2013

Optimum Sizing of Distributed Generation and Storage Capacity in Smart Households

Salman Kahrobaee
University of Nebraska-Lincoln, skahrobaee@huskers.unl.edu

Sohrab Asgarpoor
University of Nebraska-Lincoln, sasgarpoor1@unl.edu

Wei Qiao
University of Nebraska-Lincoln, wqiao@engr.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Kahrobaee, Salman; Asgarpoor, Sohrab; and Qiao, Wei, "Optimum Sizing of Distributed Generation and Storage Capacity in Smart Households" (2013). Faculty Publications from the Department of Electrical and Computer Engineering. Paper 280.
http://digitalcommons.unl.edu/electricalengineeringfacpub/280

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Optimum Sizing of Distributed Generation and Storage Capacity in Smart Households

Salman Kahrobaee, Student Member, IEEE, Sohrab Asgarpoor, Senior Member, IEEE, and Wei Qiao, Senior Member, IEEE

Abstract—In the near future, a smart grid will accommodate customers who are prepared to invest in generation-battery systems and employ energy management systems in order to cut down on their electricity bills. The main objective of this paper is to determine the optimum capacity of a customer’s distributed-generation system (such as a wind turbine) and battery within the framework of a smart grid. The proposed approach involves developing an electricity management system based on stochastic variables, such as wind speed, electricity rates, and load. Then, a hybrid stochastic method based on Monte Carlo simulation and particle swarm optimization is proposed to determine the optimum size of the wind generation-battery system. Several sensitivity analyses demonstrate the proper performance of the proposed method in different conditions.

Index Terms—Capacity planning, distributed generation, energy storage, load management, Monte Carlo simulation, particle swarm optimization (PSO), smart homes.

I. NOMENCLATURE

A. Acronyms

HEMS Household electricity management system.
SDS Smart distribution system.
MCS Monte Carlo simulation.
PSO Particle swarm optimization.
RTP Real-time pricing.

B. Parameters and Variables

\(I_1 \) Base load in kW.
\(I_2 \) Shiftable load in kW.
\(I_S \) Unscheduled load in kW.
EPR Electricity purchase rate in cents/kWh.
ESR Electricity selling rate in cents/kWh.
\(R_c \) Rate of battery charge/discharge in kW.
DOD Depth of battery discharge (%).

\(\text{DI} \) Decision interval in h.
\(\Delta t \) Time-step of the simulation in h.
\(\text{Cap}_{H} \) Battery capacity in kWh.
\(\text{Cap}_{B} \) Optimum battery capacity in kWh.
\(\text{Cap}_{G} \) Generation capacity in kW.
\(\text{Cap}_{G_{opt}} \) Optimum generation capacity in kW.
\(C_G \) Levelized generation cost in cents/kWh.
\(C_R \) Levelized cost per unit of battery capacity in cents/kWh.
\(C_H \) Total electricity cost of the residential customer in cents/day.
\(E_G(\Delta t) \) Renewable generation in kWh during \(\Delta t \).
\(E_{Buy}(\Delta t) \) Electricity in kWh bought from the grid by the customer during \(\Delta t \).
\(E_{sell}(\Delta t) \) Electricity in kWh sold to the grid by the customer during \(\Delta t \).
\(E_R(\Delta t) \) Electricity in kWh charged in the battery during \(\Delta t \).
\(F_{sell,\text{max}} \) Maximum sellback electricity limit in kWh.
\(\delta(\Delta t) \) Customer electricity demand in kWh during \(\Delta t \).
\(N \) Total number of sequential time steps in MCS-PSO study.
\(T \) Iterative duration of MCS-PSO study in h.
\(M \) Number of particles in MCS-PSO study.
\(B \) Available battery charge in kWh.
\(B_{init} \) Initial battery charge in kWh at the start of iteration.
\(V_W \) Wind speed in m/s.
\(V_{cut} \) Cut-in wind speed of a wind turbine in m/s.
\(V_{co} \) Cut-out wind speed of a wind in m/s.
\(V_r \) Rated wind speed of a wind turbine in m/s.
\(x \) Position vector of particles in MCS-PSO model.
\(v \) Velocity vector of particles in MCS-PSO model.
Incorporation of bidirectional communication and power flow in a smart grid will provide the infrastructure and an opportunity for both the electricity providers and customers to efficiently use their assets and cut down on their costs through demand side management [4], real-time pricing [5], power sell-back opportunities [6], etc. Indeed, electricity customers of the future smart grid may no longer be perceived as passive loads. Installation of distributed energy resource (DER)-based generation, storage devices, and smart appliances will enable customers to function as integrated entities who help the grid by contributing to peak-load shaving, ancillary services, reliability improvement, and investment postponement [7]. These contributions will benefit the customers of a smart grid as well.

Residential customers, for example, will be able to minimize their electricity costs by investing in renewable generation-battery systems with appropriate capacities. They will have the opportunity to buy and store electricity and sell back extra power to the grid according to the electricity rates and subject to their resource availability [6]. In addition, the ability to control end-use appliances will allow residential customers to manipulate their loads and shift part of their loads to off-peak hours using electricity management systems [8].

The challenge in minimizing the electricity costs of a smart household is determining the optimum capacities of the renewable generation-battery system best suited to that customer’s electricity management system. The optimum capacities depend on various factors, such as electricity rates, stochastic behavior of renewable resources, load profile, and grid connection policies. The problem of determining the optimum capacities for different types of renewable generation and storage systems has been studied in the literature [9]–[20]. Some researchers have determined the optimum capacity for stand-alone wind generation-battery systems [9], [10]. There are some studies that have been specifically conducted for large-capacity wind turbines [11]–[13]. Meanwhile, some research [14]–[18] has been conducted to optimize the size of hybrid wind/solar or generation-battery systems which generally can be installed on the demand side of the grid with lower capacities. A number of these systems have been designed to primarily operate off grid in remote areas. For example, Ekren et al. [16] developed a probabilistic approach to find the optimum stand-alone solar-wind energy conversion system with battery storage in order to supply a remote cell phone base station. However, none of those studies has fully incorporated the previously described smart home features, such as load management and an electricity sell-back option, and, therefore, do not provide an optimum capacity solution from the perspective of the customers in the projected smart grid environment. Schroeder [21] have presented a stochastic method for investment optimization in a smart distribution system (SDS). However, the study was from the perspective of the distribution system operator as opposed to the customer. Likewise, in [22] the required generation capacity has been calculated from the system reliability point of view. However, that research does not include demand side management, electricity costs, or the opportunity for smart grid customers to sell electricity back to the grid.

A number of research studies have addressed demand side management in the power system [23]–[27]. Some research has
applied rule-based expert systems for load management where distributed generation and energy storage were not taken into account [23], [24]. There are some other demand management systems based on heuristic optimization methods [25] and stochastic linear programming within a dynamic pricing scheme [26]. Those approaches manage demand based on the type of loads and the electricity rates but do not include the distributed generation capabilities of the customers. Cecati et al. [27] considered both responsive loads and wind generation as ways to minimize the costs of distribution system operators using an energy management system. However, that approach solved an operational problem from the utility perspective and did not consider the benefits to individual households.

The main objective of our research is to develop an appropriate method for determining the optimum capacities of battery storage and renewable generation, such as a wind turbine, of a smart household, with an electricity management system, that minimizes the overall electricity cost of the household. The study outcome includes the following items:

1) A rule-based electricity management system (HEMS) has been proposed for a smart home to efficiently supply its loads and obtain the benefit from its available facilities and options, including renewable generation units and storage systems as well as the electricity transactions with the grid.

2) An optimization model has been proposed to solve the planning problem of determining the optimum capacities of the battery storage and renewable generation of the smart household using the proposed HEMS while considering the probabilistic behavior of loads, renewable energy resources, and electricity rates. The methodology presented can incorporate other demand management systems as well.

3) An iterative approach combining a Monte Carlo simulation process and particle swarm optimization, a MCS-PSO method has been designed to solve the optimization model and determine the optimum renewable generation and storage capacities of the smart home. The iterations in the MCS are used to capture the long-term stochastic behavior of a smart home given the expected probability distributions of load, wind generation, and electricity rates; and, at the same time, those iterations are employed by the PSO particles [28] to efficiently solve the optimization model.

Case studies are provided that validate the effectiveness of the proposed method. A variety of conditions, such as changes in distributed generation, battery costs, and electricity rates, are studied through sensitivity analysis.

It should be noted that although, for simplicity, the method introduced in this paper is described using the terms “households” and “homes,” it is not necessarily targeted and limited to residential customers. In fact, the process can be applied to other types of customers with commercial or industrial loads or microgrids in the power system by simply adjusting the variables and input parameters of the proposed model.

III. DESIGN STRUCTURE AND ASSUMPTIONS

The problem of determining the optimum capacities for generation and battery systems may be considered to be a design problem based on long-term stochastic behavior of energy resources, load profile, and electricity rates.

The structure of a smart home is comprised of loads, small renewable generation, and a storage system, all of which are controlled by the HEMS. Fig. 1 shows a schematic of the power flow between different sectors connected to a smart home. Based on the rules defined by the HEMS, power flow is bidirectional, which means electricity may be bought from or sold to the grid at any time [6].

The models of different entities of the smart home which contribute to the electricity flow are explained in the following sections.

A. Loads

Loads in a smart home are classified into three categories, as shown in Fig. 1. The first two categories basically define the home’s regular electricity consumption. The base load, L_1, consists of end-use devices whose power usage is predetermined and nonreschedulable, such as refrigerators and most lighting. The loads in the second category, L_2, are shiftable in time and prone to delay. Washers, dryers, and dishwashers are often among the loads which can be delayed; but the task should be accomplished by a certain deadline. Air conditioners and water heaters may be assigned to either one of the first two categories according to customer preferences and level of comfort desired. The third category, L_3, consists of unscheduled loads which may be plugged in without any predetermined plan. Hair dryers and electric drills may be included in the last category if it is impossible for the end users to schedule their use.

B. Distributed Generation

The power output of a distributed generator is a random variable when it depends on the stochastic behavior of an energy resource. In this paper, it is assumed that the distributed generator is a small wind turbine because of the increasing number of installations and its reasonable cost in today’s market [29]. The number of small wind turbines installed, which produce power primarily for residential customers and small business owners, has increased in recent years to more than 170 000 in the U.S. [29], [30]. The global installed capacity has increased 35% annually in the past few years. This growth is anticipated to be maintained at the same rate in the next couple of years and continue thereafter [31]. Other types of distributed renewable
generation, such as a photovoltaic (PV) system, may also be included without loss of generality.

At any point in time, the output of the wind generation may be used to supply the load or charge the electricity storage system. Any surplus generation can be sold directly back to the grid based on the contract between the customer and the electricity provider.

The cost of generation should be included in the total electricity cost of the home. In this paper, the cost of wind generation is considered as an average cost known as the levelized cost of generation. This cost is calculated by dividing the costs of generation, including those for installation, operation, and maintenance, over the lifetime of the wind turbine and is expressed as cents per kWh of power generation. The levelized wind generation cost depends on many factors, such as type and size of the turbine installed, availability of loans and tax credits, wind resources in the area, maintenance costs, etc.[32].

C. Electricity Storage System

An electricity storage system is critical for electricity management of the home. There are two types of tasks defined for the storage system in this paper.

Task 1: The primary task of this system is to store the surplus energy produced by wind generators, which can be used to supply future demand.

Task 2: The secondary task assigned to the storage is to provide an opportunity to make a profit from electricity trade with the grid. The rationality of this task is that the household buys and stores electricity at a low electricity rate and sells it back to the grid at a desired high electricity rate [6].

A variety of batteries with different cell technologies and prices are available on the market for use in electricity storage systems [33]. Two major factors affecting the cost of a battery are its technology and capacity. In this paper, the total expected cost of a battery is also considered as a levelized cost over its lifetime and is expressed as cents per kWh of storage capacity per hour. Meanwhile, there are a number of parameters that affect the operation or lifetime of a battery. The number of charge/discharge cycles, \(R_e \), and \(DOD \) of the battery, are among the parameters considered in this study. \(R_e \) and \(DOD \) represent the possible amount of battery charge/discharge per unit of time and the percentage of energy from the total capacity which can be withdrawn without damaging the battery, respectively.

D. Grid and Electricity Rates

The power grid represents a utility that provides electricity to the customers and charges them based on an RTP scheme. With the RTP, electricity market prices, which are different at each hour of the day, are provided to end customers [4] and denoted by EPR in this study. It has been indicated that real-time pricing signals will provide more operational information, enabling power system load flattening and peak demand reduction compared to other dynamic pricing methods [34]. The HEMS in this paper manages the loads, the generation, and the storage system based on the day-ahead price signals announced to the customer. The customers may have a power contract or net metering agreement with the utility that defines the rules and rates of buying and selling power [35], [36]. These rules and grid connection requirements vary among different utilities and can address power quality and safety concerns as well [37]. It is assumed that the utility buys the excess electricity generated by its customers at ESR and provides them with electricity at EPR whenever they need it.

IV. PROPOSED RULE-BASED HOME ELECTRICITY MANAGEMENT SYSTEM

A. Data Acquisition

The data required for this planning study are the long-term expected load, generation, and electricity rates for the desired time interval of the study. There are a number of methods used previously to probabilistically forecast the electricity rates [38], load demands [39], [40], and renewable resources [41] by providing their expected probability distributions. Hence, forecasting these variables is not in the scope of this paper.

In this paper, hourly historical data for electricity rates, power demands, and wind speeds are utilized for generating their corresponding probability distributions, representing the long term behavior of these variables in each hour of a day. The probability distributions of the input variables are then sampled to generate the expected values of each variable for a particular hour in the planning horizon. Therefore, there are \(N = 24 \) probability distributions to model the behavior of each stochastic variable for every day of the planning horizon. A \(T = 24 \)–hour period was selected because first, it is the shortest duration that the tasks of the electricity management scheme, such as load shifting (all the delayed loads should be satisfied on the same day they are shifted), can be included independently; and second, the values of each stochastic variable at the same hour of different days have a good correlation such that a specific probability distribution can be defined for that variable and that hour in the long term [16], [42].

B. Rule-Based Home Electricity Management System

Fig. 2 shows how HEMS is used in each iteration of the MCS-PSO process which will be explained in more details in Section V.

There are two sets of decision rules in HEMS for obtaining the maximum benefit from the available facilities in a smart home. The first set of rules manages the overall home electricity generation, consumption, and Task 1 of the storage system. This program starts with obtaining the statistics associated with loads, generation, and electricity rate. Then, the rules are applied to minimize the customer’s electricity cost. In this scheme, if the generation is not sufficient to supply the total load \(\delta | \Delta t_j | > 0 \), the decision is to discharge the battery and/or buy electricity from the grid to supply the remaining load. Otherwise, the surplus generation will eventually be stored or sold back to the grid. The remaining charge of the battery at the end of each period \(T \) is carried over to the next period.
The second set of rules mutually affects the battery storage system, along with the first set of rules, to perform Task 2 of the storage system mentioned earlier. In this study, battery charge/discharge decisions, used for electricity trade-off with the grid, are made at extrema points of some predefined dynamic intervals. These Task 2 decision intervals (DI) are defined as being between two consecutive intersections of levelized wind generation cost and EPR curves and may be from one to several hours long, as shown in Fig. 3. During each Task 2 DI, the household is only allowed to buy/sell electricity from/to the grid once by charging/discharging its battery. While electricity trade using a battery strategy for a home, the definition of DI in this scheme aims to limit the number of charge/discharge cycles to extend the battery lifetime.

V. PROPOSED MODEL AND PROCESS TO DETERMINE OPTIMUM RENEWABLE GENERATION AND STORAGE CAPACITIES

A. Optimization Model

As described before, obtaining the optimum capacity for the renewable generator and the battery is a planning problem which should include the behavior of the smart home in the optimization process. Operation of a smart home in the long run is simulated by providing load, generation, and electricity rates, at each hour of the day, as inputs to the HEMS of Fig. 2. Applying this management system, the electricity cost of the home for the time interval of the day, \(\Delta t_j \), can be calculated by (1). The duration of each interval is one hour in this study.

\[
C_H(\Delta t_j) = C_G.E_G(\Delta t_j) + C_B.Cap_B.\Delta t_j + h_{Buy}(\Delta t_j) \times FPR(\Delta t_j) - E_{Sell}(\Delta t_j) \times ESR(\Delta t_j).
\]

\(E_{Buy}(\Delta t_j) \) and \(E_{sell}(\Delta t_j) \) represent the amount of electricity bought/sold from/to the grid during \(\Delta t_j \), which are calculated within operation of the HEMS and are functions of the wind generation and battery capacities of the home.

A simple model representing the power curve of the wind turbine [43] is employed to obtain the output power of the wind generation based on wind speed. Equation (2) is used to derive the output energy, \(E_G \), of the wind turbine for each hour, \(j \).

\[
E_G(\Delta t_j) = \begin{cases}
C_{apG} \left(\frac{V_w(\Delta t_j) - V_{c1}}{V_r - V_{c1}} \right) \Delta t_j & V_{c1} \leq V_w(\Delta t_j) < V_r \\
C_{apG} \cdot \Delta t_j & V_r \leq V_w(\Delta t_j) \leq V_{co} \\
0 & \text{otherwise}
\end{cases}
\]

There are cost-benefit trade-offs involved in optimum capacity calculations. Higher-capacity generators are costlier but contribute more to supplying load and reducing dependency on
grid power. The surplus generation can also be sold back to the grid. In the same way, paying more for a higher-capacity battery could be compensated for by more surplus energy storage and energy trade capability.

Therefore, the objective function to be minimized is the total electricity cost of the household, as expressed by (3).

$$\sum_{j=1}^{N} C_{H} \left(\Delta t_{j} \right).$$

The power flow constraint requires for any duration, Δt_{j} that:

$$\xi \left(\Delta t_{j} \right) = E_{Buy} \left(\Delta t_{j} \right) \geq E_{Sell} \left(\Delta t_{j} \right) = E_{B} \left(\Delta t_{j} \right).$$

In this equation, $\xi \left(\Delta t_{j} \right)$ is the electricity demand of the customer defined as the total load minus generation during Δt_{j} (Fig. 2). E_{H} is the energy charged in the battery. Therefore, negative values of represent battery discharge.

There are also some inequality constraints to comply with the operational limits of the battery, as mentioned in Section III-C, and power transfer limits, defined by (5).

$$\left\{ \begin{array}{l} E_{Sell} \left(\Delta t_{j} \right) \leq E_{Sell, \text{max}} \hfill \\
E_{B} \left(\Delta t_{j} \right) < \Delta t \times \Delta t \hfill \\
- E_{B} \left(\Delta t_{j} \right) < D \times D \times C_{ap} \hfill \\
B \left(\Delta t_{j} \right) < C_{ap} \hfill
\end{array} \right.$$

The demand supply rules, battery charge/discharge, and power trade of the HEMS in Fig. 2 are designed to satisfy the constraints defined by (4) and (5).

B. MCS-PSO Process

Since the electricity cost of the home depends on HEMS and the inputs to the HEMS are stochastic variables obtained from their probability distributions, this cost can be generally represented by an implicit function of the following variables and parameters.

$$C_{H} = f(L_{1}, L_{2}, L_{3}, V_{W}, H_{\text{inst}}, ESR, EPR, C_{G}, C_{B}, C_{ap}, C_{ap} \text{.})$$

The expected electricity cost of the home in the long run, with certain generation and battery capacities, can be calculated through a sequential Monte Carlo simulation. In the Monte Carlo scheme, samples from individual probability distributions of load, generation, and electricity rates are taken at each hour of the day. Using the process described for the HEMS, $C_{H} \left(\Delta t_{j} \right)$ is calculated and accumulated to find the total electricity cost of the day. By repeating the whole process, the expected electricity cost of the home is calculated.

Then, PSO is used to calculate the optimum C_{ap} and C_{ap} by minimizing an objective function. The objective function (fitness function) of the HEMS is to minimize the total expected electricity cost of the household calculated by MCS over the duration of the study. In the PSO method, initial capacities for the generation and battery are selected; and then, a population of M particles is generated to evolve toward the optimum capacities of battery and wind generation for the household. This method has been demonstrated to be more robust and faster in finding the global solution compared with other heuristic optimization methods, such as genetic algorithms [44].

To improve the efficiency of the optimization process, an iterative procedure combining MCS and PSO methods is proposed. Using the hybrid MCS-PSO method, the input to each iteration of the PSO is stochastic and originates from the variables’ probability distribution functions. Therefore, in the long run, it inherently incorporates the MCS method while it is searching for the optimum solution. The procedure can be expressed by the following steps.

1. Determine N individual probability distribution functions for different variables, such as wind speed, load, and electricity rate, according to historical data. Each function represents the probability distribution of a variable for a time step of Δt_{j} in the MCS-PSO where $j \in \{1, 2, \ldots, N\}$.

2. Obtain C_{G}, C_{B}, and the parameters of the MCS-PSO method, such as stop criterion based on maximum number of iterations or minimum error, and the number of particles, M, in the PSO.

3. Initialize each particle by assigning two dimensional position and velocity vectors according to (7), and also initialize x_{pbest}^{i}, x_{gbest}^{i}, and the battery charge $B_{init}^{i} \left(k \right)$ for the iteration $K = 1$.

$$\left\{ \begin{array}{l}
x^{i} \left(k \right) = \left[C_{ap}^{i} \left(k \right), C_{ap}^{i} \left(k \right) \right] ^{T} \\
v^{i} \left(k \right) = \left[v_{C_{ap}}^{i} \left(k \right), v_{C_{ap}}^{i} \left(k \right) \right] ^{T} \end{array} \right.$$

where, $i \in \{1, 2, \ldots, M\}$

4. For iteration k and every particle i of the population, given the current $C_{ap}^{i} \left(k \right)$, and $C_{ap}^{i} \left(k \right)$, do the following:

4.1. Calculate the values of the loads, $L_{1}^{i} \left(k, \Delta t_{j} \right)$, $L_{2}^{i} \left(k, \Delta t_{j} \right)$, and $L_{3}^{i} \left(k, \Delta t_{j} \right)$, wind speed, $V_{W}^{i} \left(k, \Delta t_{j} \right)$, and electricity rates, $EPR^{i} \left(k, \Delta t_{j} \right)$ and $EPR^{i} \left(k, \Delta t_{j} \right)$, based on their N distinct probability distribution functions.

4.2. Run the HEMS process for a duration of $T = N \times \Delta t_{j}$, and compute the value of the fitness function based on (3).

$$F \left(x^{i} \left(k \right) \right) = \sum_{j=1}^{N} C_{H} \left(k, \Delta t_{j} \right)$$

subject to the constraints defined by (4) and (5).

5. If $F \left(x^{i} \left(k \right) \right) < F \left(x_{pbest}^{i} \right)$, then update the values for the local optimum capacities: $x_{pbest}^{i} = x^{i} \left(k \right)$; and if $F \left(x^{i} \left(k \right) \right) < F \left(x_{gbest}^{i} \right)$, then update the global best capacities: $x_{gbest}^{i} = x^{i} \left(k \right)$. The minimum of the cost function $F \left(x_{gbest}^{i} \right)$ in each iteration k has been denoted by $F^{i} \left(k \right)$ in Fig. 2. If the stop criterion is not satisfied, update the position and velocity vectors according to (9), increase iteration k by one, and go to Step 4.

$$\left\{ \begin{array}{l}
x^{i} \left(k + 1 \right) = x^{i} \left(k \right) + v^{i} \left(k + 1 \right) \\
v^{i} \left(k + 1 \right) = w \left(k \right) \cdot v^{i} \left(k \right) + c_{1} \cdot \phi_{1} \left(x_{pbest}^{i} - x^{i} \left(k \right) \right) \\
+ c_{2} \cdot \phi_{2} \left(x_{gbest}^{i} - x^{i} \left(k \right) \right) \\
B_{init}^{i} \left(k + 1 \right) = B_{init}^{i} \left(k, \Delta t_{N} \right) \end{array} \right.$$
VI. CASE STUDY

The case study includes a smart home with hourly loads of L₁, L₂ and L₃, wind generation, and a battery storage system managed by the HEMS process. The data obtained for these variables are examined using the input analyzer module of Rockwell Arena software [45] and used to generate individual probability distribution functions of these variables for each hour of a day. This section describes the assumptions and derivation of input variables for the case study.

A. Load Values

The average residential electricity consumption of a typical U.S. home [46] has been chosen for this study. L₁, L₂ and L₃ loads are highly dependent on the electricity consumption behavior of the residents. The main appliances in the L₁ group consist of refrigerators, freezers, air conditioners, water heaters, lighting, microwave ovens, etc. [46], [47]. For the long-term study, this load is assumed to follow the normal distribution for each hour. The mean base load of this home and the 90% confidence interval for the mean of hourly fitted distributions are shown in Fig. 4. The mean and standard deviation of the distribution are described by (11).

\[
L₁ (Δt_j) N (μ_{ij}, σ_{ij}) \quad \forall j \in \{1, 2, \ldots, 24\} \quad (11)
\]

where \(μ_{ij} \in [0.8, 1.77], σ_{ij} \in [0.05, 0.15]\).

The demand considered for the schedulable L₂ group of loads is shown in Table I. These loads are randomly distributed throughout the week in a way that complies with their usage frequency. Electric vehicle, for example, is one of the schedulable loads in this case study and consumes 4 kWh with an average commute of 15 miles/day [48]. It is also assumed that all L₂ loads are scheduled to be accomplished during 24 hours.

In addition, during each hour, there are some expected L₃ loads, including TV, personal computer, some lighting, etc., which randomly change based on the uniform distribution, not exceeding 5% of the L₁.

B. Wind Generation Values

For wind speed analysis, the available three-year hourly wind speed data of McCook, Nebraska, at 10–meter elevation were used [49]. The annual average wind speed of the area is 5 m/s. The data were binned with the wind speed intervals of 0.5 m/s. The analysis results show that, for each hour, wind speeds can be best fitted into a Weibull distribution as denoted by (12). Therefore, 24 pairs of shape and scale parameters were generated for these fitted Weibull distributions with a maximum square error of 1%. The mean wind speed of the data of this case study is shown in Fig. 5.

\[
V_w (Δt_j) \sim W E I B (λ_{Wj}, K_{Wj}) \quad \forall j \in \{1, 2, \ldots, 24\} \quad (12)
\]

where \(λ_{Wj} \in [4.22, 7.61], K_{Wj} \in [1.65, 2.35]\).

C. Electricity Rates (EPR and ESR)

The EPR data were derived from the historical data of Ameren utility rates in Illinois for a duration of one year based on its rate for Zone 1 customers. The hourly data of EPR are available on Ameren’s website [50]. The annual average and maximum EPR were 3.2 cents/kWh and 10.7 cents/kWh, respectively.

Similar to wind analysis, the EPR for each hour was separately analyzed and fitted to a probability distribution. The results indicate that these hourly electricity rates can best fit into either a normal or lognormal probability distribution described by (13), with the mean values shown in Fig. 6.

\[
EPR (Δt_j) \sim N (μ_{rj}, σ_{rj}) \quad \forall j \in \{1, 2, \ldots, 6\} \cup \{22, 23, 24\}
\]

\[
EPR (Δt_j) \sim lnN (μ_{rj}', σ_{rj}') \quad \forall j \in \{7, 8, \ldots, 21\} \quad (13)
\]
Fig. 6. Mean EPR and 90% confidence interval for the mean of the fitted distributions in the case study.

Table II

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(C_G)</th>
<th>(C_B)</th>
<th>(R_c)</th>
<th>DOD</th>
<th>(\Delta R)</th>
<th>(E_{sell}(\text{max}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>3.5</td>
<td>0.3</td>
<td>2</td>
<td>85</td>
<td>1.5</td>
<td>15</td>
</tr>
</tbody>
</table>

As mentioned before, the price at which the customers sell electricity back to the grid is denoted by ESR. This rate is lower than EPR, and it is assumed to follow EPR by a constant difference of \(\mu_\epsilon \) in this paper. A sensitivity analysis was run to consider different values of \(\mu_\epsilon \).

VII. RESULTS AND DISCUSSIONS

The previously described MCS-PSO method has been applied to the case study. The total number of simulation iterations was 10,000, which ensured the convergence of the simulation. The cognitive and social parameters of the PSO method were selected to be 2.5 and 1.5, respectively; the population of the particles was 20; the problem space was bounded by the maximum capacities of 15 kW for the wind generator and 15 kWh for the battery; and, the maximum velocity of the particles was limited to 20 percent of the maximum capacities of the wind generator and the battery. The definition of the parameters of the PSO method can be found in [51], [52]. Proper behavior of the proposed method was captured through sensitivity analysis to a number of input parameters. The following case studies have been defined to demonstrate the results of the proposed method.

A. Case 1 (Base Case)

The study parameters chosen for the base case are provided in Table II[32], [33].

The results of the MCS-PSO study indicate that a wind turbine of 3 kW and a battery of 4.5 kWh are the optimum choices for this home, and the electricity cost of the smart home would be 65.4 cents per day. In addition, the results for this case show that the optimum plan would save an average of 25 percent compared to a conventional home with the same average load without battery and generation.

B. Case 2 (Sensitivity to and \(\Delta R \) and \(E_{sell,\text{max}} \))

Several sensitivity tests show how the contract constraints, such as \(\Delta R \) and \(E_{sell,\text{max}} \), affect the electricity cost of a household. By increasing these two parameters from their base values, the optimum capacities were derived; and the minimum \(C_H \) in cents per day is provided in Table III.

As \(\Delta R \) increases, ESR becomes smaller; and as a result, the profit from electricity sell-back becomes less appealing. With a 50% increment in \(\Delta R \), electricity cost of the home rises by a factor of about 30% compared with the base case.

On the other hand, by raising the cap of electricity sell-back to the grid, homes would have the opportunity to benefit more from their wind generation and storage system. With a 50% increment in \(E_{sell,\text{max}} \), the home could reduce its electricity cost by 22%.

C. Case 3 (Sensitivity to Both \(C_G \) and \(C_B \))

In this case, the effect of both \(C_G \) and \(C_B \) on the optimum capacities of a wind generator and battery is studied.

Fig. 7 shows the optimal surface of the battery capacity with different storage and wind generation costs. As \(C_B \) decreases, the optimum point is shifted toward higher battery capacities (from 0 to about 7 kWh). In addition, as the cost of wind generation increases, larger batteries become relatively more efficient than wind generators. It is observed that the optimization process prefers to choose the highest battery capacity when the battery cost is at its minimum and the wind generation cost is at its maximum value.

Similarly, Fig. 8 shows the effect of levelized costs of generation and battery on optimum capacity of the wind turbine. Constrary to Fig. 7, the cost of a battery does not have a considerable effect on the generator capacity. On the other hand, as the cost of generation decreases, higher-capacity wind turbines become more beneficial. In this graph, the generation cost of about 3.5 cents/kWh acts like a turning point at which there is a high slope toward higher wind generation capacities. This is because, as mentioned earlier, the average EPR of this case study is 3.2
As expected, the electricity cost of the home is highest when both and are at their maximum values. An interesting result is achieved by comparing the electricity cost in this figure with one of a conventional home without a generation-storage system. In the case of a conventional home, the electricity cost is 92 cents/day, which is close to the value of the smart home with a of 5 cents/kWh and a of 0.6 cents/kWh per hour. Therefore, we expect that beyond this operating point, no additional savings can be achieved by investing in a wind generator and battery, indicating the corresponding optimum capacity of the wind generator and battery should be almost zero, as justified by the results shown in Figs. 7–8.

D. Case 4 (Sensitivity to EPR)

In this case, the sensitivity of the capacities and electricity cost of the home for the base case with different electricity rates have been studied; and the results are plotted based on shape-preserving interpolation in MATLAB.

According to the results shown in Fig. 10, as EPR is increasing, an increasing trend toward higher generation-battery capacities is observable. In this case, when EPR decreases toward 2.5 cents/kWh, there is less incentive to invest in high capacity wind generators and batteries because, as depicted in the bottom plot of Fig. 10, the minimized electricity costs of the smart home and the conventional home get closer.

It is notable that as the electricity cost of a conventional home rises with a higher EPR, the electricity cost of the smart home decreases. The difference between these two costs is more noticeable at electricity rates higher than the levelized cost of wind generation where the electricity cost of the smart home has a higher rate of decrease. Homes are even able to make a profit from selling their power to the grid at an average EPR of 5 cents/kWh; because beyond this point, the cost of wind generation becomes less than the average ESR (with a of 1.5 cents/kWh). This is achieved as a result of proper utilization of the wind turbine and the battery system.

VIII. CONCLUSION

In this paper, a stochastic method was proposed to determine the optimum size of a wind generation-battery system in the context of a smart home. The solution approach comprised three stages: In the first stage, a household used a rule-based electricity management system which could effectively manage various types of its load, generation, and electricity storage, and trade power with the grid. The time-variant inputs to this system were wind speed, three categories of load, and electricity rates. In the second stage, an optimization problem was formulated where for planning purposes, the stochastic variables were represented by their individual expected probability distributions for each hour of a day. Using the proposed hybrid MCS-PSO approach in the third stage, the optimum sizes of the wind generator and battery were obtained so that the overall electricity cost of the home was minimized.

The method described can help residential customers and small business owners decide on investing in the right amount of renewable generation and battery capacities that are optimized according to their load profile, renewable resource availability, and electricity rates. Results also indicate that given the levelized costs of a wind generation and battery storage system, an average electricity rate may exist at which investing in these systems will no longer be beneficial. Sensitivity analyses were conducted to investigate the effects of electricity rates as well as wind generation and electricity storage costs on optimum capacities of a wind turbine and battery for a smart home. The results show how the customer could benefit from higher capacities of wind generation and battery as their associated costs drop. It was also illustrated that if certain conditions are met in the system, the smart grid customer has an opportunity...
to make proper investments and profit from selling generation back to the grid as well.

REFERENCES

capacity of a solar-wind hybrid system supplying a farm in a semi-arid
[21] A. Schroeder, J. Siegemieer, and M. Creusen, DIW Berlin discussion papers “Modelling storage and demand management in electricity dis-
org/10.2139/ssrn.1793164
management system,” M.S. thesis in electrical engineering, Univ. West
Virginia, Morgantown, WV, USA, 2005.
management for residential appliances via stochastic optimization and
[27] C. Cecati, C. Citro, and P. Siano, “Combined operations of renewable
energy systems and responsive demand in a smart grid,” IEEE Trans.
[28] R. C. Eberhart and Y. Shi, “Particle swarm optimization: develop-
Energy Association (WWEA), Mar. 2012.
grids under real-time pricing,” IEEE Trans. Power Syst., vol. 27, no. 4,
Salman Kahrobaee (S’10) received his B.Sc. degree in electrical engineering from the University of Tabriz, Iran, in 2003 and the M.Sc. degree in power system engineering from the University of Tehran, Iran, in 2006. Currently, he is pursuing his Ph.D. degree at the University of Nebraska-Lincoln, NE, USA. His research interests include modeling, optimization and reliability studies of the smart grid, and applications of multiagent systems in electric power systems.

Wei Qiao (S’05–M’08–SM’12) received the B.Eng. and M.Eng. degrees in electrical engineering from Zhejiang University, Hangzhou, China, in 1997 and 2002, respectively, an M.S. degree in high performance computation for engineered systems from Singapore-MIT Alliance, Singapore, in 2003, and a Ph.D. degree in electrical engineering from Georgia Institute of Technology, Atlanta, GA, USA, in 2008.

From 1997 to 1999, he was an Electrical Engineer with China Petroleum & Chemical Corporation (Sinopec). Since August 2008, he has been with the University of Nebraska-Lincoln, NE, USA, where he is currently the Harold and Esther Edgerton Assistant Professor with the Department of Electrical Engineering. His research interests include renewable energy systems, smart grids, power system control and optimization, condition monitoring and fault diagnosis, energy storage systems, power electronics, electric machine drives, and computational intelligence for electric power and energy systems.

Sohrab Asgarpour (S’80–M’86–SM’91) received his B.S. (1978), M.S. (1981), and Ph.D. (1986) degrees all in electrical engineering from Texas A&M University, College Station, TX, USA. From 1986 to 1989, he was with ABB Network Management Inc. (formerly Ferranti International Controls Corp.) as a Lead Engineer where he designed and developed advanced power system applications software for energy management systems. Since September 1989, he has been with the University of Nebraska-Lincoln, NE, USA, where he is a Professor in the Department of Electrical Engineering. His areas of interest include reliability evaluation, maintenance optimization, and advanced computer applications in security and optimization of electric power systems.

References