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Diversity Order and Coding Gain of General-Order
Rectangular QAM in MIMO Relay With

TAS/MRC in Nakagami-m Fading
Won Mee Jang

Abstract—Recently, multiple-input–multiple-output (MIMO)
relay networks have been an active area of research, particu-
larly with combining single transmit antenna selection (TAS) and
receiver maximal ratio combining (MRC). Moreover, general-
order rectangular quadrature amplitude modulation (QAM)
has received much attention for its high spectral efficiency and
flexible modulation scheme. However, the analytical performance
of general-order rectangular QAM has not been found in the
literature for MIMO relay with TAS/MRC in Nakagami-m fading
channels in spite of its practical usefulness. In addition, the analyt-
ical performance of general-order rectangular QAM often comes
with enormous computational complexity. Therefore, it is hardly
possible to understand the analytical solution unless the symbol
error probability (SEP) is plotted graphically. In this paper, we
present the SEP of general-order rectangular QAM in a MIMO
relay with TAS/MRC using the sampling property of the delta
impulse function. The SEP of MIMO relay networks is shown in
terms of diversity order and coding gain. The proposed sampling
method can also significantly reduce the computational complexity
of the SEP of general-order rectangular QAM.

Index Terms—General-order rectangular quadrature
amplitude modulation (QAM), multiple-input–multiple-output
(MIMO) relay, Nakagami-m, sampling, transmit antenna
selection/maximal ratio combining (TAS/MRC).

I. INTRODUCTION

THE bit error probability (BEP) by sampling in various
fading channels and cooperative diversity networks was

introduced in [1]–[3]. The proposed method reduces an integra-
tion of the Q-function with a fading probability density function
(pdf) into a simple sampling using the sampling property of
a delta function. The sampling BEP can provide a simple
solution by eliminating the moment generating function (MGF)
approach, commonly employed in spite of its computational
difficulties, for finding the system performance in fading chan-
nels. The proposed sampling approach can also find the coding
gain and diversity order when it is difficult to obtain due to
complexities of the performance expression. Recently, general-
order rectangular quadrature amplitude modulation (QAM) [4]
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has received much attention for its high spectral efficiency
and flexible implementation. Moreover, single transmit antenna
selection (TAS) with maximal ratio combining (MRC) is shown
to achieve full transmit and receive diversity in point-to-point
communications with low complexity [5]. In this paper, we
present a simple closed-form symbol error probability (SEP)
of general-order rectangular QAM in multiple-input–multiple-
output (MIMO) systems and MIMO relay networks with
TAS/MRC in Nakagami-m fading channels using a sampling
method. The proposed sampling SEP is crucial since the ex-
act SEP of general-order rectangular QAM in MIMO relay
networks with TAS/MRC is not available in the literature to
the best of the author’s knowledge. Moreover, the result can
be reduced to square M -QAM in MIMO [6] or MIMO relay
networks [7] to provide a much simpler solution of the SEP.
In fact, the SEP of QAM with MIMO, which is currently
available in the literature, comes with enormous computational
complexity and makes it extremely difficult to comprehend
the effect of system parameters such as fading characteristics
or the number of antennas employed. In fact, the key system
parameters are literally buried in the hypergeometric functions.
On the other hand, the contribution of each system parameter is
transparent in the sampling SEP, which is critical in the design
and validation of MIMO systems.

We extend the result in [3] to practical scenarios of interest
such as MIMO or MIMO relay with TAS/MRC. The major
challenges for the extension arise from the incomplete gamma
function in the TAS/MRC fading pdf. In the sampling approach,
the sampling function should be more similar to a delta impulse
function than the sampled function in [12]. To make this
happen, we need to dissect the incomplete gamma function.
The detailed process is presented in the Appendix. In particular,
we present a simple closed-form solution unlike the SEP of
QAM with MIMO in the literature, which remains in an integral
form with an integrand of the MGF in [7] or comes with the
confluent hypergeometric functions in [6] and [8]. The SEP is
available only for an integer fading parameter m for general-
order rectangular QAM in single-input–single-output (SISO)
[4], [9], or square M -QAM in MIMO relay networks with
TAS/MRC [7]. On the other hand, the performance of M -QAM
was obtained in Nakagami-m fading channels for real fading
parameter m in SISO [10] and MIMO with TAS/MRC [6].
The performance of rectangular QAM with combined arbitrary
TAS and receive MRC with real fading parameter was analyzed
using the confluent hypergeometric function and the Lauricella
hypergeometric function in [11].

0018-9545 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Our proposed SEP can be established for general-order
rectangular QAM in MIMO relay networks with TAS/MRC
for arbitrary real-valued fading parameter m. The proposed
sampling SEP is simple and easy to compute and yet provides
crucial information for the system performance such as diver-
sity order and coding gain. The diversity order and coding gain
are currently available only in square M -QAM with MIMO or
MIMO networks, and come with enormous computational com-
plexity due to the MGF approach employed in the evaulation.
In fact, the sampling SEP of general-order rectangular QAM in
MIMO precisely overlaps with simulation results for all SNRs.
The corresponding asymptotic sampling SEP in MIMO relay
networks in terms of coding gain and diversity order accurately
represents the simulation SEP for moderate and high SNRs.

In Section II, we briefly introduce the sampling SEP. The
sampling SEP of general-order rectangular QAM in MIMO
with TAS/MRC is presented in Section III. The sampling SEP is
extended to MIMO relay networks with distributed TAS/MRC
in Section IV. Numerical results are illustrated in Section V.
Section VI concludes this paper.

II. EXAMPLE SAMPLING BIT ERROR PROBABILITY

The probability of a bit error of a BPSK in a flat Rayleigh
fading channel can be expressed as [12]

Pb(rb) =

∞∫
0

Q(
√

2rbr) exp{−r}dr (1)

where rb is the bit-energy-to-noise ratio, and the Q-function is
defined as Q(x)

.
=
∫∞
x (1/

√
2π) exp{−y2/2}dy. The sampling

method reduces an integration of the Q-function with a fading
pdf to a simple sampling. The expression of exp{−r} in (1)
indicates the pdf of the power fluctuation in Rayleigh fading.
With a change of a variable r = tN , (1) can be written as

Pb =

∞∫
0

Q
(√

2rbtN
)
exp{−tN}NtN−1dt. (2)

Let us choose a sampling function, i.e.,

s(tN ) = Q
(√

2rbtN
)
NtN−1. (3)

Then, we can find the critical point using Leibnitz’s differential
rule [13], i.e.,

ds(tN )

dt
= −

√
2rb

N

2
t
N
2 −1 1√

2π
exp{−rbt

N}NtN−1

+
1√

4πrbtN
exp{−rbt

N}N(N − 1)tN−2 = 0 (4)

where we employed the Q-function approximation of Q(x) ≈
(1/

√
2πx2) exp{−x2/2} [14]. From (4), we find the critical

point tN∗ = 1/rb as N approaches infinity. Moreover

ds(tN )

dt
> 0 for 0 < tN < tN∗

ds(tN )

dt
< 0 for tN > tN∗ (5)

Fig. 1. Ns transmit antennas and Nd receive antennas of the MIMO system
with TAS/MRC.

indicating that s(tN ) is a unimodal function for tN > 0. From
(3), we observe that

lim
N→∞

s
(
tN∗
)
=Q(

√
2)N

1
rb

= ∞ (6)

∞∫
0

s(tN )dt =

∞∫
0

Q(
√

2rbr)dr =
1

4rb
. (7)

From (5)–(7), we deduce [12]

lim
N→∞

s(tN ) =
1

4rb
δ

(
tN − 1

rb

)
. (8)

Therefore, we can rewrite (2) as

Pb =

∞∫
0

1
4rb

δ

(
tN − 1

rb

)
exp{−tN}dt = 1

4rb
exp

{
− 1
rb

}

(9)

and, at a high SNR, as

Pb ≈
1

4rb
(10)

which is the well-known fact of the performance of BPSK at a
high SNR [15]. We denote a preimpulse function [3], i.e.,

gp(r) = Q(
√

2rbr) (11)

and the corresponding asymptotic impulse function [12]

g(r) =
1

4rb
δ

(
r − 1

rb

)
(12)

to simplify the sampling process as

Pb(rb) =

∞∫
0

Q(
√

2rbr) exp{−r}dr (13)

≈
∞∫
0

1
4rb

δ

(
r − 1

rb

)
exp{−r}dr

=
1

4rb
exp

{
− 1
rb

}
. (14)

III. SAMPLING SYMBOL ERROR PROBABLITY IN

MULTIPLE-INPUT–MULTIPLE-OUTPUT WITH TRANSMIT

ANTENNA SELECTION/MAXIMAL RATIO COMBINING

Let us consider the SEP of the MIMO system with Ns

transmit antennas and Nd receive antennas shown in Fig. 1.



JANG: DIVERSITY ORDER AND CODING GAIN OF GENERAL-ORDER RECTANGULAR QAM IN MIMO RELAY 3159

The average symbol-energy-to-noise ratio of the general-
order rectangular MI ×MQ-QAM can be written as [9]

ET

σ2
n

= a2Ω

(
M2

I − 1
3

)
+ b2Ω

(
M2

Q − 1

3

)

= a2Ω

[(
M2

I − 1
3

)
+ γ2

(
M2

Q − 1

3

)]
(15)

where a = dI/σn, and b = dQ/σn. Symbols dI and dQ denote
the in-phase and quadrature decision distances, respectively.
σ2
n denotes noise power and the ratio of the quadrature to in-

phase decision distance is γ = b/a = dQ/dI . The SEP of the
general-order rectangular MI ×MQ-QAM in SISO [4], [9] can
be extended to MIMO with TAS/MRC, with Ns transmit and
Nd receive antennas in independent flat Nakagami-m fading
channels, as

P (a, b, m, Ns, Nd)

= 2

(
1 − 1

MI

)
Ψ(a, m, Ns, Nd)

+ 2

(
1 − 1

MQ

)
Ψ(b, m, Ns, Nd)

− 4

(
1 − 1

MI

)(
1 − 1

MQ

)
Υ(a, b, m, Ns, Nd) (16)

where

Ψ(a, m, Ns, Nd) =

∞∫
0

Q(ar)fr(r, m, Ns, Nd)dr (17)

Υ(a, b, m, Ns, Nd) =

∞∫
0

Q(ar)Q(br)fr(r, m, Ns, Nd)dr.

(18)

In addition, the Nakagami-m fading pdf in MIMO with TAS/
MRC can be expressed as [6], [16], [17]

fr(r, m, Ns, Nd) = 2Ns

(m
Ω

)mNd r2mNd−1

Γ(mNd)

× exp
{
−m

Ω
r2
}[γ(mNd,

m
Ω r2)

Γ(mNd)

]Ns−1

U(r) (19)

with U(r) being the unit step function, and the lower in-
complete gamma function γ(α, x) =

∫ x

0 tα−1e−tdt for α > 0.
Then, we can find the sampling SEP Ps(a, b, m, Ns, Nd)
replacing Ψ and Υ in (16) with Ψs and Υs, as shown in the
Appendix, i.e.,

Ψs(a, m, Ns, Nd)

=
1

√
2πa

√
mNsNd

Ka

(
1 − exp

{
−coa

√
mNsNd

Ka

})

× Ns

Γ(mNd)Ns

(m
Ω

)mNsNd

×

⎡
⎢⎣ ∞∑
k=0

(
m
Ω

[
mNsNd

Ka

])k
∏k

i=0(mNd + i)

⎤
⎥⎦
Ns−1

Γ(mNsNd)

KmNsNd
a

(20)

Υs(a, b, m, Ns, Nd)

=
1

2πab
(

mNsNd

Kab

)
(

1 − exp

{
−coa

√
mNsNd

Kab

})

×
(

1 − exp

{
−cob

√
mNsNd

Kab

})(m
Ω

)mNsNd

× Ns

Γ(mNd)Ns

⎡
⎢⎣ ∞∑
k=0

(
m
Ω

[
mNsNd

Kab

])k
∏k

i=0(mNd + i)

⎤
⎥⎦
Ns−1

Γ(mNsNd)

KmNsNd

ab

.

(21)

The asymptotic behavior of the sampling SEP at a high SNR
can be presented in terms of diversity order and coding gain.
Consider parameters Ka = a2/2 +mNs/Ω and Kab = (a2 +
b2)/2 +mNs/Ω in the earlier expressions. Symbols a2 and
b2 are the received SNR over the in-phase and quadrature
channels, respectively. The symbol Ω is the average fading
power and is equal to the unity when the average received power
remains the same with and without fading. Therefore, we can
evaluate Ka ≈ a2/2 and Kab ≈ (a2 + b2)/2 at a high SNR.
Now, we find the asymptotical expressions, i.e.,

Ψas(a, m, Ns, Nd)

=
Ns

2
√
πmNsNd

(
1−exp

{
−co

√
2mNsNd

})Γ(mNsNd)

Γ(mNd)Ns

×
(

2m
Ω

)mNsNd

(mNd)
−(Ns−1)(a2)−mNsNd (22)

Υas(a, b, m, Ns, Nd)

=
Ns(γ + γ−1)

4πmNsNd

(
1 − exp

{
−co

√
2mNsNd

1 + γ2

})

×
(

1−exp

{
−co

√
2mNsNd

1 + γ−2

})(
2m

Ω(1 + γ2)

)mNsNd

× Γ(mNsNd)

Γ(mNd)Ns
(mNd)

−(Ns−1)(a2)−mNsNd . (23)

For MI = MQ =
√
M , the sampling SEP of general-order

rectangular QAM in MIMO with TAS/MRC gracefully re-
duces to that of square M -QAM. The performance of an un-
coded MIMO with TAS/MRC has been investigated for square
M -QAM in independent flat Nakagami-m fading channels with
Ns transmit and Nd receive antennas. The exact SEP expression
was obtained based on the MGF method for square M -QAM
with the constellation size M as [6, eq. (36)]

PM =
4
π

(
1 − 1√

M

) π
2∫

0

Mγ

(
− 3

2(M − 1) sin2 θ

)
dθ

− 4
π

(
1 − 1√

M

)2
π
4∫

0

Mγ

(
− 3

2(M − 1) sin2 θ

)
dθ (24)
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where Mγ(·) indicates the MGF associated with the instanta-
neous postprocessing SNR of TAS/MRC in a MIMO system.
The resultant SEP of square M -QAM is shown in [6, eq. (39)]
and repeated in the following to compare the computational
complexity to the sampling SEP in (20) and (21):

PM = 4

(
1 − 1√

M

)
Ns

[Γ(mNd)]
Ns

×
+∞∑
n1=0

+∞∑
n2=0

· · ·
+∞∑

nNs−1=0

×
Ns−1∏
i=1

(−1)ni

ni!(mNd + ni)
Γ

(
mNsNd +

Ns−1∑
k=1

nk

)

×

⎧⎪⎪⎨
⎪⎪⎩
[
1 + 3γ̄

2m(M−1)

]−(mNsNd+
∑Ns−1

k=1
nk

)
2
√
π

×
Γ
(
mNsNd +

∑Ns−1
k=1 nk + 1

2

)
Γ
(
mNsNd +

∑Ns−1
k=1 nk + 1

)
× 2F1

(
mNsNd +

Ns−1∑
k=1

nk,
1
2
;mNsNd

+

Ns−1∑
k=1

nk + 1;
1

1 + 3γ̄
2m(M−1)

)

−
(

1− 1√
M

)[1+ 3γ̄
m(M−1)

]−(mNsNd+
∑Ns−1

k=1
nk

)
2π
[
2
(
mNsNd +

∑Ns−1
k=1 nk

)
+1

]
× F1

(
1,mNsNd +

Ns−1∑
k=1

nk, 1;mNsNd

+

Ns−1∑
k=1

nk +
3
2
;

1 + 3γ̄
2m(M−1)

1 + 3γ̄
m(M−1)

,
1
2

)⎫⎪⎪⎬
⎪⎪⎭

(25)

where γ̄ is the average SNR at the receiver in (15). We can
notice that the sampling SEP shows much simpler expression
by eliminating the hypergeometric functions F1(·) and 2F1(·)
[18], [19] from the solution.

With n1 = n2 = · · ·nNs−1 = 0 in (25), the corresponding
asymptotic SEP expression is also presented in [6, eq. (40)] and
is shown in the following:

P asymp
M

= 2

(
1 − 1√

M

)
Γ(mNsNd + 1)

[Γ(mNd + 1)]Ns

[
3

m(M − 1)

]−mNsNd

×
{

2mNsNd

√
π

Γ(mNsNd +
1
2 )

Γ(mNsNd + 1)

−

(
1− 1√

M

)
F1(1,mNsNd, 1;mNsNd+

3
2 ;

1
2 ,

1
2 )

(2mNsNd+1)π

}

× γ̄−mNsNd + o
(
γ̄−mNsNd

)
(26)

Fig. 2. MIMO relay networks with distributed TAS/MRC. Source (S), relay
(R), and destination (D).

which indicates an asymptotic diversity order of mNsNd. This
result can be compared with the asymptotic sampling SEP
in (22) and (23). We find that the asymptotic sampling SEP
exhibits a much simpler form by eliminating the hypergeo-
metric function F1(·) from the solution. We can see that both
asymptotic sampling SEP and asymptotic SEP in (26) display
the identical diversity order of mNsNd. One advantage of the
sampling SEP is that the coding gain and diversity order are
straightforward since only the last factor (a2)−mNsNd in (22)
and (23) contains the in-phase SNR. However, the asymptotic
SEP in (26) includes the remainder term of o(γ̄−mNsNd) that
is not explicitly specified. The behavior of the asymptotic SEP
largely depends on how fast the remainder term vanishes as the
SNR increases. An additional benefit of the sampling SEP is
that the effect of system parameters, such as fading and the
number of antennas in the transmitter, relay and receiver, is
transparent in the sampling SEP. On the other hand, the function
of system parameters is hidden in the hypergeometric functions
in the conventional SEP.

IV. SAMPLING SYMBOL ERROR PROBABLITY IN

MULTIPLE-INPUT–MULTIPLE-OUTPUT RELAY

NETWORKS WITH DISTRIBUTED TRANSMIT ANTENNA

SELECTION/MAXIMAL RATIO COMBINING

Let us consider the SEP of distributed TAS/MRC in MIMO
relay networks shown in Fig. 2. A full MIMO system is
realized with Ns, Nr, and Nd antennas at the source, relay, and
destination, respectively.

The SEP in amplify-and-forward MIMO relay can be ap-
proximated at a high SNR as [2], [20]

P relay ≈ P 1 + P 2 (27)

where P 1 and P 2 are the SEP at the first and second hops,
respectively. Therefore, the sampling SEP of the general-
order rectangular MI ×MQ-QAM in the MIMO relay with
TAS/MRC can be attained as

P relay
s (a1, b1, a2, b2,m1,m2, Ns, Nr, Nd)

= Ps(a1, b1,m1, Ns, Nr) + Ps(a2, b2,m2, Nr, Nd) (28)
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where Ps is the sampling SEP in each hop. Symbols m1 and m2

indicate fading parameters in the first hop (source to relay) and
the second hop (relay to destination), respectively. Likewise,
ai and bi are general-order rectangular QAM constellation
parameters in the ith hop. The sampling SEP in (28) is in closed
form, and fading parameters can be arbitrary real values. We
can see that the diversity order is min(m1NsNr, m2NrNd),
which is the diversity order of the weakest hop that causes the
dominant error in overall path.

For MI = MQ =
√
M , the sampling SEP of general-order

rectangular QAM reduces to that of square M -QAM. In the
context of TAS/MRC in a full MIMO design, the exact SEP
of a square M -QAM modulation can be expressed as in (24),
replacing the MGF Mγ(·) with Mγeq

(·) defined in [7, eq. (13)],
which is the MGF of the equivalent instantaneous end-to-
end SNR of distributed TAS/MRC in MIMO relay networks.
The equivalent instantaneous SNR γeq for amplify-and-forward
relay can be represented as [7, eq. (4)] [20]

γeq =
γ1γ2

γ1 + γ2
(29)

where γ1 is the instantaneous received SNR after performing
MRC at the relay, and γ2 is the instantaneous received SNR
from the relay after performing MRC at the destination. Note
that the symbols γi are unrelated to the ratio of the quadrature
to in-phase decision distance of γ in Section III. The exact
SEP of the square M -QAM should be numerically evaluated
from (24) using MGF Mγeq

(·). We repeat the MGF to compare
the computational complexity to the sampling SEP, as shown
in (30) [7] at the bottom of the page, where m1 and m2 are
integer-valued fading parameter in the first hop and the second
hop, respectively. Remember that the fading parameters in the
sampling SEP can be any real values. The symbols γ̄1 and γ̄2 are
the average received SNR after performing MRC at the relay
and the destination, respectively. We find that the exact SEP
of square M -QAM is time-consuming to numerically evaluate,

particularly at high SNR due to the increased number of terms
to be added in the Gauss hypergeometric function in the MGF to
ensure the convergence. We can see that key system parameters
are buried in the hypergeometric function in the SEP and can
hardly capture their effects on the system performance. On the
other hand, the function of system parameters in the sampling
SEP is transparent. The transparency of key parameters of
the MIMO system in its performance evaluation is crucial
for system design, validation, and industrial standardization
processes.

The corresponding asymptotic SEP of square M -QAM is
derived using a first-order Taylor series expansion of Mγeq

(·)
as γ1 → ∞ shown in the following [7]:

P relay,asymp
M

=
2Φ
π

(
1 − 1√

M

)(
2(M − 1)

3

)q

×
[√

πΓ

(
1
2
+ q

)
− Γ(1 + q)

(
1 − 1√

M

)

× B 1
2

(
1
2
+ q,

1
2

)]
γ̄−q
1 + o(γ̄−q

1 ) (31)

where Bz(a, b) =
∫ z

0 ta−1(1 − t)b−1dt is the incomplete beta
function. q = Nr ×min(m1Ns, m2Nd) is a diversity order of
TAS/MRC in the MIMO relay network. The symbol Φ1 is
defined in

Φ=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m
m1NsNr
1

(m1Nr)!Ns
, when m1Ns < m2Nd

m
m2NrNd
2

ρq(m2Nd)!
Nr

, when m1Ns > m2Nd

m
m1NsNr
1

(m1Nr)!
Ns

+
m

m2NrNd
2

ρq(m2Nd)!
Nr

, when m1Ns = m2Nd

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(32)

1Note that [7, Eq. (17)] has apparent typographical errors. In [7, Eq. (17)]
NS < ND , NS > ND and NS = ND should be m1NS < m2ND ,
m1NS > m2ND , and m1NS = m2ND , respectively.

Mγeq
(s) = 1 + s

Nr
√
π

Γ(m2Nd)
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)(
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3
2

) 2F1
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(30)
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Fig. 3. Simulation and sampling SEP. 8 × 4-QAM, MIMO, TAS/MRC.
γ = 1, (21/5)1/2, 21/5; Nakagami-m fading, m = 2; Ns = 1, 2; and Nd = 2.

where ρ= γ̄2/γ̄1 is the ratio of the per-hop average received
SNRs. The symbol q is defined as q=Nr×min(m1Ns, m2Nd).
Notice that the fading parameters in the asymptotic SEP in (32)
should be also integer values, whereas those of the asymptotic
sampling SEP can be any arbitrary real values. In addition,
the asymptotic sampling SEP does not contain the remainder
term, such as o(γ̄−q

1 ) in (31). The enormous computational
complexity involved in (25) and (30) for MIMO and MIMO
relay networks, respectively, hinders our attempts to find the
exact SEP of square M -QAM. Even asymptotic SEPs are much
more complicated than the corresponding asymptotic sampling
SEPs. Most importantly, to establish a feasible MGF for an
integration with an alternative form of the Q-function [21],
[22, Eq. (4.2)], [23], the corresponding overall fading pdf should
be in a suitable form eventually to obtain the SEP. These are
partly the reason that the performance of general-order rect-
angular QAM is not available in literature for MIMO relay
networks with TAS/MRC in Nakagami-m fading channels in
spite of its practical usefulness. However, the sampling property
of the delta impulse function can be easily applied to obtain the
sampling SEP without MGF at all.

V. NUMERICAL RESULTS

We first examine the MIMO with TAS/MRC in Fig. 1 to
obtain the simulated and analytical results. The sampling SEP
of the rectangular 8 × 4-QAM is compared with the simula-
tion SEP in Fig. 3 for m = 2, Ns = 1, 2, and Nd = 2. The
values of γ = 1 and γ = (21/5)1/2 indicate an equal decision
distance and equal signal energy (for in-phase and quadrature),
respectively. We can see that the sampling SEP accurately
represents the simulation SEP for all values of γ. In addition,
the asymptotic sampling SEP illustrates well the behavior of
the simulation SEP at a high SNR. The BEP of the 8 × 4-QAM
is shown in Fig. 4 with Ns = Nd = 2 and fading parameter
m = 2. The Gray code is employed to minimize the BEP per
symbol error. The analytical BEP is obtained by dividing the
SEP by the number of bits per symbol, which is 5 in this case.

Fig. 4. Simulation and sampling BEP with Gray code. 8 × 4-QAM, MIMO,
TAS/MRC. γ = 1, (21/5)1/2, 21/5; Nakagami-m fading, m = 2; Ns = 2; and
Nd = 2.

Fig. 5. Simulation and sampling SEP. 16×8-QAM, MIMO, TAS/MRC.γ=1,
(85/21)1/2, 85/21; Nakagami-m fading, m = 2; Ns = 1, 2, 4; and Nd = 2.

Most likely, symbol error occurs when the received symbol is
mistaken by the nearest symbol, which causes one bit error due
to the Gray code implemented in the system. Both sampling
and asymptotic sampling BEPs accurately reflect the simulation
result.

In Fig. 5, the simulation SEP and sampling SEP of 16 ×
8-QAM are shown for the number of transmit antennas Ns =
1, 2, 4, the number of receive antennas Nd = 2, and the fad-
ing parameter m = 2. For all different numbers of transmit
antennas, the equal decision distance γ = 1 case displays the
best performance as we expected. The performance improve-
ment from Ns = 1 to Ns = 2 is more significant than the
improvement from Ns = 2 to Ns = 4. Therefore, we can see
that the performance improvement step decreases as the number
of transmit antennas increases. For all transmit and receive
antenna pairs, the diversity order and coding gain faithfully
portray the sampling SEP at a high SNR.

The sampling SEP for general-order rectangular MI ×MQ-
QAM reduces to square M -QAM for MI = MQ =

√
M .
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Fig. 6. Exact and sampling SEP. 16-QAM, MIMO, TAS/MRC. Nakagami-m
fading, m = 1.5; Ns = 2, 3, 4, 5; and Nd = 2.

Fig. 7. Simulation and sampling SEP. 8 × 4-QAM, MIMO relay networks,
TAS/MRC. γ = 1, (21/5)1/2, 21/5; Nakagami-m fading, m1 = 1.5, m2 =
2.5; Ns = 2; Nr = 1, 2; and Nd = 2.

We consider the square 16-QAM MIMO with TAS/MRC in
Fig. 6 for m = 1.5, Ns = 2, 3, 4, 5, and Nd = 2. The sam-
pling SEP and asymptotic sampling SEP are compared with
the exact and asymptotic SEP, respectively. We can see that
the sampling SEP represents the exact SEP accurately for
all SNR. In addition, the asymptotic sampling SEP precisely
overlaps with the conventional asymptotic SEP in (26) for all
SNR. Therefore, we can see that the sampling SEP provides
an accurate performance evaluation with a remarkably simple
expression and significantly reduced computational complexity.

Now, we examine MIMO relay networks in Fig. 2 with the
same average received SNR at the relay and destination. The
asymptotic sampling SEP of the rectangular 8 × 4-QAM relay
networks is compared with the simulation SEP in Fig. 7 for the
fading parameter per hop, m1 = 1.5, m2 = 2.5, and the number
of antennas, Ns = 2, Nr = 1, 2, and Nd = 2. We can see that
the asymptotic sampling SEP approaches the simulation SEP
at a moderate or high SNR, where the actual operating point

Fig. 8. Simulation and sampling SEP. 16 × 8-QAM, MIMO relay networks,
TAS/MRC. γ = 1, (85/21)1/2, 85/21; Nakagami-m fading, m1 = 1.5, m2 =
2.5; Ns = 2; Nr = 1, 2; and Nd = 2.

is located in practice. In fact, the asymptotic sampling SEP
portrays well the simulation SEP at a high SNR for different
numbers of relay antennas. The performance enhancement with
the diversity order is apparent. Regardless of the number of
antennas at the source, relay and destination, the equal deci-
sion distance γ = 1 case exhibits the best performance as we
expected.

Fig. 8 displays the simulation and asymptotic sampling SEP
of 16 × 8-QAM relay in the same scenario of Fig. 7. The
performance degradation due to the increased constellation size
is apparent. For example, with Ns = 2, Nr = 1, and Nd = 2,
the SEP of 10−6 is achieved at the SNR of 38 dB with the
equal signal energy γ = (21/5)1/2 for 8 × 4-QAM. However,
with the same parameters, the same SEP is achieved for 16 ×
8-QAM at the SNR of 44 dB with γ = (85/21)1/2. Therefore,
the signal power needs to be quadrupled to achieve the same
performance for the increased constellation size with given
system parameters. The asymptotic sampling SEP depicts the
simulation SEP closely at a high SNR. We observed that the
sampling SEP somewhat diverges from the actual SEP at a low
SNR due to the performance approximation of relay networks
in (27), as noted earlier.

Channel coding is employed to the MIMO with 8 × 4-QAM
with Ns = Nd = 2 in Fig. 9. The convolutional coding with the
code rate R = 1/2 and the generator matrix G = [5, 7] in octal
applied to the rectangular QAM with Gray code. The chan-
nel coding gain is incorporated to the analytical result. Still,
the asymptotic sampling BEP accurately represents simulation
results at moderate and high SNRs. The simple convolutional
coding with the code rate of 1/2 shifts the BEP curve to the
low SNR region. A significantly larger channel coding gain
with Turbo code or low-density parity-check code, which has
been adopted in wireless communication standards, obviously
can move the BEP curve to a much lower SNR region.

For MI = MQ =
√
M , the sampling SEP of general-order

rectangular QAM gracefully reduces to that of square QAM.
The exact and asymptotic sampling SEPs are shown in Fig. 10
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Fig. 9. Simulation and sampling BEP with Gray code. Convolutional coding
with R = 1/2 and G = [5, 7]. 8 × 4-QAM, MIMO, TAS/MRC. γ = 1,
(21/5)1/2, 21/5; Nakagami-m fading, m = 2; Ns = 2; and Nd = 2.

Fig. 10. Exact and sampling SEP. 16-QAM, MIMO relay networks,
TAS/MRC. Nakagami-m fading, m1 = 2, m2 = 1; Ns = 2; Nr = 1, 2, 3;
and Nd = 2.

for the square 16-QAM. We employ fading parameters in each
hop, i.e., m1 = 2 and m2 = 1, and the number of source,
relay, and destination antennas, i.e., Ns = 2, Nr = 1, 2, 3, and
Nd = 2, respectively. Here, we chose integer fading parameters
to compare the sampling SEP to the exact and asymptotic SEP
in (30) and (31) [7], respectively. We can see that the asymptotic
sampling SEP accurately represents the exact SEP at moderate
and high SNRs. The asymptotic sampling SEP overlaps the
conventional asymptotic SEP in (31) at a moderate and high
SNR. In fact, the asymptotic sampling SEP coincides with
the exact SEP at the SNR up to 20 dB for the number of
relay antennas Nr = 1 and 2, whereas the asymptotic SEP in
(31) starts to deviate from the exact SEP. The exact SEP was
numerically computed from (24) using the MGF in (30). It took
6 h to evaluate numerically the exact SEP at the SNR equal to
30 dB for Ns = 2, Nr = 3, and Nd = 2 using MATLAB
Version 7.12 on a Dell Precision 390 workstation, although

the code can be optimized. However, the sampling SEP can be
obtained in a second for the same parameters.

The sampling SEP can be easily extended to multihop MIMO
relaying or MIMO with cooperative diversity [2]. We noticed
that the sampling SEP tends to somewhat deviate from the
actual SEP as the diversity order increases. A similar effect
can be observed in other simple approaches for quantifying
system performance [20], [24]. However, the sampling method
can accurately predict the exact performance of the system with
practical diversity order.

VI. CONCLUSION

We have obtained the SEP of general-order rectangular QAM
in MIMO with TAS/MRC in Nakagami-m fading channels
using sampling. The sampling SEP is very simple, accurate,
and easy to understand the effect of each system parameters on
the performance, such as fading or the number of antennas at
the source, relay, and destination. The sampling SEP of MIMO
coincides with the simulation SEP for all SNRs with different
system parameters, including real or integer fading parameters.
The sampling SEP is extended to MIMO relay networks in
terms of coding gain and diversity order. The asymptotic sam-
pling SEP portrays the simulation SEP faithfully at moderate
and high SNRs with a practical diversity order. The results are
crucial to understanding the system performance of general-
order rectangular QAM in MIMO relay networks since the
exact SEP is not available in literature in spite of the recent
ample interest from both industry and academia. The proposed
sampling SEP of general-order QAM gracefully reduces to that
of square QAM. The sampling SEP is verified with the exact
SEP of square M -QAM currently available in literature.

APPENDIX

SAMPLING PERFORMANCE

For MIMO with Ns transmit and Nd receive antennas in
independent flat Nakagami-m fading channels, Ψ(·) in (17) can
be rewritten for sampling using the Q-function approximation
Q(x) ≈ (1/

√
2πx)(1 − exp{−cox}) exp{−x2/2} with co =√

π/2 as [25]

Ψs(a, m, Ns, Nd)

=

∞∫
0

1√
2πar

(1 − exp{−coar})

× exp

{
−a2

2
r2
}

2Ns

(m
Ω

)mNd r2mNd−1

Γ(mNd)

× exp
{
−m

Ω
r2
}[γ(mNd,

m
Ω r2

Γ(mNd)

]Ns−1

dr (33)

where the lower incomplete gamma function can be expressed
as [18, eq. (3.381)]

γ(α, x) = exp{−x}
∞∑

k=0

xα+k

α(α+ 1) · · · (α+ k)
. (34)
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Therefore

[
γ(mNd,

m
Ω r2)

Γ(mNd)

]Ns−1

=

[
exp{−m

Ω r2}
Γ(mNd)

∞∑
k=0

(
m
Ω r2

)mNd+k∏k
i=0(mNd + i)

]Ns−1

(35)

=
exp

{
−(mΩ r2)(Ns − 1)

}
Γ(mNd)Ns−1

(m
Ω
r2
)mNd(Ns−1)

×
[ ∞∑
k=0

(
m
Ω r2

)k∏k
i=0(mNd + i)

]Ns−1

(36)

and (33) can be written as

Ψs(a, m, Ns, Nd)

=

∞∫
0

1√
2πar

(1 − exp{−coar})

× exp
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−a2
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{
−m
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−
(
m
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)
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×
(m
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r2
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[ ∞∑
k=0

(
m
Ω r2
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i=0(mNd + i)
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dr.

(37)

If we choose preimpulse function

gp(r) = r2mNd−1r2mNd(Ns−1) exp

{
−a2

2
r2
}

× exp

{
−mNs

Ω
r2
}

(38)

= r2mNsNd−1 exp{−Kar
2} (39)

with Ka = a2/2 +mNs/Ω, we can obtain the asymptotic im-
pulse function as [1]

g(r) =
1
2
Γ(mNsNd)

KmNsNd
a

δ

(
r −

√
mNsNd

Ka

)
. (40)

Then, (37) can be rewritten as

Ψs(a, m, Ns, Nd)

=

∞∫
0

1√
2πar
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2Ns
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)
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and the sampling result is shown in (20).

In a similar way, Υ(·) in (18) can be rewritten for sampling as

Υs(a, b, m, Ns, Nd)

=

∞∫
0
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If we choose preimpulse function

gp(r) = r2mNd−1r2mNd(Ns−1) exp

{
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2
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}

× exp
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2
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exp
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−mNs
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}

(44)

= r2mNsNd−1 exp{−Kabr
2} (45)

with Kab = (a2 + b2)/2 +mNs/Ω, we can obtain the asymp-
totic impulse function as

g(r) =
1
2
Γ(mNsNd)
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. (46)

Then, (43) can be expressed as
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and the sampling result is shown in (21).
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