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Abstract — Regression test selection (RTS) techniques attempt
to reduce regression testing costs by selecting a subset of a
software system’s test cases for use in testing changes made to
that system. In practice, RTS techniques may select inordinately
large sets of test cases, particularly when applied to industrial
systems such as those developed at ABB, where code changes
may have far-reaching impact. In this paper, we present a new
RTS technique that addresses this problem by focusing on specific
classes of faults that can be detected by internal oracles – oracles
(rules) that enforce constraints on system states during system
execution. Our technique uses program chopping to identify code
changes that are relevant to internal oracles, and selects test
cases that cover these changes. We present the results of an
empirical study that show that our technique is more effective
and efficient than other RTS techniques, relative to the classes
of faults targeted by the internal oracles.

I. INTRODUCTION

Regression testing is a testing process used to validate

modified software and detect whether new faults have been

introduced into previously tested code. In practice, regression

testing can be expensive. To address this problem, researchers

have investigated various strategies, including techniques for

regression test selection and test case prioritization ([1] pro-

vides a survey).

In this work, we are interested in regression test selection

(RTS) techniques. RTS techniques select, from an existing

test suite for a system, test cases that are relevant to a

modified version of that system, and that are less expensive

to execute than the complete suite. While empirical studies

of RTS techniques (e.g., [2], [3]) have shown that they can

be cost-effective, they have also shown that in certain cases

these techniques may yield no benefits. In particular, in large

industrial systems such as those developed at ABB, code

modifications made for new product versions often have far-

reaching impact on the rest of the system’s code [4]. In such

cases, RTS techniques may select inordinately large numbers

of test cases. Approaches for reducing the numbers of test

cases selected, while retaining the effectiveness (in terms of

fault detection) of the selected test cases, would be helpful.

A second factor that can impact the cost-effectiveness of

RTS techniques relates to the manner in which test engineers

verify the results of testing. Recent work [5], [6], [7] has

shown that there are benefits to paying attention to test oracles

when testing. Most work on oracles, however, has focused on

using them in test case generation (e.g., [8]), rather than on

using them as an aid to regression testing. Recent work has

considered the ability of oracles to improve the effectiveness

of test case prioritization [9], [10], but has not considered

applications to regression test selection.

The most typical approach for verifying test results involves

checking system outputs following test execution, a process

which, in the regression testing context, often involves “dif-

ferencing” system outputs with those of prior system versions.

In such cases, we say that engineers are using output-based test
oracles. While output-based oracles can be effective, they can

fail to detect faults that do not propagate to system outputs.

Such faults can then remain “silent”, even in highly tested

systems that have been in operation for millions of hours,

only to finally manifest themselves under new and previously

unexpected operating scenarios [11].

One alternative to output-based oracles involves internal
oracles; oracles that enforce constraints on system states in

an attempt to detect specific classes of faults. Such faults may

include, for example, those related to memory management,

concurrency, or file operations. Such faults are known for

their propensity to be important and their ability to escape

detection by output-based oracles [12], [13]. Moreover, the

sets of faults targeted by internal oracles (and the choice of

oracles to employ) can be tailored to specific applications in

accordance with organizational needs.

We believe that by utilizing internal oracles in the regression

test selection process, we can address both of the drawbacks

of RTS techniques described above; that is, we can reduce the

tendency of RTS techniques to select too many test cases, and

we can actually enhance the ability of RTS techniques to detect

faults – at least for those classes of faults that are targeted

by the internal oracles. Internal oracles can then serve as

useful complements to output-based oracles. To investigate this

belief, we have developed an oracle-based RTS technique. Our

technique selects test cases associated with system changes,

but only those that are relevant to a set of internal oracles

that are known to be important for the system under test. Our

technique uses program chopping to locate statements that can

affect the output of these test oracles; these statements are then

used to direct the selection of test cases.

To assess our oracle-based RTS technique, we conducted

an empirical study in which we applied it to two open source
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systems and several components of a large ABB system. We

use oracles studied in our prior work [14], and also oracles

that are specific to ABB systems and that are mined as rules

directly from source code [15]. We compare our technique

to the retest-all technique (in which all test cases are re-

executed) and to a code-differencing-based RTS technique.

Our results show that our technique substantially improves on

these other techniques in terms of efficiency, while equaling

or outperforming them in terms of fault detection with respect

to faults targeted by the internal oracles.

II. BACKGROUND

This section provides background information on regression

test selection, test oracles, and program analysis techniques.

Section VI provides further discussion of related work.

A. Regression Test Selection

Given program P , modified version P ′, and test suite

T , engineers use regression testing to test P ′. A retest-all

regression testing technique reuses all test cases in T , but

given long-running test suites can be expensive. Regression

test selection (RTS) techniques (e.g., [3], [16], [17]; select a

subset of test cases T ′ from T for regression testing P ′.

B. Test Oracles

The most typical approach to verifying test results involves

using output-based oracles; that is, oracles that check system

outputs. However, faults may escape detection if a test suite

fails to propagate their effects to program outputs. In such

cases, output-based test oracles are inadequate.

In contrast, internal oracles monitor and enforce constraints

on internal program states seeking evidence that infections
have occurred – that is, cases in which program states have

been altered in violation of the constraints enforced by the

given oracles. These oracles then signal the presence of those

infections to alert testers to the possible presence of faults.

Previous research has argued that internal oracles can increase

the probability of fault detection [18], [19]. Our own recent

work [14], [20] introduced a framework for testing embedded

systems that provides observability through internal oracles

that are used generally by engineers (such as data races,

deadlocks, and memory safety). The observations gathered by

our internal oracles can be used to detect the presence of faults

that might not otherwise be detected.

Whereas the foregoing types of generic oracles can be

used generally when testing large classes of software systems,

another approach to verification relies on internal oracles that

are system-specific. Sun et al. [15] employ a dependence-

based graph mining technique [21] to mine system-specific

rules from source code. Their approach identifies frequent code

patterns as graph minors [22] by analyzing a product’s system

dependence graph [23]. Their approach then automatically

transforms the mined rules into checkers for a static analyzer

called Klocwork [24]. Klocwork uses these checkers as

oracles to statically find rule violations in the code.

Fig. 1. Illustrative example

There are, however, several limitations to static checking of

system-specific rules. First, state explosion in static checking

may cause scalability problems [25]. Second, static checking

suffers from false positives due to imprecise local information

and infeasible paths. For example, the analysis engine of

Klocwork cannot distinguish a structure variable from its

field. Third, modern systems are increasingly dependent on

hardware and written in diverse languages, and it is difficult

for static checkers to analyze all of such systems’ source code.

In this work, we utilize system-specific rules mined from

source code, but instead of statically checking them, we

use them as system-specific oracles to guide regression test

selection and dynamically examine the testing results.

C. Program Analysis Techniques

Static program slicing [26] involves the computation of

program points of interest that affect or are affected by other

program points. The forward slice from a given program

point of interest (s) includes all program points that context-

sensitively follow s in forward control flow and are control or

data dependent (directly or transitively) on the computation

or conditional test performed at s. Backward slicing, on

the other hand, is computed by context-sensitively tracing

dependencies along backward control flow from the point of

interest. Program points are basic fragments of source code. A

program may contain multiple files, a file may contain multiple

functions, a function may contain multiple lines, and a line

may contain multiple program points or vertices. In this paper,

for convenience, we consider program points at the granularity

of source code statements.

Static program chopping, roughly speaking, is the intersec-

tion of forward and backward slicing. Two points of interest,

source (s) and target (t), are chosen, and the chop consists

of statements that are dependent on s, and on which t is

dependent. As such, chopping reveals the ways in which one

program point can affect another program point.

We use program P ′ shown in Figure 1 to illustrate how

chopping works. Suppose the statement in line 16 is the target

t and the statement in line 5 is the source s for chopping. In this

case, the set of statements at lines {5, 6, 9, 10, 16} constitute

the chop. This is because variable size in line 9 is control

dependent on variable i in line 6, which is computed at s, and

because size, in turn, then affects the computation at t.
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Generic Oracles

a strcpy(strt, strs): sizeof(strs) ≤ sizeof(strt)

b sem o: sem acq(o) ⇒ sem rel(o)

System-specific Oracles

c ABB db1 create() ⇒ ABB db1 close()

d return ABB objX: ABB objX == OK

Fig. 2. Example internal oracles

III. APPROACH

We now present our oracle-based RTS technique, which for

brevity we henceforth refer to as RTSO. The goal of RTSO

is to select test cases that test program changes while also

impacting relevant internal test oracles.

A. Internal Oracles

The internal oracles considered in this work include generic

internal oracles [14] (oracles that can be used generally on any

system) and system-specific internal oracles (oracles that are

specific to a particular system). System-specific internal test

oracles can be specified by engineers who are familiar with the

software system under test, or can be obtained from the system

specifications. We use a pre-existing set of system-specific

oracles that were automatically mined by Sun et al. [15] from

the source code of a system developed at ABB using an

existing graph mining approach. Figure 2 displays examples

of generic and system-specific internal oracles.

We further classify internal oracles (both generic and

system-specific) into three classes: data-based oracles, control-

based oracles and hybrid oracles.

Test execution with respect to a data-based oracle involves

checking the state of a data variable such as a variable

representing a buffer. For example, the generic internal oracle

for method strcpy in Figure 2 (line a) specifies that the length

of the string strs stored in the buffer must be less than or

equal to the size of the space strt that was allocated for strs.

The data state of strt is checked whenever buffer-sensitive

operations are encountered. A test case targeting a data-based

oracle fails if it violates the constraint on the data value.

Some faults are caused by violations along specific control

paths. Control-based oracles are used to guard against such

violations. For example, consider the system-specific internal

oracle shown in Figure 2 (line c). This oracle requires that

when API ABB db1 create is called, ABB db1 close must

also be called. A test case targeting this control-based oracle

fails if ABB db1 close is missing along any control path.

In many cases, internal oracles involve combinations of

data-based and control-based oracles, and we refer to such

oracles as “hybrid oracles”. For instance, the generic oracle

shown in Figure 2 (line b) requires that the semaphore

acquired using sem acq with object o should eventually be

released by a call to sem rel with object o. This requires us to

check the value of the semaphore object o while also tracking

the control flow related to the sem acq and sem rel functions.

�������
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���

�������

Oracle (O)  t (target) 
�������

P 
P’’ �	
��

�������

Oracle (OO) t (target)( g )

Change Selection 

Test Selection 

�	
��
�

C’O 
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T 

CO 
T’ 

C

Test history  
(HP) 

Fig. 3. Overview of RTSO

B. Overview of RTSO

The RTSO technique (Figure 3) involves a change selection

component and a test selection component. Let P be the

original program and let P ′ be a modified version of P . Let

C ′ be the set of changes made to P to produce P ′ (a set

of program locations in P ′) and let O be the set of internal

test oracles (O need exist only in P ′). The change selection

component identifies C ′
O, a subset of C ′ related to O. Based

on set C ′
O, the test selection component selects T ′ ∈ T for

regression testing P ′.

C. Change Selection

The change selection component of RTSO computes

changes that are relevant to a given set of internal oracles. This

component has three modules: differ, parser, and chopper.

Figure 4 displays the algorithm used by this component. The

algorithm takes prior program version P , modified program

version P ′, and set of oracles O as inputs, and it computes

the changes that are relevant to O, denoted by C ′
O. First, the

algorithm invokes the differ module, which uses a differencing

tool to identify the set of changes (C ′) between P and P ′

(line 5). Next, the algorithm invokes the parser to extract

chopping targets (t) from internal oracle set O (line 6), where

O contains one or more oracles. For each change c′ ∈ C ′,
the algorithm invokes the chopper to compute impact set ISO

(lines 7-9) with respect to O relative to program P ′, where c′

contains the chopping source. If ISO is not empty, change c′

potentially impacts one or more oracles in O, so the algorithm

adds c′ to the relevant change set C ′
O (line 11).

In the example shown in Figure 1, statements S7 and S9

are involved in two changes made to produce P ′ from P .

The differ module outputs C ′ = {S7, S9}, which forms the

chopping source. Consider a generic data-based internal ora-

cle, the memory security oracle, specified in Figure 2 (line a).

The buffer-sensitive operation related to this oracle appears at

statement S16, where the oracle enforces the constraint that the

length of string strs stored in the buffer must be less than or

equal to the size of the space allocated for it. Hence, the two
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procedure ChangeSelection
1: Inputs: P , P ′, O
2: Outputs: C′

O

3: begin
4: C′

O = φ
5: C′ = differ(P , P ′)
6: t = parser(O)
7: for each c′ ∈ C′

8: ISO = φ
9: ISO = chopper (P ′, c′, t)
10: if ISO �= φ
11: C′

O = C′
O ∪ c′

12: endif
13: endfor
14: end

Fig. 4. Change selection algorithm

procedure TestSelection
15: Inputs: T , HP , C′

O

16: Outputs: T ′

17: begin
18: T ′ = φ
19: CO = mapper(C′

O)
20: for each cO ∈ CO

21: for each tc ∈ T
22: if HP (tc, cO) = true /* tc traverses cO */
23: T ′ = T ′ ∪ tc
24: endif
25: endfor
26: endfor
27: end

Fig. 5. Test selection algorithm

parameters in strcpy form the chopping target (t) extracted

by the parser. The chopper computes {S9, S10, S16} as the

impact set with respect to the given memory security oracle.

As a result, C ′
O = {S9}.

D. Test Selection

The test selection component of RTSO has two modules:

mapper and selector. Its algorithm is shown in Figure 5. The

test selection component takes three inputs: the original test

suite T , the oracle-relevant change set C ′
O obtained from the

change selection component, and the test coverage history HP

that denotes which test cases in T covered which statements

in P , obtained earlier in the maintenance cycle by running T
on P . C ′

O is input to mapper, which returns CO, the changes

corresponding to C ′
O in P ′ but located in the original program

P (line 19). For each change cO ∈ CO, based on the coverage

history HP , the algorithm selects all test cases from T that

traversed cO, and adds them to T ′ (lines 21-24).

In the example shown in Figure 1, CO = C ′
O = S9 is

returned by the mapper. Suppose there are two test cases in

T , tc1 = (0, aaaaaaaaa), and tc2 = (2, aaaaaaaaa), each

with input string length nine. In this case the selector selects

only tc1 for T ′ because tc2 does not cover anything in CO.

As a result, tc1 causes the buffer overflow to occur at S16

but tc2 does not. In contrast, most traditional RTS techniques

would select both tc1 and tc2 for T ′ because they both cover

changed statements C ′ = {S7, S9}.

IV. EMPIRICAL STUDY

In this study, we evaluate our oracle-based regression test

selection technique (RTSO) in terms of efficiency and ef-
fectiveness. Efficiency measures the extent to which RTSO

can reduce the cost of regression testing, while effectiveness

measures the technique’s ability to detect faults. We compare

RTSO to the retest-all technique and to a traditional code-

differencing-based RTS technique [27].

We consider the following research questions:

RQ1: How does the efficiency of RTSO compare to that of

traditional RTS and retest-all techniques?

RQ2: How does the effectiveness of RTSO compare to that of

traditional RTS and retest-all techniques?

A. Objects of Analysis

As objects of analysis, we chose seven programs written

in C/C++. These included two open source programs down-

loaded from the Software-artifact Infrastructure Repository

(SIR) [28], and five programs from a large industrial system

developed at ABB. We utilized three versions of each of the

two open-source programs and two versions of each of the

ABB programs. Table I lists these program versions along with

some of their characteristics, including the number of lines of

non-comment code (column 2) and the number of test cases

provided (column 3) with their base versions (other columns

are described later).

The first open source program, MAKE, is a popular GNU

utility used to control the generation of executables from a

program’s source files. We chose three consecutive versions

of this program (v3.78.1, v3.79, v3.79.1), along with the test

suite provided with the program in SIR. The second open

source program, GREP, is another popular GNU utility used to

search for text matching a regular expression. We chose three

consecutive versions of this program (v2.3, v2.4, v2.4.1) and

its SIR test suite. The five ABB programs represent five dif-

ferent components of the industrial system, and were already

equipped with test suites. For purposes of anonymization, we

denote these by the names ABB.X, ABB.Y, ABB.Z, ABB.M,

and ABB.N. We chose two versions for each of these programs

(denoted by v and v′). In total, then, this gave us nine pairs

of programs to which RTS techniques can be applied: two of

MAKE ((v3.78.1, v3.79) and (v3.79, v3.79.1)), two of GREP

((v2.3, v2.4) and (v2.4, v2.4.1)), and five of the ABB programs

(ABB.C(v), ABB.C(v′)), for C ∈ {X,Y, Z,M,N}.

We implemented generic and system-specific oracles such

as those presented in Section III-A. We considered 15 generic

oracles for MAKE and GREP, and 13 generic and 11 system-

specific oracles for the ABB programs. Column 4 of Table I

lists the numbers of oracles that were ultimately applicable

per program. For the ABB programs, the numbers within

parentheses represent the number of generic oracles.

Because engineers are typically concerned with classes of

faults rather than individual oracles, we chose to study oracles

in terms of fault classes. For example, more than one oracle

can be used to detect faults involving buffer security, so
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TABLE I
OBJECT PROGRAMS AND THEIR CHARACTERISTICS

Program NLOC tests oracles classes faults
MAKE (V3.78.1) 17584 1046 - -
MAKE (V3.79) 23124 1046 14 3 37
MAKE (V3.79.1) 23257 - 14 3 26
GREP (V2.3) 9943 809 - -
GREP (V2.4) 10032 809 15 3 16
GREP (V2.4.1) 10073 - 15 3 13
ABB.X (V) 1747 403 - -
ABB.X (V’) 1906 - 12(9) 4(2) 11
ABB.Y (V) 394 222 - -
ABB.Y (V’) 494 - 12(9) 2(1) 11
ABB.Z (V) 3208 1065 - -
ABB.Z (V’) 4826 - 14(5) 6(2) 14
ABB.M (V) 6549 456 - -
ABB.M (V’) 6739 13(6) 4(1) 26
ABB.N (V) 5723 1443 - -
ABB.N (V’) 6132 - 14(7) 4(1) 32

we considered a set of oracles relevant to that fault class.

Specifically, we group generic oracles into the classes buffer
security, dynamic memory management, file management, and

critical sections. System-specific oracles are classified in terms

of faults being checked for particular system features. For

example, three system-specific oracles used to check database

operations are classified as database management oracles.

Column 5 of Table I lists the number of oracle classes

considered for each program (the numbers within parentheses

represent the number of classes of generic oracles only).

To address our research questions we also required faulty

versions of our object programs. Here, we are specifically in-

terested in faults that are of the classes detectable by our ora-
cles, and we require a number of oracle-related faults adequate

to allow us to study the effectiveness of our approach. Because

our object programs conceivably could have contained faults

initially, we first ran all of the test cases supplied with each

original program on its modified version, with respect to both

internal and output-based oracles. A few oracle-related faults

were present in the modified programs. Specifically, four and

three memory faults were detected in MAKE v3.79 and v3.79.1,

respectively. Only two of these faults, however, qualified for

our study because we are interested only in regression faults

(i.e., faults located in changed code), and the other five faults

were residual faults not located in changed code.

Two faults were not sufficient for our evaluation, so we

next hand seeded additional faults of the fault classes. For each

program, we first identified program changes using approaches

described in Section IV-C. We next identified the changed

statements for which a given fault class is applicable, and

seeded potential faults related to that fault class in those

statements. For data-based oracles, if a change was made to a

variable V specified in the oracle, we changed the content of

V or the operators that affect the computation of V ; otherwise,

we changed the variables having data dependencies with V or

their computation operators. For example, for faults involving

buffer management, we changed the length of variables of

source or target strings in those buffer sensitive operations, or

changed the length of variables that have data dependencies

with the source or target string. For control-based oracles, if a

change was made to an API defined in the oracles, we omitted

that API; otherwise, we changed the conditional statements

affecting its reachability. For example, for faults involving

A() ⇒ B() (i.e., if A() is called, B() must eventually be

called), we omitted B(), or changed conditional statements

affecting reachability of B(). For hybrid oracles, we used

the seeding methods for both data-based and control-based

oracles. For example, for faults involving critical section

protection, we omitted statements involving critical section

entry or exit, changed associated lock objects, or changed the

variables having data dependencies with the objects.

After running the original test suites on the modified pro-

grams with seeded faults, we eliminated potential faults that

could not be detected by any test case using both internal

or output-based oracles. These potential faults, which can

include “equivalent mutants”, provide no insight into the

fault detection effectiveness of the techniques. The numbers

of faults ultimately considered for our object programs are

reported in the rightmost column of Table I.

B. Variables and Measures

1) Independent Variable: Our independent variable in-

volves RTS techniques. In addition to our oracle-directed RTS

technique (RTSO), we consider a traditional RTS technique

(RTSC) and the retest-all technique (RTA). With the latter two

techniques, we employ both output-based and internal oracles.

Comparing RTSO to control techniques that employ output-

based oracles is necessary in order to assess whether RTSO

detects faults more effectively that those techniques in their

typical manner of employment. Comparing RTSO to control

techniques employing internal oracles is necessary in order to

determine whether RTSO is able to detect all of the faults

that those techniques could detect using those oracles. As

noted above, we implemented internal oracles based on the

generic rules and system-specific rules presented in Section III.

We implemented output-based oracles by providing output

checkers appropriate to the programs.

We denote the five techniques utilized as follows:

RTSO: oracle-directed RTS;

RTSCP : traditional differencing-based RTS with output

checking;

RTAP : retest-all with output checking;

RTSCI : traditional differencing-based RTS with internal

oracle checking;

RTAI : retest-all with internal oracle checking.

Because our study considers only faults of the classes de-

tectable by internal oracles, and our RTSO technique is created

for checking internal oracles, we do not consider output

checking in RTSO.

2) Dependent Variables: As dependent variables, as men-

tioned above, we measure efficiency and effectiveness. To mea-

sure efficiency we use two metrics. The first metric considers

the numbers of test cases that are selected using the various

techniques, providing a view of efficiency that is independent
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of analysis technique implementation issues. To use this metric

we applied RTSO, RTSCP , and RTSCI and recorded the

numbers of test cases selected by the approaches; we report

the results as percentages of the original test suites and refer

to this metric as percentage of test cases selected.

As a second efficiency metric we measured testing time, by

summing three measures: the time required for code analysis

(if any), the time required to execute test cases, and the time

required to perform oracle or output checking activities.1 To

obtain these times, when we applied RTSO, RTSCP , and

RTSCI , we measured the analysis time required for selection.

Then, we executed each object program ten times on the

various sets of selected test cases (or in the case of RTAP

and RTAI , on all test cases), and calculated the average time

required to execute the test cases and perform all oracle-based

checking.

To measure fault detection effectiveness, we also use two

metrics. First, to compare the fault detection effectiveness of

RTSO to the fault detection effectiveness of other techniques

when they are used in their typical manner (with output oracles

and targeting all faults), we compare the numbers of faults

detected by test cases selected by RTAP , RTSCP , and RTSO,

respectively. We use the term fault detection performance to

denote this comparison metric.

Second, to compare the fault detection effectiveness of

RTSO to the fault detection effectiveness that other techniques

would produce if they were to target the fault classes targeted

by internal oracles, we compare the number of faults detected

by test cases that are selected by RTSO, RTAI , and RTSCI ,

respectively. We use the term fault detection inclusiveness to

denote this comparison metric.

C. Study Operation

For our differ module, we used two differencing tools to

perform change identification for successive versions of our

object programs. The first tool is an existing ABB internal

tool tailored for ABB programs, and was implemented based

on an Abstract Syntax Tree (AST) differencing technique [29].

This tool did not directly work on our open-source objects,

MAKE and GREP, so for these programs we implemented a

second tool based on textual differences in accordance with

an existing differencing algorithm [27].

We implemented our chopper module using the program

chopping APIs provided by CodeSurfer [30]. The chopper

module takes program changes and internal test oracles as

inputs, and outputs change impact sets relevant to the oracles.

The accuracy of program chopping in CodeSurfer depends on

several configurable static analysis parameters such as the al-

gorithm used for pointer analysis, context/flow sensitivity, and

non-local analysis. In our study, we use the most “expensive”

1When measuring testing time, we do not include time spent on activities
performed in the preliminary phase of regression testing (prior to the time at
which the modified program is available for testing, and when testing time
becomes a critical issue); these include collection of test history information,
construction of the system dependence graph for the original program, and
instantiation of test oracles.

options available with CodeSurfer for these static analysis

parameters. Ideally, we should use both data dependencies and

control dependencies when using program chopping; however,

this may yield large impact sets, causing many more test

cases to be selected. Thus, in our study, we used only data

dependencies for all classes of oracles. (For the objects studied

this had no impact on fault detection effectiveness; however,

this may not always be the case).

We implemented our internal oracles using binary instru-

mentation. Binary instrumentation tools have been widely

used to detect errors in software. We chose two popular

tools: PIN [31] and Valgrind [32]. Valgrind can be directly

used to detect memory faults such as buffer overflow and

memory leaks. PIN enables us to create customized dynamic

monitoring modules to monitor violations of different classes

of oracles. All ABB dynamic rule checkers were implemented

using PIN, and the dynamic rule checkers for MAKE and GREP

used both PIN and Valgrind. To implement output oracles for

MAKE and GREP, we used the Linux utilities diff and cmp
to compare actual outputs of test cases executed on original

and modified programs. For the ABB programs, output oracles

had already been implemented as part of the test cases, and

program crashes (e.g., segmentation faults) are also monitored.

To determine which test cases detect which faults, we

executed all test suites on the faulty versions of each object

program with only one fault activated per execution to avoid

interactions between faults. (This approach may overestimate

fault detection in cases where multiple faults would actually

mask each other’s effects, but facilitates evaluation, and in

prior work [33] has been shown to have negligible effects on

results.) When each fault is activated, all oracles that pertain to

that fault class become active and related program behaviors

are monitored. All oracle checking (including output checking)

is done at runtime. This approach helps us expedite the

experimental process without affecting the results. In practice,

of course, developers may not know the fault types ahead of

time, and would enable all oracles regardless of fault types.

D. Threats to Validity

The primary threat to external validity for this study involves

the representativeness of our programs, faults, and test cases.

Other systems may exhibit different behaviors and cost-benefit

tradeoffs, as may other forms of test cases. However, we do

reduce this threat to some extent by using both open source

and industrial objects for our study. A second threat to validity

involves the baseline techniques that we compare against,

which include traditional RTS and retest-all techniques. Other

baseline techniques may also be of interest.

The primary threat to internal validity for this study is

possible faults in the implementation of our approach and in

the tools that we use to perform evaluation. We controlled for

this threat by extensively testing our tools and verifying their

results against a smaller program for which we can manually

determine the correct results. We also chose to use popular

and established tools (e.g., CodeSurfer, Valgrind and PIN) to

implement the various modules in our approach. Finally, the
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differencing tool used at ABB has been extensively used by

industrial developers.

Where construct validity is concerned, our measurements

of efficiency focus on the time required for analysis, test

execution, and application of oracles. However, other costs

such as test setup and maintenance costs can also play a

role in regression testing efficiency. Our measurements of

fault detection effectiveness are relative to specific classes of

faults. Our technique may not detect other classes of faults

beyond those related to the specific oracles used; however, it

is intended to apply only to specific fault classes.

E. Results and Analysis

1) RQ1: Technique Efficiency: To address our first research

question we begin by considering percentages of test cases

selected. Figure 6 displays these results for the RTSC and

RTSO selection techniques, for each of the nine object pro-

grams. Internal and output-based oracles lead to identical test

selection percentages given our objects and test cases; thus,

we do not differentiate between oracles in this case. As the

results show, RTSC selected smaller test suites than RTA in

some cases, but the overall savings were not dramatic; the

percentage of selected test cases ranged from 71.2% to 100%.

RTSO, on the other hand, selected smaller test suites on all

nine programs (in most cases dramatically), with selection

percentages ranging from 2.9% to 89.7%. In fact, on seven

of the nine versions, RTSO selected fewer than 60% of the

test cases, and in two cases (MAKE2 and ABB.X) it selected

fewer than 10% of the test cases.

We now consider savings in terms of testing time, and here

we consider all five techniques: RTAP , RTSCP , RTAI , RTSCI

and RTSO. Figure 7 shows testing time measured in minutes

for each of the nine object programs, with each of the five

techniques. Among the three techniques using internal oracles

(the rightmost three bars in each set of five), RTSCI required

less testing time than RTAI on eight of the nine programs

programs (all but ABB.Y). The savings for individual pro-

grams ranged from 1.2% to 34%, and the average savings

across all nine programs was 24.5%. The savings on the open

source programs averaged 6.9%, and on the ABB programs

it averaged 30.2%. RTSO achieved even greater savings than

RTAI , with an average savings across all programs of 68.5%,

and savings on individual programs ranging from 8.6% to

97.3%. Savings on the open source programs averaged 62.7%,

and on the ABB programs it averaged 70.4%.

When compared to techniques using output-based oracles

(the two leftmost bars in each set of five), RTSCI did not

result in savings in testing time. This is because with binary

instrumentation, internal oracle checking caused test execution

time to increase by 1.5 – 5 times across the nine programs.

To determine what portion of total testing time is spent

performing analysis tasks, we also report just the analysis time

required for RTSCP , RTSCI and RTSO. Table II shows the

percentage of total testing time spent on analysis for each

program using the three techniques. In all but three cases,

analysis time accounted for less than 5% of overall testing
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Fig. 6. Overall efficiency: percentages of test cases selected
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Fig. 7. Overall efficiency: testing time

time. In quantitative terms, the time spent on the analysis

performed by test case selection never exceeded 77 seconds,

and the time spent on oracle-based impact analysis never

exceeded 16 seconds. As a result, we find this cost to be

negligible. Thus, on systems for which the time required to

execute test cases is larger than those we consider in this study,

the reduction in numbers of test cases selected for the oracle-

based techniques may translate more readily to savings in test

execution time.

2) RQ2: Technique Effectiveness: To address our second re-

search question, we first consider fault detection performance,

by examining whether RTSO achieved higher fault detection

effectiveness results than RTAP and RTSCP . Table III shows

the numbers of faults detected by the test cases selected by all

RTS techniques for each of the nine programs. Recall again

that the faults we utilized are all of the classes of faults

targeted by our internal oracles, and the total numbers of

faults are shown in the last column of Table I. In all cases,

RTSO detected all faults, and overall, improved fault detection

effectiveness by 250.9% across all nine programs compared to

RTAP and RTSCP .

We next consider fault detection inclusiveness; that is,

whether faults detected by RTAI and RTSCI can also be

detected by RTSO. Results in Table III (second row) show

that RTSO achieved 100% inclusiveness; that is, in the in-

stances considered in this study, RTSO selected test cases that,

together, revealed all faults in the programs. Note that this

result was not fore-ordained, because RTSO is not safe when

control dependence information is not considered; however,
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TABLE II
PERCENTAGE OF TIME SPENT ON ANALYSIS (%)

Technique make-v3.79 make-v3.79.1 grep-v2.4 grep-v2.4.1 ABB.X ABB.Y ABB.Z ABB.M ABB.N
RTSCP 2.4 2.3 35.4 36.9 1.1 1.1 0.8 1.4 0.5
RTSCI 0.7 0.7 3 3.3 0.7 0.4 0.3 0.4 0.1
RTSO 1.4 25.7 3.7 4.3 8.5 1.0 2.2 0.9 0.3

TABLE III
NUMBERS OF FAULTS DETECTED

Technique make-v3.79 make-v3.79.1 grep-v2.4 grep-v2.4.1 ABB.X ABB.Y ABB.Z ABB.M ABB.N
RTAI /RTSCI /RTSO 37 26 16 13 11 11 14 26 32

RTAP /RTSCP 10 6 7 8 3 6 8 3 2

the result does show that inclusiveness need not necessarily be

sacrificed by our approach. To understand this result further,

we examined each faulty version for each program, and found

that all faulty program changes were identified as relevant

changes by our change selection component; this explains why

RTSO could detect all faults in these cases.

V. DISCUSSION

The foregoing results have two primary implications for the

use of RTS techniques:

• Our oracle-based RTS technique is more expensive in

terms of testing time than retest-all and code-differencing

based RTS techniques when those techniques use output-

based oracles; however, our technique has substantially

better fault detection ability than those techniques relative

to the classes of faults it targets.

• If we attempt to employ the same internal oracles in

the retest-all and code-differencing based RTS techniques

that are used in our oracle-based technique, we can detect

the same sets of faults with all techniques, but our oracle-

based technique is substantially more efficient than the

other techniques.

In other words, if these results generalize to other programs

and RTS techniques, then if engineers wish to target the
classes of faults that our oracles target, the oracle-based
technique is the best technique to utilize.

We now explore additional observations relevant to our

study, and factors that cause performance differences.

First, the percentage of test cases RTSO selected varied

across programs. Test case selection results depend on the

program locations in which changes occur and where oracles

are applied; both of these factors affect the results of program

chopping, and thus affect the oracle-relevant changes identified

for test selection. For the two versions of GREP, on which

RTSO selected relatively large sets of test cases, many changes

occur inside the main functions, and all of these are identified

as relevant to the oracles; thus, a relatively large percentage

of test cases were selected.

Where testing time is concerned, RTSO produced savings

on just three out of nine programs, compared to RTAP and

RTSCP . There are two reasons for this. First, testing with

internal oracles can be expensive because instrumentation can

dramatically slow down the program. Second, testing can be

even more expensive when we use multiple instrumentation

techniques to check different oracles, requiring us to run

test suites more than once, as we did for our open source

programs; a more efficient instrumentation technique could

reduce such costs. Again, however, these added costs do allow

the oracle-based approach to outperform the other (output-

based) approaches in terms of fault detection effectiveness.

The RTS technique that we have presented is intended

ultimately for use on larger systems than those we have

studied. The code portions of the ABB programs we studied

constitute no more than 1% of the entire ABB system. In

fact, running all of the test cases on the full system requires

weeks of effort. It is worth commenting on how our results

might scale to larger systems. A primary constituent of testing

time when our internal oracles are utilized involves the cost of

code instrumentation. The fewer the test cases required by an

RTS technique, the lower the instrumentation costs become.

Compared to analysis time (0.3% to 25.7%), instrumentation

overhead (1.5 to 5 times the cost of test execution) is more

expensive. We conjecture that for larger systems with longer

test execution times, the possibilities for achieving substantial

savings in testing time will increase.

In our study, we restricted our program chopping approach

to consider data dependencies only. Although this approach

may impact test selection results in general, in our particular

study it did not affect the inclusiveness of our technique. The

reason for this is that for each program version, there are

no changes such that the faults injected could cause control

flow to be altered in a manner that affects reachability of the

function in the oracle (e.g., function B() in A(o) ⇒ B(o)).

Although RTSO is effective for detecting faults related

to internal oracles, it is possible that internal oracles could

produce false positives. In such cases, an oracle might suggest

that a fault exists when in fact there is no fault, and if such

false positives were to occur at a certain level of frequency,

this could increase testing costs as engineers spend time

investigating fault reports. However, no false positives were

found in our study. Additional empirical work will be needed

to investigate this issue further.

Finally, we consider fault detection results relative to the

individual classes of faults detected by our oracles. Figure 8

shows, for each of the nine versions of our seven object

programs, the percentages of test cases selected by RTSC

(first bar), RTSO with all oracles (second bar), and RTSO

with individual oracle classes (remaining bars labeled O.I,
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Fig. 8. Percentages of test cases selected for specific oracle classes

O.II, etc), over the set of modified versions of that program.

There are several cases in which no test cases are selected

for a particular oracle class (i.e., O.II of ABB.Y; O.IV, O.V,

and O.VI of ABB.Z; O.I of ABB.M), which indicates that

no regression test selection is needed for these oracle-related

faults. For all nine programs, the test cases selected for

individual oracle classes formed overlapping sets. In fact, the

overlap between test cases was particularly large for all but

two programs (ABB.X and ABB.Z).

There are two reasons for these results. First, program

changes are likely to be concentrated in one function or block,

causing selected relevant changes to be concentrated too; thus,

test cases traversing the changed statements are unlikely to

be disjoint. Such cases occur in the ABB programs when a

new feature is added to the modified program in the form of

new functions, or when entire features (functions) are changed.

Second, one change may affect more than one oracle class,

causing the relevant changes computed for each oracle class to

overlap. For example, suppose a statement involving memory

allocation is changed, and this allocated memory is later used

to perform buffer writing. Suppose that the string written into

the buffer is a file name that is passed as a parameter into

a file open operation. In this case, the changed statement

is relevant to three oracle classes: buffer security, dynamic
memory management, and file management.

VI. RELATED WORK

There has been a great deal of research on improving

regression testing through regression test selection, test case

prioritization, and test suite reduction; Yoo and Harman [1]

provide a recent survey. Here, we restrict our attention to

techniques that share similarities with ours.

Static program slicing has been used for regression test-

ing [16], [17]. Bates et al. [16] apply program slicing to

both old and modified versions of a program to identify

statements having equivalent execution patterns. Statements

are considered “affected” if they are not equivalent, and

test cases associated with these affected statements are se-

lected. Binkley [17] extends Bates et al.’s technique to inter-

procedural regression test selection. Our technique, like these,

uses slicing, but its use of test oracles is novel.

Some RTS techniques target specific faults. Leung et al. [34]

introduce a firewall technique that selects integration tests

based on module changes. Robinson et al. [35] apply firewall-
based techniques for regression testing industrial real-time

systems. Similar to our technique, firewall-based techniques

select tests that target particular fault classes; however, they

do not select test cases related to internal oracles.

There has been some work on performing test case priori-

tization using oracles. Jeffrey et al. [9] perform prioritization

based on the number of program statements relevant to print

statements, an approach that relies on output oracles. Staats

et al. [10] present a prioritization technique that utilizes infor-

mation on coverage of values that have impact on variables

used in internal, assertion-based test oracles. Both of these

techniques, like ours, ultimately reward test cases whose

executions influence a part of the program that can produce

verifiable testing outputs. However, we focus on regression test

selection, not prioritization. Still, the techniques used in these

papers to reward test cases could also be adapted to regression

test selection (and vice-versa).

Zheng et al. [36] propose an RTS technique based on

dynamically mined operational models. These models (rules)

are used as internal test oracles in regression testing, and

only test cases causing rule violations are selected. Zheng’s

technique and ours are similar in that both select test cases

targeting test oracles. However, the oracles we consider are

commonly used generic rules and real system rules that can

be used across multiple program versions, whereas the oracles

mined by Zheng’s technique are predicate rules that might

not be applicable for other program versions. Also, Zheng’s

technique does not restrict test selection to test cases that

are traverse changes, rendering it less precise, and it selects

all test cases that cause rule violations in the old programs.

Our technique, in contrast, selects only test cases traversing

changes relevant to the oracles in the modified programs.

Fault-based testing [37], which focuses on certain restricted

classes of well-formalized faults, has been used for regression

test selection [38], [39], [40], [41]. Similar to our technique,

fault-based testing techniques select test cases that detect

particular types of faults. For example, Chen et al. [38] and

Tai et al. [41] use boolean functions to express faults involving

misuse of literals in boolean operators, and select test cases

detecting these faults. In practice, however, it is impractical to

consider each boolean operator fault in real regression testing

scenarios such as those involving large industrial software

systems. Also, these techniques do not use test oracles for a

particular fault class that may include varieties of single faulty

statements (e.g., operator faults, missing statements, etc). In

contrast, our technique uses oracles that are practical, and that

are able to detect more than just single fault types that may

propagate to the oracles.
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Specification-based RTS techniques use system require-

ments to select test cases [42], [43]. However, these techniques

do not consider the effectiveness of using internal oracles for

particular fault classes. For example, Chittimalli et al. [42]

present a technique to select test cases associated with system

requirements. Although requirements can be used as oracles,

such techniques focus on “selection” while ignoring these

oracles. Also, our technique uses program analysis to iden-

tify changes that could potentially propagate to the oracles,

whereas Chittimalli’s considers only changes within the code

related to requirements and hence may omit test cases.

VII. CONCLUSION

We have presented an RTS technique that uses internal

oracles. We have conducted an empirical study applying our

technique to two open source programs and five components

of a large ABB system. Our results show that our technique

can be more effective and efficient than other RTS techniques

when targeting classes of faults related to internal oracles.

As part of our future work, we intend to extend our

study to consider more components of the ABB system with

additional oracle classes. We also intend to investigate how

data dependence and control dependence information used in

program chopping can affect change (and hence test case)

selection for data-based, control-based and hybrid oracles.

Finally, we will perform more extensive empirical studies.
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