2014

A Security Protocol for Advanced Metering Infrastructure in Smart Grid

Feng Ye
University of Nebraska-Lincoln

Yi Qian
University of Nebraska-Lincoln

Rose Qingyang Hu
Utah State University

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the [Computer Engineering Commons](http://digitalcommons.unl.edu/computerengineeringcommons) and the [Electrical and Computer Engineering Commons](http://digitalcommons.unl.edu/ececommons)

Ye, Feng; Qian, Yi; and Hu, Rose Qingyang, "A Security Protocol for Advanced Metering Infrastructure in Smart Grid" (2014). *Faculty Publications from the Department of Electrical and Computer Engineering*. 270.
http://digitalcommons.unl.edu/electricalengineeringfacpub/270

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A Security Protocol for Advanced Metering Infrastructure in Smart Grid

Feng Ye, Yi Qian
Department of Computer and Electronics Engineering
University of Nebraska-Lincoln, NE, USA

Rose Qingyang Hu
Department of Electrical and Computer Engineering
Utah State University, Logan, UT, USA

Abstract—In this paper, we propose a security protocol for advanced metering infrastructure (AMI) in smart grid. AMI is one of the important components in smart grid and it suffers from various vulnerabilities due to its uniqueness compared with wired networks and traditional wireless mesh networks. Our proposed security protocol for AMI includes initial authentication, secure uplink data aggregation/recovery, and secure downlink data transmission. Compared with existing researches in such area, our proposed security protocol let the customers be treated fairly, the privacy of customers be protected, and the control messages from the service provider be delivered safely and timely.

I. INTRODUCTION

In smart grid, security issues are more important than those in traditional power grid since the communication network has been updated to bidirectional and the data is transmitted in much larger quantity and more frequently [1, 2]. An advanced metering infrastructure (AMI) is the system that collects and analyzes data from smart meters, and giving intelligent management of various power-related applications and services based on that data [3]. An AMI is basically a wireless mesh network (WMN) where each smart meter is a node, a data aggregate node (DAP) which usually locates in the center of a neighborhood functions as the gateway of all the smart meters in that neighborhood [4, 5]. The smart meters connect the meter data management system (MDMS) through the DAP in multi-hop mode, and the DAP connects to the MDMS through a backbone network (e.g., optical fiber).

In AMI, the data in uplink transmission from smart meters to the MDMS includes secret information, for example, the power usage of a household. Those data will be collected by the MDMS and be further applied to determine the power generation and the usage of renewable energy. The control data in downlink transmission involves the price and tariff information, which affect the demand side response and finally lead to a more efficient power grid [6, 7]. Although AMI appears to be a WMN and security issues have been widely discussed for traditional WMN [8–10], however, AMI is different from traditional WMN mainly in threefold. First, each smart meter must be available and be treated equally in the network since fairness must be applied to each of the customers while traditional WMN are usually deployed randomly and redundantly. Third, the uplink transmission and downlink transmission in AMI are asymmetric where the uplink transmission consists of different data from each smart meter to the MDMS and the most of the downlink transmissions are in broadcast mode, while in traditional WMN, the uplink or downlink can even barely be distinguished. Thus the security protocols must be redesigned to fit the uniqueness of AMI.

There are several researches for the security issues in AMI [11–14], however, there are very few comprehensive security protocols for AMI. In [14], the authors proposed a protocol called integrated authentication and confidentiality (IAC) which involves the initial authentication of a smart meter, and the security in both uplink and downlink transmissions. However, IAC has several problems to be addressed. 1) The smart meters are not treated equally where some of them are chosen to be the backbone nodes and proceed with security protocol, while the others must go through the backbone nodes however the backbone nodes selection does not have any security concern. 2) The initial authentication process cannot prevent replay attack or even forgery if the initial request is overheard by the attacker. 3) The security protocol in uplink transmission cannot handle multiple incoming data at an intermediate node. 4) Compromise of a node will at least endangers another node since they share the same secret key for message encryption. 5) The security protocol for downlink transmission is too complicated since IAC did not consider broadcast scenario as the main transmission mode for downlink. 6) Once a node malfunctions in the network, IAC cannot function any longer. In this paper, we propose a comprehensive security protocol which addresses those shortages in IAC while maintaining the good security features.

The rest of the paper is organized as follows. In section II, we present the studied network model and discuss the recovery of malfunctioning nodes. In section III, we present the proposed security protocol for AMI. In section IV, we show the results of performance analysis. In section V, we give the conclusion and future work.

II. NETWORK MODEL

Let a conflict graph $G = (V, \mathcal{E})$ be the wireless mesh network of AMI, where each node $n_i \in V$ (other than the final gateway which is a DAP) is a smart meter, an edge is a communication link for the two corresponding nodes. In
the studied AMI, there are two types of nodes, one is active and the other is uninitialized. An active node is a node such that it has been authenticated by the authentication server (AS) to join the AMI communication and is functioning in a healthy status. An uninitialized node is (but not limited to) the newly installed one. If a node has recovered from malfunctioning status, or updated, or lost connection to all of its active neighbors, or moved to another location, it is also defined as uninitialized. An example of such network is shown in Fig. 1, where the DAP functions as a gateway and the AS.

Routing in the uplink transmission is achieved by building a shortest path routing tree based on all the active nodes in the conflict graph. Finding the shortest path for every active node to the DAP can be achieved using any well-know algorithm such as Dijkstra’s algorithm [15]. Assuming all the nodes in G are active, we then show one routing example as a rooted shortest path tree in Fig. 2. Note that the parent node is always initialized before its child nodes, details will be discussed in section III.

![Fig. 1. An example of the conflict graph G.](image1)

![Fig. 2. The corresponding rooted spanning tree T.](image2)

A. Uplink Transmission Recovery

Since the proposed security protocol is for an AMI network in operations, once the network is broken due to some malfunctioning nodes, the network must be recovered before the secure transmission recovers. In this subsection, we discuss the recovery of the uplink transmission. In the shortest path routing tree, once a node failure occurs, the links connecting its child nodes will break. Therefore the child nodes should refer to the conflict graph G and look for the active neighbors which are not descendent in the shortest path tree reroute themselves through the closest ones to the DAP.

![Fig. 3. Example of routing recovery when n_{13} malfunctions.](image3)

An example of malfunctioning n_{13} is shown in Fig. 3. Assuming that n_{17} is initialized before n_{18}, which enables n_{18} to be the child node of n_{17} without initialization. The same assumption applies to n_9 and n_{14} where n_9 is initialized before n_{14}. Once n_{13} is down, links (13, 18) and (13, 14) no longer exist. Then, n_{18} will reroute itself through n_{17} and n_{14} will reroute itself through n_9, no other nodes need to change in the rerouting process. Once n_{13} recovers, it will start the initialization process and directly connect to the AP. n_{18} and n_{14} will discover their new shortest path through n_{13} and start the initialization process again in order to reroute through it.

![Fig. 4. First step of routing recovery when n_{13} malfunctions where n_{18} cannot reroute through n_{17}.](image4)

If n_{18} is initialized before n_{17}, then n_{18} is not allowed to connect to n_{17} without initialization. The descendent nodes of n_{18} (n_{23}, n_{24} and n_{25}) will reroute themselves to their active neighbors (as illustrated in Fig. 4). Once n_{18} finishes the initialization and connects to n_{17}, there is no need for n_{23} or n_{24} to reconnect to n_{18} since the distance will be the same. If later on n_{18} reconnects with n_{13}, n_{23} and n_{24} will start initialization again in order to route through n_{18} for shortest path to the AS.

The worst case is that there exists no available route without going backwards (through child nodes), all the nodes in the sub-rooted tree with root n_{18} will then start initialization process until all of them have connection to the AS. In order
to ensure the recovery process of most situations, the conflict graph G should have connectivity constraints, for example, the smallest degree of a node $\delta \geq 3$. However, this connectivity issue is beyond the scope of this paper, we assume that each node should at least have connection with its physical neighbors and the neighborhood follows grid (or pseudo-grid) topology and thus the connectivity is good enough.

III. PROPOSED SECURITY PROTOCOL FOR AMI

A. Initial Authentication

There are two types of nodes in the AMI, one is active and the other is uninitialized. An active node is a node such that it has been authenticated by the AS to join the AMI communication and is functioning in a healthy status. An uninitialized node is (but not limited to) the newly installed one. If a node has recovered from malfunctioning status, or updated, or lost connection to all of its active neighbors, or moved to another location, it is also defined as uninitialized and thus must start the initial authentication process to join the AMI. Whatever status it is, an uninitialized node that does not function in the AMI properly must be authenticated through the initialization process.

For example, if n_1 wants to join the AMI, the initialization process goes through all of its active neighbors (e.g., n_2, n_3 and n_4). As illustrated in Fig. 5, n_1 sends requests to the AS through all of its active neighbors, and receives different reply messages from the AS through its active neighbors as well. Through this initial authentication process, there are mainly three tasks accomplished,

- n_1 is authenticated to be an active node and join the AMI;
- n_1 establishes secure connection to the AS through one of its active neighbors which has the shortest distance to the AS;
- n_1 establishes backup secure connection to the AS through the rest of its active neighbors.

The initial authentication process through each active neighbor is similar, we give a detailed illustration of the process through one active neighbor (e.g., n_2). Throughout the process, there are mainly three entities involved, n_1, n_2 and the AS, although it is possible that other nodes are involved for relaying the message, however they do not affect the process as long as they relay the message correctly since they do not get new information from either communications. Among the three entities, there are three mutual authentications to be achieved in order to guarantee the security, one is between n_1 and the AS, one is between n_2 and the AS, and the other one is between n_1 and n_2. The mutual authentication between n_1 and the AS is obvious since the AS will only allow genuine node join the AMI and the node will also trust the AS. The mutual authentication between n_2 and the AS is to ensure that n_2 is active and is trusted to relay the request from n_1. The mutual authentication between n_1 and n_2 is to help further establish secure communications from n_1 to n_2. It is assumed that each node has a pre-shared secret key (e.g., K_1 for node n_1 and K_2 for node n_2) with the AS before initialization. Each active node has been assigned with an active secret key (e.g., K_2 for n_2) mainly for uplink data encryption, this active secret key is also used to verify if this node is active or not. Similar to K_2, K_2 is only known to n_2 and the AS. In order to establish a secure connection from n_1 to the AS, an active secret key K_1 must be generated by the AS and assigned to n_1 during the initialization process. Note that n_1 does not bare K_1 before initialization process, only K_1 is known to n_1.

![Initial authentication process](image)

Fig. 5. Initial authentication process.

As shown in Fig. 6, the whole initialization process involves 5 hand-shakes and 6 messages. In the first hand-shake between n_1 and n_2, n_1 sends $M_1 = \text{request}[ID_1||H(ID_1 + K_1)]$ to the AS through n_2, where $H(\cdot)$ is a simple hash function, and ‘+’ is XOR. $H(ID_1 + K_1)$ is used to provide authentication of n_1 at the AS side since the AS is the only one besides n_1 to compute the hash value.

In the second hand-shake, n_2 appends $H(ID_2 + K_2)$ to M_1 which is used for the AS to authenticate n_2 as a genuine node, n_2 then encrypts the entire message and appended its own identification with K_2, it is used to protect its identity verification code $H(ID_2 + K_2)$ and also let the AS authenticate its active status. The message send from n_2 to the AS is $M_2 = ID_2||E_{K_2}(M_1||H(ID_2 + K_2))$, where $E_{K_2}(\cdot)$ is the encryption function with key K_2.

![Detailed initial authentication process](image)

Fig. 6. Detailed initial authentication process through one active neighbor.
Once the AS receives M_2, it authenticates n_2 by decrypting M_2 using k_2 and compute $H(ID_2 + K_2)$. The AS then authenticate n_1 by computing $H(ID_1 + K_1)$. Once n_1 is authenticated, the AS generates an initial vector IV_1 for further uplink transmission, an active secret key k_1, a new K'_1 to replace K_1 for further initial authentication of n_1 since M_1 was transmitted unprotected and $H(ID_1 + K_1)$ as a verification code is revealed (note that $H(ID_2 + K_2)$ is encrypted and thus K_2 is not required to update). Public key of the AS PU_{AS} is sent to n_1 for further downlink transmission protocols. The AS also generates $H(ID_2 + k_1)$ for n_1 to authenticate n_2. Finally, the AS generates p, g for public key generation between m and the AS generates p, g for public key generation between m and n. It is possible for the AS to generate the public keys or session keys for n_1 and n_2 if the devices are not advanced enough to finish the tasks, however, it is safer to keep the nodes as independent as possible to other nodes and the AS. Therefore, let n_1 and n_2 generate their own public/private keys or session keys within one-hop transmission is recommended in this protocol. In summary, the message sent from the AS to n_1 is $M_3 = E_{K_1}(IV_1 || k_1 || H(ID_2 + k_1) || PU_{AS} || p || g)$. Since M_3 is relayed by n_2, the AS appends p, g to M_3 and encrypts it by k_2 so that n_2 can follow the public/private key generation of n_1. Overall, the message sent from the AS to n_2 in the third hand-shake is $M_4 = E_{K_2}(M_3 || p || g)$.

After n_2 receives $M_4 = E_{K_2}(M_3 || p || g)$, it decrypts M_4 to authenticate the AS and get p, g. Based on p, g, n_2 generates a pair of public/private keys $PU_{u_2,1}/PU_{r_2,1}$, and sends $M_5 = M_3 || PU_{u_2,1}$ to n_1 in the fourth hand-shake. Until now, n_1 has received all the information from the AS and is just one step from being an active node if it wants to route through n_2. Based on p, g, n_1 generates a pair of public/private keys $PU_{u_1,2}/PU_{r_2,1}$, and sends $M_6 = E_{PU_{u_2,1}}(PU_{u_1,2})$ to n_2 in the fifth hand-shake. Note that $PU_{u_1,2}$ is sent in a secure way since it is encrypted with $PU_{u_2,1}$. Although $PU_{u_2,1}$ is sent in plaintext, only n_2 is able to reveal the public key of n_1. After n_2 receives $PU_{u_1,2}$, both $PU_{u_2,1}/PU_{r_2,1}$ will be discarded.

Until now, n_1 is fully initialized and it is able to join uplink communications through n_2. The initial authentication processes through other active neighbors are similar, the AS sends back the same IV_1, k_1, K'_1, PU_{AS}, p and g. In the final hand-shake, n_1 will send the same $PU_{u_1,x}$ to node n_x encrypted with $PU_{u,1}$. By doing so, n_1 shares the same public key to all of its active neighbors. Therefore, n_1 is able to join the uplink transmission through any of the active neighbors, in other words, both operating and backup secure communication channels are established through the initial authentication process.

I) Security Analysis: Confidentiality of the authentication request is unnecessary, therefore it is not provided. Applying this protocol makes a genuine node unforgeable. As discussed before, the initial authentication of n_i relies on the pre-shared key K_i, which cannot be forged since it is pre-installed in both the AS and n_i. On the other hand, although the request and valid verification code can be overheard, however the information is useless since K_i is subject to change after each successful initial authentication. Therefore, replay attack will not harm the initial authentication as well.

B. Security Protocol in Uplink Transmission

In the uplink transmission, data from each node is aggregated in a chain topology and is finally delivered to the DAP. Among all the security requirements, data confidentiality is the most important issue for the uplink data. Data integrity is also very important since the wrong data may cause unnecessary loss of the power generation. Sender authentication shall be considered as well if there is enough computational resources since the nodes shall only aggregate the data sent from active nodes. To achieve all those requirements mentioned above, we propose the security protocol for data aggregation in uplink transmission as shown in Fig. 7. Suppose in one path there are N nodes with an order of (n_1, n_2, \ldots , n_N). As the first one of the aggregation, n_1 mixes its raw data D_1 with IV_1 and encrypts it with k_1 so that confidentiality can be achieved. $H^*(\cdot)$ is a hashed message authentication code function which provides data integrity. Finally, n_1 signs the total message with $PU_{u_1,2}$ so that n_2 can verify that the data is from n_1 which is an active node. The intermediate nodes first decrypt the incoming data with the private key of the child node and mix their raw data with the previous data and then follow the same steps as the first node.

If an intermediate node has multiple child nodes, it treats each of them as a separate chain and aggregates its own data to one of the incoming data while simply padding the data from the other child nodes to it with flags. The details are shown in Fig. 8. Assume n_2 has two child nodes n_i and n_j, and n_o chooses to aggregate incoming data from n_i. Then n_p follows the usual steps dealing with D_p and M_i. For M_j,p, n_p authenticates the sender by getting M_j, and simply flags M_j such that $f_0||M_j||f_1$ to the original M_p, thus $M_p = f_0||M_j||f_1||C_p||H^*(C_p)$.

Once the AS receives the aggregated data, it starts the recovery process of the data. The AS first authenticates the
child node by decrypting the receiving data with the pre-shared public key $P_{u,N,AS}$. Before recovering the raw data, the AS needs to verify the data integrity by the process shown in Fig. 9. Since the data of each node are not further processed by nodes after it, if some of the data corrupt, the AS will simply discard them instead of wasting the whole message from that transmission path.

Message integrity is verified using HMAC. The message is unforgeable unless a node is totally compromised since the HMAC and encryption must use both K and k. The message is non-repudiable since it is signed with a private key of the sender.

C. Security Protocol in Downlink Transmission

The downlink transmission involves control messages from the DAP to the nodes. Most of the control messages (e.g., price and tariff information) are for all the smart meters in the neighborhood, where the confidentiality is not as important as that of the uplink data. However, message integrity is important. Message manipulation will cause further responding in power usage and will finally result in unnecessary over- or under-power generation. Let C_B be the control message to be broadcast. To provide message integrity, a MAC (achieved by HMAC function H^*) is appended to the original message, the entire message is then signed with $P_{u,AS}$ as digital signature to provide non-repudiation and sender authentication. In all, $M_B = E_{P_{u,AS}}(C_B || H^*(C_B))$.

Some of the control messages (e.g., request for update) are for a specific node (e.g., n_i), let such control message be C_i. Apparently, message integrity, non-repudiation and sender authentication shall still be provided, moreover, confidentiality of the message is also important, therefore the message is encrypted with k_i such that $M_B = E_{P_{u,AS}}(E_{k_i}(C_B || H^*(C_B)))$. Unlike M_B, broadcasting M_i is a waste of resource and is unnecessary. However, sending M_i through the corresponding uplink path may reduce the availability of the message. Therefore, we propose to send such specific control message to n_i through all of its active neighbors. For example (regarding to Fig. 1 and Fig. 2), if specific control message M_{23} is to be transmitted to n_{23}, the AS will send it to n_{18}, n_{22} and n_{24} which are active neighbors of n_{23}, all of them will then forward M_{23} to n_{23}. The downlink transmission of M_{23} is shown in Fig. 11.

1) Security Analysis:

First of all, the control message is unforgeable since it is signed by the AS. For the same reason, the control message is also non-repudiable. The control message cannot be manipulated since
the MDMS through the DAP since the node-connectivity of will not be affected after the recovery process. However, when both the proposed scheme and IAC perform the same. When w.r.t the number of malfunctioning nodes. Since IAC must DAPs or dummy nodes.

The most important improvement in the proposed security protocol compared with IAC is the uplink recovery process, we then focus on the comparison of the recovery performance. The analyzed network is \mathcal{G} shown in Fig. 1 and the shortest path routing tree \mathcal{T} is shown in Fig. 2. In Fig. 12(a) we show the average steps of recovering the uplink connection w.r.t the number of malfunctioning nodes. Since IAC must recover all the nodes that are prior to a malfunctioning node while our proposed scheme focuses on the child nodes of the malfunctioning node only, it is obvious that the average recovery steps can be lower.

On the other hand, Fig. 12(b) shows the number of available nodes after the recovery of the connection. We can see that both the proposed scheme and IAC perform the same. When the number of malfunctioning nodes is 1, all the other nodes will not be affected after the recovery process. However, when the number of malfunctioning nodes grows to 2 or more, it is not guaranteed that all the other nodes can get access to the MDMS through the DAP since the node-connectivity of $\kappa(G) = 2$. In order to improve the availability, the connectivity issue will be considered in the future work by adding multiple DAPs or dummy nodes.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a comprehensive security protocol for AMI which includes the initial authentication of a smarter meter, secure uplink data aggregation/recovery, and secure downlink data transmission. Compared with existing IAC protocol, our proposed protocol addresses several concerns and achieves fairness for each smart meter in AMI. In the future work, we will focus on deploying an intrusion detection system to monitor the active nodes which will further enhance the security in AMI.

REFERENCES