2013

Imbalance Fault Detection of Direct-Drive Wind Turbines Using Generator Current Signals

Xiang Gong
University of Nebraska-Lincoln

Wei Qiao
University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Gong, Xiang and Qiao, Wei, "Imbalance Fault Detection of Direct-Drive Wind Turbines Using Generator Current Signals" (2013). Faculty Publications from the Department of Electrical and Computer Engineering, 274.
http://digitalcommons.unl.edu/electricalengineeringfacpub/274

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Imbalance Fault Detection of Direct-Drive Wind Turbines Using Generator Current Signals
Xiang Gong1, Wei Qiao1
1Department of Electrical Engineering, University of Nebraska-Lincoln

Imbalance faults constitute a significant portion of all faults in wind turbine generators (WTGs). WTG imbalance fault detection using generator current measurements has advantages over traditional vibration-based methods in terms of cost, implementation, and system reliability. However, there are challenges in using current signals for imbalance fault detection due to low signal-to-noise ratio (SNR) of the useful information in current signals and nonstationary characteristic frequencies of imbalance faults. This paper proposes a method of using generator stator currents for imbalance fault detection of direct-drive WTGs. In the proposed method, the variable shaft rotating frequency of a WTG is estimated from one phase stator current measured from the generator terminal by using a phase lock loop (PLL) method. The estimated shaft rotating frequency is then processed by using appropriate up-sampling and variable-rate down-sampling algorithms. Consequently, the variable characteristic frequencies of imbalance faults in the spectrum of the estimated shaft rotating frequency are converted to constant values. Therefore, the signatures of wind turbine imbalance faults can be clearly identified from power spectral density (PSD) analysis of the converted shaft rotating frequency signal. Simulation and experimental results show that the proposed method is effective to detect various imbalance faults in direct-drive WTGs.