dom, Extension Educator

Lancaster County

Table 1. Increased fuel cost per hour for a $0.40 increase in diesel price.

<table>
<thead>
<tr>
<th>Tractors</th>
<th>Estimated Fuel, Gal/hr</th>
<th>Cost/hr @ $0.90/gal</th>
<th>Cost/hr @ $1.30/gal</th>
<th>Increased fuel cost, $/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 HP</td>
<td>1.8</td>
<td>$1.62</td>
<td>$2.34</td>
<td>$0.72</td>
</tr>
<tr>
<td>60 HP</td>
<td>2.6</td>
<td>$2.34</td>
<td>$3.38</td>
<td>$1.04</td>
</tr>
<tr>
<td>75 HP</td>
<td>3.3</td>
<td>$2.97</td>
<td>$4.29</td>
<td>$1.32</td>
</tr>
<tr>
<td>105 HP MFWD</td>
<td>4.6</td>
<td>$4.14</td>
<td>$5.98</td>
<td>$1.84</td>
</tr>
<tr>
<td>130 HP MFWD</td>
<td>5.7</td>
<td>$5.13</td>
<td>$7.41</td>
<td>$2.28</td>
</tr>
<tr>
<td>160 HP MFWD</td>
<td>7.0</td>
<td>$6.30</td>
<td>$9.10</td>
<td>$2.80</td>
</tr>
<tr>
<td>200 HP MFWD</td>
<td>8.8</td>
<td>$7.92</td>
<td>$11.44</td>
<td>$3.52</td>
</tr>
<tr>
<td>225 HP MFWD</td>
<td>9.9</td>
<td>$8.91</td>
<td>$12.87</td>
<td>$3.96</td>
</tr>
<tr>
<td>260 HP 4WD</td>
<td>11.4</td>
<td>$10.26</td>
<td>$14.82</td>
<td>$4.56</td>
</tr>
<tr>
<td>310 HP 4 WD</td>
<td>13.6</td>
<td>$12.24</td>
<td>$17.68</td>
<td>$5.44</td>
</tr>
<tr>
<td>360 HP 4 WD</td>
<td>15.8</td>
<td>$14.22</td>
<td>$20.54</td>
<td>$6.32</td>
</tr>
<tr>
<td>425 HP 4 WD</td>
<td>18.7</td>
<td>$16.83</td>
<td>$24.31</td>
<td>$7.48</td>
</tr>
<tr>
<td>Combines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 HP</td>
<td>8.4</td>
<td>$7.56</td>
<td>$10.92</td>
<td>$3.36</td>
</tr>
<tr>
<td>220 HP</td>
<td>9.7</td>
<td>$8.73</td>
<td>$12.61</td>
<td>$3.88</td>
</tr>
<tr>
<td>275 HP</td>
<td>12.1</td>
<td>$10.89</td>
<td>$15.73</td>
<td>$4.84</td>
</tr>
</tbody>
</table>

Table 2. Increased fuel cost per acre for a $0.40 per gallon increase in diesel price.

<table>
<thead>
<tr>
<th>Field Operation</th>
<th>Estimated diesel gallon/acre</th>
<th>Cost/acre @ $0.90/gal</th>
<th>Cost/acre @ $1.30/gal</th>
<th>Increased fuel cost $/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tillage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Cultivator</td>
<td>0.33</td>
<td>$0.30</td>
<td>$0.43</td>
<td>$0.13</td>
</tr>
<tr>
<td>Tandem Disk</td>
<td>0.47</td>
<td>$0.42</td>
<td>$0.61</td>
<td>$0.19</td>
</tr>
<tr>
<td>Tandem Disk (HD)</td>
<td>0.76</td>
<td>$0.68</td>
<td>$0.99</td>
<td>$0.30</td>
</tr>
<tr>
<td>Planting Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row Crop Planter</td>
<td>0.34</td>
<td>$0.31</td>
<td>$0.44</td>
<td>$0.14</td>
</tr>
<tr>
<td>Minimum Till Planter</td>
<td>0.53</td>
<td>$0.48</td>
<td>$0.69</td>
<td>$0.21</td>
</tr>
<tr>
<td>Grain Drill</td>
<td>0.49</td>
<td>$0.44</td>
<td>$0.64</td>
<td>$0.20</td>
</tr>
<tr>
<td>Presswheel Drill</td>
<td>0.63</td>
<td>$0.57</td>
<td>$0.82</td>
<td>$0.25</td>
</tr>
<tr>
<td>No-till Drill</td>
<td>0.81</td>
<td>$0.73</td>
<td>$1.05</td>
<td>$0.32</td>
</tr>
<tr>
<td>Crop Maintenance Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultivator</td>
<td>0.46</td>
<td>$0.41</td>
<td>$0.60</td>
<td>$0.18</td>
</tr>
<tr>
<td>Rotary Hoe</td>
<td>0.18</td>
<td>$0.16</td>
<td>$0.23</td>
<td>$0.07</td>
</tr>
<tr>
<td>Boom Sprayer</td>
<td>0.11</td>
<td>$0.10</td>
<td>$0.14</td>
<td>$0.04</td>
</tr>
<tr>
<td>Anhydrous Applicator</td>
<td>0.55</td>
<td>$0.50</td>
<td>$0.72</td>
<td>$0.22</td>
</tr>
<tr>
<td>Stalk Shredder</td>
<td>0.74</td>
<td>$0.67</td>
<td>$0.96</td>
<td>$0.30</td>
</tr>
<tr>
<td>Harvesting Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mower Conditioner</td>
<td>0.40</td>
<td>$0.36</td>
<td>$0.52</td>
<td>$0.16</td>
</tr>
<tr>
<td>Hay Swather</td>
<td>0.35</td>
<td>$0.32</td>
<td>$0.46</td>
<td>$0.14</td>
</tr>
<tr>
<td>Hay Baler PTO (twine)</td>
<td>0.40</td>
<td>$0.36</td>
<td>$0.52</td>
<td>$0.16</td>
</tr>
<tr>
<td>Round Baler (1500 lb)</td>
<td>0.77</td>
<td>$0.69</td>
<td>$1.00</td>
<td>$0.31</td>
</tr>
<tr>
<td>Combine (various heads)</td>
<td>2.00</td>
<td>$1.80</td>
<td>$2.60</td>
<td>$0.80</td>
</tr>
</tbody>
</table>
Assess alfalfa fields and pests at harvest, adjust management

First cutting of alfalfa is a good time to evaluate field conditions and plan for management changes, if necessary. Look for weeds, weevils, and count the number of stems per square foot. Examine thin spots or areas not yielding as well as the rest of the field.

If you find problems, immediately start to plan how to deal with them. For instance, if you have too much pennycress or mustard or downy brome in your first cutting, consider spraying dormant herbicides next fall to kill these weeds.

Are stands getting thin? Can you determine why? Is this why weeds may be more of a problem this year? Maybe it’s time to rotate to another crop. If you have other good options, most dryland alfalfa fields should be rotated every four to five years and irrigated fields every five to six years.

If some field areas don’t produce well, but the stand is still thick, check for problems like dry subsoil, compaction, or inadequate fertility. When you know what’s causing the problem, then you can address it.

Also assess how the alfalfa plants look when they’re cut. Are lower stems dark colored with many leaves on the ground? Spring blackstem may be a problem. Do most plants have open blossoms? Or are new shoots starting to grow and getting cut off by your mower? In all these examples, earlier harvest might be wise next year.

Take some time to look closely at first cut alfalfa and use what you learn to become an even better manager.

Bruce Anderson
Extension Forage Specialist

Crop condition report

USDA’s Nebraska Agricultural Statistics Service reported Monday that corn planting jumped to 85% complete, about two weeks ahead of last year’s 42% and 10 days ahead of the 56% average. Twenty-nine percent of the crop had emerged, ahead of last year at 11% and average at 17%.

Soybean planting progressed to 25% complete, 10 days ahead of last year at 5%.

Sorghum planting advanced to 7% complete, ahead of 2% last year and 4% average.

Wheat condition rated 11% very poor, 18% poor, 36% fair, 32% good, and 3% excellent, below last year and average. Fields were 82% jointed, about a week ahead of last year at 68% and average at 58%.

Sugar beet planting was virtually complete.

Alfalfa conditions rated 4% percent very poor, 11% poor, 34% fair, 43% good, and 8% excellent. First cutting activities were underway with 2% harvested to date.

National prospective

Of the 18 top corn-producing states 84% of the 2004 corn crop has been planted, compared to 63% last year and for the five-year average. This is about one week ahead of last year.

These same states report about 36% of the crop has emerged, compared with 21% at this time last year and the five-year average of 24%.

With soybeans 35% of the crop has been planted, which compared to 14% last year and a five-year average of 21%.
June 11 field day and tour

West Central REC to celebrate its centennial

The University of Nebraska West Central Research and Extension Center at North Platte will celebrate its centennial with a field day Friday, June 11.

The event, which is open to the public, will feature demonstrations and tours of the center, as well as a complimentary lunch.

In 1903, legislation was passed and signed by Gov. John H. Mickey, which recommended that an agricultural substation be established in western Nebraska to "determine the adaptability of the arid and semiarid portions of Nebraska to agriculture, horticulture and forest tree growing, such as the production of grain, grasses, root crops and fruits of the kinds commonly grown in such latitudes of other states, also the most economical methods of growing such crops without irrigation." The land was purchased in 1904.

The importance of growing crops with irrigation and livestock's value to the area led the center to expand its mission into these areas.

Today, researchers in the West Central district, which includes 20 counties, investigate both dryland and irrigated cropping systems, water use, soil fertility, control of noxious weeds, horticulture, range management, beef systems and reproductive management, hydrogeology, forestry, 4-H and youth development, agricultural economics, and control of external livestock parasites.

The center, which is the oldest research and extension center in the state, was originally called the North Platte Substation and later renamed the North Platte Experiment Station in 1952 and the North Platte Station in 1966. It was given its current name, the West Central Research and Extension Center, in 1984.

The Centennial Field Day will begin with registration at 8:30 a.m. at the Center. Tours are planned from 9:30 a.m. to noon. A complimentary lunch will be served from 12:30 p.m. to 1:30 p.m. The program is scheduled to begin at 1:30 p.m., followed by field demonstrations at 2 p.m. To RSVP for lunch contact Dalene Skates, by phone at (308) 532-3611 ext. 167 or by e-mail at dskates1@unl.edu.

The Center is located 1.65 miles south of Interstate 80 on Highway 83 at North Platte.

For more information about the work being conducted at the West Central REC, visit their Web site at http://westcentral.unl.edu/

General AgNews

Poultry owners can join disease monitoring program

A new University of Nebraska Cooperative Extension poultry disease monitoring program should help poultry owners become more aware of diseases that can affect their flocks.

The program will help monitor poultry diseases statewide. Participating poultry owners will receive free mailings, educational materials, testing, diagnostic work and necropsies for their birds, said Dan McGuire, poultry extension assistant.

"Poultry owners will be able to learn what diseases, if any, they have on their farms and get help monitoring diseases," McGuire said. "If we know which diseases are in our state, we can better advise people on what measures they can take to protect their flock."

The program is available to all Nebraska poultry owners. To sign up or for more information, contact McGuire at C206b Animal Science Complex, P.O. Box 830908, University of Nebraska, Lincoln, Neb. 68583-0908; call (402) 472-5625 or e-mail dmcguire4@unl.edu.

Common poultry diseases in Nebraska include coccidiosis, Newcastle disease, infectious bronchitis, fowl pox, Mareck's disease and larynogo-tracheitis.

This program was prompted by biosecurity concerns, especially after exotic Newcastle disease spread across California and four other states two years ago, he said. A grant from the U.S. Department of Homeland Security funds the program.

Nebraska's commercial poultry operations raise about 12 million layers, 3.5 million broilers and 3 million turkeys annually. There also are farmers who raise thousands of pheasants and quail across Nebraska for hunters and people who raise a few poultry in their backyard, McGuire said.

Poultry kept for more than two years are of special significance because as a bird ages it becomes more susceptible to disease and more apt to be a carrier of a disease it has survived, he said.

"Often it is a mild symptom that affects production, such as inadequate weight gain, number of eggs laid and/or the hatchability of the egg," he said. "If there is no death loss the poultry owner may not take any action, but the flock may now be a carrier of the disease. If new birds are brought into the flock, the older birds can pass the disease on to the new birds."
Why till soybean stubble?

At the invitation of Roger Elmore, Extension crops specialist, UNL Extension staff recently shared some of the reasons they’ve heard from producers about why they till soybean stubble. While some of these were made in jest, others represent farmer experiences.

Producers considering tillage should weigh the very real advantages of not tilling — saving fuel, tractor time, topsoil and perhaps most importantly this year, soil moisture — against their reasons for tilling. Straightening rows or rebuilding ridges in a ridge till system or controlling a flush of early season weeds are common reasons given.

Tillage may provide a short-term solution in some of these instances, but often simply adjusting management practices will address these problems. Then, you can start building a foundation for improved soil structure that pays long-term rewards in wet years and dry years.

Those sharing reasons were Tom Dorn, Roger Elmore, Paul Hay, Paul Jasa, and Mark Schroeder, all of the University of Nebraska-Lincoln.

Your invitation

Over the next two issues of CropWatch, we’ll share these contributions — some made in jest and others made in earnest. We also would like to invite you to share some creative or humorous reasons for tillage.

Please send your ideas to CropWatch, Box 830918, University of Nebraska, Lincoln, NE 68583-0918 or email Lisa Jasa at ljasa1@unl.edu

Q Why till soybean stubble?
A Louisiana needs a larger delta and everyone should do their part!

Tilling the soil will put a lot of dust in the air which should reduce the sunlight getting in and reduce water loss and heat throughout the season.

It’s time for the oil executives to trade in their Cadillacs for Hummers.

With corn planting done, what else is there to do.

Unlike with corn residue, I can turn the field black with only one trip.

If I wasn’t tilling the soil, I wouldn’t be a farmer.

I’ve heard that soybean residue is allelopathic back East in poorly drained soils. I can’t take a risk like that, especially considering the droughts we’ve been having.

Now that I’ve switched to a corn/soybean rotation, I’ve got more time for tillage.

I have to till it to kill the volunteer RoundUp Ready soybeans now that I’m using RoundUp Ready corn.

I have to till it to anchor the residue, otherwise it just washes or blows away.

It’s cheaper to disk my 2000 acres (twice) than to buy a straw chopper and chaff spreader for my combine.

I have to till residue covered fields early to eliminate wildlife habitat. Otherwise the birds will nest in there and I’ll either run over the nests or kill the young with future trips over the field.

I had to till it last month to dry it out and get rid of the residue that keeps the soil wet so that I can plant. But now, I wish it would rain and bring back some moisture.

June 10 Wheat Plot Tour:

View current & experimental lines

University of Nebraska Cooperative Extension will host a wheat variety and disease management plot tour June 10. Participants are asked to gather at the UNL field research site just west of 84th St. on Havelock Avenue. Registration starts at 8:30 a.m. and the plot tour begins at 9 a.m. Coffee and donuts will be served early. There is no registration fee.

Dr. Stephen Baenziger, Eugene W. Price distinguished professor of small grains breeding and genetics, will present variety trials containing over 50 experimental lines and blends in the State Variety Trial. Participants also will see some of the university’s Clearfield wheat experimental line evaluation trials plus winter barley and triticate varieties.

Dr. John Watkins, UNL Extension plant pathologist, will discuss ongoing wheat disease management trials. Participants will see 15 treatments in the wheat fungicide plot. Most will be registered products and include BASF’s Headline, Bayer’s Stratego and Folicur, and Syngenta’s Tilt, Quadris and Quilt.