2013

INACTIVATION OF E. COLI AFFECTED BY MEDIUM CONDUCTIVITY IN PULSED ELECTRIC FIELD PROCESSING

Tanya Kirilova Gachovska
University of Nebraska-Lincoln

Jeyamkondan Subbiah
University of Nebraska-Lincoln

Harshavardhan Thippareddi
University of Nebraska-Lincoln

David Marx
University of Nebraska-Lincoln, david.marx@unl.edu

Frazer Williams
University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the [Computer Engineering Commons](http://digitalcommons.unl.edu/computerengineering), and the [Electrical and Computer Engineering Commons](http://digitalcommons.unl.edu/electricalengineering)

Gachovska, Tanya Kirilova; Subbiah, Jeyamkondan; Thippareddi, Harshavardhan; Marx, David; and Williams, Frazer, "INACTIVATION OF E. COLI AFFECTED BY MEDIUM CONDUCTIVITY IN PULSED ELECTRIC FIELD PROCESSING" (2013). Faculty Publications from the Department of Electrical and Computer Engineering. Paper 272.
http://digitalcommons.unl.edu/electricalengineeringfacpub/272

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Pulsed electric field PEF is effective in inactivating microorganisms in liquids such as saline water, phosphate buffer, milk and others. PEF treatment efficacy is influenced by number of parameters. Medium conductivity has been a subject of investigation because of the contrary reports. Present study was undertaken to systematic evaluate the effect of medium conductivity on the inactivation of E. coli. The experiments were conducted on E-coli inoculated phosphate buffer (2 to 4.5 mS/cm) in a continuous-flow co-field treatment chamber with an applied electric field strength of 60 kV/cm and 50 Hz pulse frequency. In the first set of experiments, the effect of medium conductivity on E-coli inactivation was evaluated at 49 μs treatment time. In the second set of experiments, the effect of medium conductivity was evaluated at constant specific energies of 54, 77 and 135 J/ mL. For the same treatment time, the microbial inactivation was higher in the buffer with higher electivity conductivity. Sub-lethal injury to E. coli. was observed in buffer PEF treatment. Even though the treatment times were different there was no significant effect of on the microbial inactivation to the different conductivity medium when the same specific energy was applied.

