6-1979

Distribution of Plants with Extrafloral Nectaries and Ants at Two Elevations in Jamaica

Kathleen H. Keeler
University of Nebraska - Lincoln, kkeeler1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub
Part of the Biodiversity Commons, Botany Commons, Entomology Commons, and the Plant Biology Commons

Keeler, Kathleen H., "Distribution of Plants with Extrafloral Nectaries and Ants at Two Elevations in Jamaica" (1979). Faculty Publications in the Biological Sciences. 277.
http://digitalcommons.unl.edu/bioscifacpub/277

This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Distribution of Plants with Extrafloral Nectaries and Ants at Two Elevations in Jamaica

Kathleen H. Keeler
School of Life Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, USA

Abstract
Frequencies of plants with extrafloral nectaries were determined for two elevations in Jamaica. Extrafloral nectaries were found on 0.28 of the plants at sea level (Happy Grove, Portland) and 0.00 of the plants at 1310 m (Whitfield Hall, St. Thomas). Ant abundance, as indicated by discovery of and recruitment to baits, was greater at the lower elevation site. However, despite the apparent absence of plants with extrafloral nectaries, there were abundant ants at 1310 m.

Much evidence suggests that extrafloral nectaries attract insects which defend plants against herbivores and/or seed predators (Elias and Gelband 1975; Bentley 1976, 1977a, b; Keeler 1977). Extrafloral nectaries are glands which are located anywhere on a plant except those sites involved in pollination. These glands produce an aqueous solution containing sugars and other compounds (Baker and Baker 1975, Bentley 1977a, Keeler 1977). At present, only Bentley (1976) has studied the distribution of extrafloral nectaries in a natural habitat. She reported a positive correlation between frequency of plants with extrafloral nectaries and ant abundance in tropical dry forest in Guanacaste, Costa Rica. I report extrafloral nectary frequency and ant abundance from two sites in Jamaica.

Two sites were compared: Happy Grove, Portland, Jamaica (sea level, approximately 1700 mm annual rainfall, mean annual temperature 26°C, mean monthly temperatures 24-28°C), and Whitfield Hall, near Hagley Gap, St. Thomas (1310 m up Blue Mountain, 3500 mm annual rainfall, mean annual temperature 22°C, mean monthly temperatures 16-32°C). Since there are no weather records for the specific sites, values are extrapolated from U.S. Weather Bureau (1966) and Clarke (1974).

Significant human disturbance was seen at both sites. Studies were conducted close to trails used daily by local people. The transects at both sites ran from under the forest canopy (presumably second growth) out into partially open areas (early second growth at Happy Grove, coffee fields at Whitfield Hall).

Frequency of plants with extrafloral nectaries was determined in four transects at each site. At approximately every meter along each transect, plants were scored as having or lacking extrafloral nectaries and ants. The presence of extrafloral nectaries was determined by observing ants feeding in a stereotyped manner, and then locating the nectary. Once a species was determined to have extrafloral nectaries, it was scored as such on subsequent encounters. Ants were present at most extrafloral nectaries; of the 70 plants with extrafloral nectaries observed, only 10 (14%) did not have ants on them. The frequency of plants with extrafloral nectaries determined by this method is an underestimate, since some species may produce extrafloral nectar at other times of the year (e.g., fruit nectaries).

Ant abundances were estimated by using baits of canned corned beef and local commercial jelly. A pile of each food about 1 cm in diameter was placed on a separate piece of plastic, 25 cm², in the litter at each station. Time until arrival of the first ant, type of ant, peak number of ants responding and number of ant species attracted were recorded at each bait. Representative ants from baits at both sites and from foliar nectaries of plants at Happy Grove were collected. The experiments were carried out for three hours each, from 09:00-12:00 hrs in December 1977.

Results from the extrafloral nectary transects are given in Table 1. No species with extrafloral nectaries was observed at Whitfield Hall. At Happy Grove, 28 percent of the observed plants had extrafloral nectaries. These differences are statistically significant (T-test; $p << 0.001$).

Ant abundances were estimated by using baits of canned corned beef and local commercial jelly. A pile of each food about 1 cm in diameter was placed on a separate piece of plastic, 25 cm², in the litter at each station. Time until arrival of the first ant, type of ant, peak number of ants responding and number of ant species attracted were recorded at each bait. Representative ants from baits at both sites and from foliar nectaries of plants at Happy Grove were collected. The experiments were carried out for three hours each, from 09:00-12:00 hrs in December 1977.

Results from the extrafloral nectary transects are given in Table 1. No species with extrafloral nectaries was observed at Whitfield Hall. At Happy Grove, 28 percent of the observed plants had extrafloral nectaries. These differences are statistically significant (T-test; $p << 0.001$).

Results of ant-baiting are given in Table 2. Bait-discovery time at Happy Grove (14.8 min) was one-third the discovery time observed at Whitfield Hall (49.6 min). At Happy Grove, the total number of ants recruited was more than twice as great, and more species were seen than at Whitfield Hall. Both discovery time and total recruitment are statistically significantly different between Happy Grove and Whitfield Hall (Wilcoxon two-sample test, $0.025 > p > 0.01$ and $p = 0.005$, respectively).

Ants collected from baits at Happy Grove included Paratrechina longicornis (Latreille), Solenopsis sp. (not
Table 1. Frequency of plants with extrafloral nectaries.

<table>
<thead>
<tr>
<th></th>
<th>Happy Grove (sea level)</th>
<th>Whitfield Hall (1310 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of plants with extrafloral nectaries</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>Number of points (all transects)</td>
<td>248</td>
<td>233</td>
</tr>
<tr>
<td>Mean frequency of extrafloral nectaries</td>
<td>0.28a</td>
<td>0.0a</td>
</tr>
</tbody>
</table>

a. These values are statistically significantly different (t_s = 12.29, arcsin transformation, p << 0.001, Sokol and Rohlf, 1969).

Table 2. Ant baiting experiment results (duration: 3 hrs, 9-12 am).

<table>
<thead>
<tr>
<th></th>
<th>Happy Grove (sea level)</th>
<th>Whitfield Hall (1310 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery time (min.)</td>
<td>14.8a</td>
<td>1–79</td>
</tr>
<tr>
<td>Percent of baits found</td>
<td>100</td>
<td>0.88</td>
</tr>
<tr>
<td>Ant species per site (mean)</td>
<td>2.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Maximum number of ants recruited to a site</td>
<td>184b</td>
<td>100–270</td>
</tr>
<tr>
<td>Total number of ant species seen</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Number of baits</td>
<td>14</td>
<td>26</td>
</tr>
</tbody>
</table>

a. These values are statistically significantly different, p = 0.005, using Wilcoxon two-sample test, U_s = 78 (Sokol and Rohlf, 1969).

