Morphological and Molecular Description of
Haematoloechus meridionalis n. sp. (Digenea: Plagiorchioidea: Haematoloechidae) from Rana vaillanti Brocchi of Guanacaste, Costa Rica

Virginia León-Règagnon
Universidad Nacional Autónoma de México

Daniel R. Brooks
University of Toronto, dan.brooks@utoronto.ca

Derek A. Zelmer
Emporia State University

Follow this and additional works at: http://digitalcommons.unl.edu/parasitologyfacpubs

Part of the Parasitology Commons

http://digitalcommons.unl.edu/parasitologyfacpubs/272
Morphological and Molecular Description of Haematoloechus meridionalis n. sp. (Digenea: Plagiorchioidea: Haematoloechidae) from Rana vaillanti Brocchi of Guanacaste, Costa Rica

Author(s): Virginia Leon-Regagnon, Daniel R. Brooks, Derek A. Zelmer

Published by: The American Society of Parasitologists

Stable URL: http://www.jstor.org/stable/3285312

Accessed: 30/04/2010 11:59

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=asp.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The American Society of Parasitologists is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Parasitology.
MORPHOLOGICAL AND MOLECULAR DESCRIPTION OF HAEMATOLOECHUS MERIDIONALIS N. SP. (DIGENEA: PLAGIORCHIOIDEA: HAEMATOLOECHIDAE) FROM RANA VAILLANTI BROCCI OF GUANACASTE, COSTA RICA

Virginia León-Regagnon, Daniel R. Brooks*, and Derek A. Zelmer†
Departamento de Zoología, Instituto de Biología, UNAM. Apdo. Postal 70-153. C.P. 04510, México, D.F. México

ABSTRACT: An undescribed species of Haematoloechus inhabits the lungs of Rana vaillanti in northwestern Costa Rica. The new species is most similar morphologically to H. medioplexus, having a very small, but well-developed, ventral sucker and lacking extracecal uterine loops, and apparently was mis-identified previously as H. medioplexus in Rana palmipes from Colombia. It differs from H. medioplexus, notably by (1) the shape of the oral sucker, which is elliptical in H. meridionalis and spherical in H. medioplexus; (2) the posterior extent of the vitelline fields, which terminate at the same level in H. medioplexus, but always at different levels in H. meridionalis; (3) the position of the testes, which are immediately posterior to the seminal receptacle and are close together in the new species and far from the seminal receptacle and separated from each other in H. medioplexus; and (4) the location of the genital pore, which is ventral to the cecal bifurcation in the new species and ventral to the pharynx in H. medioplexus. In addition, the new species is unique among members of Haematoloechus by having flaps of tissue on the interior margins of the ventral sucker. The new species shows almost 5% sequence divergence from H. medioplexus in the variable D1 region of the 28s rDNA, complementing the morphological differences.

As part of an inventory of eukaryotic parasites of vertebrates in the Area de Conservación de Guanacaste (ACG) in Costa Rica, specimens of a previously undescribed species of digenean inhabiting the lungs of Rana vaillanti Brocci were collected. In this paper, the morphological description of a new species of Haematoloechus is given, and the sequence of a variable region of the large subunit of the rDNA is provided in order to construct a molecular data base that reinforces the morphological features in an effort to clarify the systematics of the group.

MATERIALS AND METHODS

Worms collected from freshly killed amphibians initially were placed in saline (0.65%) for 5–10 min. For the morphological study, they were fixed by sudden immersion in hot 4% formaldehyde and preserved in 70% alcohol. Specimens were stained with Mayer’s paracarmine or Go-

The following abbreviations are used: CNHE, Colección Nacional de Helmintos, Instituto de Biología, Universidad Nacional Autónoma de México; USNPC; United States National Parasite Collection; BMNH, British Museum of Natural History, London. Specimens for molecular work were identified in vivo and preserved in 100% ethanol. Standard phenol extraction methods were used to recover DNA from individual specimens. Laboratory protocols follow Palumbi (1996) and Hillis et al. (1996). Polymerase chain reaction (PCR) was used for amplifying the 5′ end of the 28S ribosomal RNA gene (884 bp, including the D1 variable region). Amplification and sequencing was performed using the primers 28Sy 5′cta acc agg att ccc tca gta acg gcg agt 3′ (forward) and 28Ssz 5′aga ctc ctt ggt ccg tgt ttc aag ac 3′ (reverse) (Hillis and Dixon, 1991). Amplification program consisted of 1 min at 72 C, followed by 4 min at 72 C for final elongation. PCR products were sequenced directly on an ABI Prism 310 automated DNA sequencer or using Thermo Sequenase radiolabeled terminator cycle sequencing kits (Amersham Life Science, Cleveland, Ohio). Sequences were aligned visually with H. medioplexus (Genbank AF133112), H. complexus (AF133104), H. coloradensis (AF133108), and H. illimis (AF133109) sequences using the computer program ESEE (version 3, Cabot and Beckenbach, 1989). A pairwise distance matrix was constructed using PAUP (version 4.0b4a Swoford, 1998) and a phenogram was constructed using UPGMA (Krebs, 1989).

DESCRIPTION

Haematoloechus meridionalis n. sp. (Figs. 1–2)

Description (based on 16 mature specimens): Body elongate, 5.85–11.08 (8.25) mm long, 1.05–2.57 (1.69) mm wide at midhindbody. Testes overlapping; spines small, and delicate. Oral sucker subterminal, elongate, 1.1–1.38 (1.21) times longer than wider, 479–618 (535) long, 409–518 (447) wide; opening directed ventrally. Pharynx globular, 159–279 (223) long, 35.1–49.2% (41.5%) of oral sucker length, 219–289 (246) wide, 47.7–60.9% (55.4%) of oral sucker width. Gland cells surrounding anterior region of pharynx. Esophagus bulbous, surrounded anteriorly by gland cells. Ceca bifurcating at 700–1086 (833) (8.1–11.7% [10.3%] of body length [BL]) from anterior extremity. Ceca narrow, terminating blindly, sometimes asymmetrical; rectum cecum ending at 169–798 (395) (2.1–7.7% [4.73%] of BL) from posterior extremity; left cecum at 169–568 (336) (3.2–5.7% [4.1%] of BL) ventrally. Ventral sucker developed, 74–123 (105) long, 57–148 (101) wide, at 2.6–4.2 (3.25) mm from anterior extremity, 1–5% of body length. Anterior testis opposite ovary, 369–875 (587) long, 358–1,000 (644) wide. Ovary dextral or sinistral, oval to triangular, 459–817 (645) long, 259–600 (438) wide; at 3,250–4,680 (3,862) (34.9–58.9% [47.9%] of BL) from posterior extremity. Seminal receptacle ventrally overlapping posterior part of ovary; 369–875 (587) long, 349–1,000 (645) wide. Mehlis gland dorsal to seminal receptacle. Laurer’s canal absent. Vitellaria forming clusters, anterior limit of distribution 1,650–2,900 (2,110) (19.8–36.7% [26.3%] of BL) from anterior end; posterior limit differing on each side of body. On ovarian side, 1 pretesticular group of 7–8 extracecal plus 1–3 intracecal clusters of acini, reaching the level of anterior testis. On opposite side of body, 2 groups of clusters, 1 preovarian formed by 5–7 extracecal plus 1–2 intracecal clusters, second posttesticular of 3–4 extracecal plus 1–2 intracecal clusters, reaching midway between posterior testis, posterior end of body. Descending uterus forming short transverse loops on ovarian side of body, not overlapping testes, filling intraextracecal space toward posterior end.
Figure 1. *Haematoloechus meridionalis* n. sp. ventral view.

Figure 2. *Haematoloechus meridionalis* n. sp. terminal genitalia.

Taxonomic summary

Type host: R. vaillanti Brocchi, 1887.

Site of infection: Lungs.

Type locality: Rio Pizote, Area de Conservación Guanacaste, Costa Rica.

Other localities: Cali, Colombia in R. vaillanti (reported as H. medioplexus, Uribe-Piedrahita, 1939). Record by León-Regagnon et al. (1999) of H. iturbei in Rana palmipes Spix from Costa Rica corresponds to H. meridionalis in R. vaillanti.

Holotype: CNHE 4199.

Paratypes: CNHE 4200–4201, USNPC 091036.00–09037.00, BMNH 2001.3.19.1–3.

Vouchers: CNHE 4202–4203.

Etymology: The name of the species refers to its geographical distribution.

Remarks

The new species differs from other Haematoloechus species and resembles H. medioplexus Stafford, 1902, in having a very small (less than one-fourth the diameter of the oral sucker) but well-developed acetabulum. Haematoloechus meridionalis further resembles H. medioplexus in lacking extraccecal longitudinal uterine loops. The new species differs from H. medioplexus notably by (1) the shape of the oral sucker (elliptical in H. meridionalis and spherical in H. medioplexus), (2) the posterior extent of the vitelline fields (terminating at the same level in H. medioplexus, at different levels in H. meridionalis), (3) the position of the testes (immediately posterior to the seminal receptacle and close together in the new species, far from the seminal receptacle and separated from each other in H. medioplexus), and (4) location of the genital pore (ventral to the cecal bifurcation in the new species, immediately posterior to the seminal receptacle, but well-developed oral sucker, lacking a ventral sucker, having elongate testes located far behind the ovary, and having extraccecal uterine loops.

Molecular data: A 875-bp-long fragment (partial 28S sequence, including the D1 variable domain) was amplified. Sequences of H. meridionalis isolates from different individual hosts of the type locality are identical; sequence available from Genbank (accession number AY026897). The DNA sequences of the new species and H. medioplexus are compared to evaluate the information given by morphological characters; included in the comparison are other species that are morphologically different from them (Figs. 4, 5).

DISCUSSION

The taxonomy of Haematoloechus has been controversial because many nominal species have been proposed based on a small number of morphological characters, at least some of which are variable and difficult to characterize (Prokopic and Krivanece, 1974; Kennedy, 1980a, 1980b, 1981). In a previous paper, León-Regagnon et al. (1999) used comparisons of rDNA sequence data (ITS1–5.8S–ITS2 and 28S regions) to provide additional support for some nominal species, thereby validating some of the morphological traits used in the systematics of the group. We therefore compared the partial 28S sequences of the new species and other American representatives of the genus. The genetic differences between the specimens of H. meridionalis and H. medioplexus (4.91%) are larger than those observed with other clearly distinguishable species, such as H. illimis Caballero, 1942 (1.85%). Haematoloechus illimis differs from H. meridionalis in having an acetabulum that is almost the same size as the oral sucker; in the general shape of the body, which is shorter and wider in H. illimis; in having a spherical oral sucker; in the distribution of the uterus (which is not arranged in 2 lateral fields and possesses short longitudinal loops), and in the shape of the testes and ovary, which are elongate and lobate. Whereas the geographical distribution of H. illimis has not been well studied, it apparently is endemic to the central part of Mexico (Caballero, 1942; León-Regagnon et al., 1999; Pérez-Ponce de León et al., 2000) and is more commonly found in leopard frogs (members of the Rana pipiens clade), but little is known about the southeastern region of this country and others in Central America. Of the species examined by León-Regagnon et al. (1999), H. illimis was most closely related to H. medioplexus and H. coloradensis Cort, 1915. Haematoloechus meridionalis appears to be part of this group of species, possibly sister species of H. illimis.

In the Area de Conservacion Guanacaste, Rana vaillanti is the ecological equivalent of the bullfrog (Rana catesbeiana) or green frog (Rana clamitans) of North America. They are large, territorial, actively predatory frogs that are more aquatic than the leopard frogs (members of the Rana pipiens clade) with which they often are sympatric. Bullfrogs and green frogs are
Figure 4. Alignment of partial 28s sequences of Haematoloechus meridionalis and other American representatives of the genus.
hosts for multiple species of *Haematoloechus*, not all of which are the closest relatives. It is, therefore, not surprising to find that *H. meridionalis* does not appear to be the closest relative of *H. medioplexus* living in *Rana palmipes*, the sister species of *R. vaillanti* (Hillis and DeSa, 1988).

More than 50 species of *Haematoloechus* have been described worldwide, 28 of which are restricted to North and South America. This is the first record of species of the genus in Central America. If the report by Uribe-Piedrahita (1948) of *H. medioplexus* actually is *H. meridionalis*, the species’ range extends to South America. If it is most closely related to the *H. illimis* (*H. coloradensis, H. medioplexus*) group (León-Regagnon et al., 1999), which is limited to the Nearctic region (see also Pérez-Ponce de León et al., 2000), these species might represent an ancient speciation event associated with the original separation of North and South America resulting from the break-up of Pangaea. In that case, the occurrence of *H. meridionalis* in Costa Rica represents a northward dispersal that has occurred since the emergence of the Panamanian Isthmus 3.5–5.7 million yr ago (Lessios, 1979). The biological richness of Costa Rica is due in great part to its biotic influences from both the north and the south (Janzen, 1983). Only by including information of more species and more characters in a phylogenetic analysis will we be able to test the phylogenetic, biogeographic and coevolutionary affiliations of *H. meridionalis*.

ACKNOWLEDGMENTS

We are grateful to the scientific and technical staff of the ACG for support of this study, in particular Sigifredo Marin, Roger Blanco, Alejandro Masis, Maria Marta Chavarria, Felipe Chavarria, Guillermo Jimenez, Carolina Cano, Elda Araya, Fredy Quesada, Dunia Garcia, Roberto Espinosa, Elba Lopez, Petrona Rios, and Calixto Moraga. Thanks also to Dan Janzen and Winnie Hallwachs, scientific advisers to the ACG. Part of this study was developed at the Molecular Systematics Lab., Instituto de Biología, UNAM, and at the Molecular Systematics Lab., Department of Zoology, University of Toronto and Royal Ontario Museum (ROM). Special thanks to Jinzong Fu (ROM) and Laura Marquez V. (IBUNAM) for their help in the sequencing of samples. V.L.R. thanks Anindo Choudhury for suggestions in the morphological study of specimens. This study was funded by CONACyT proj. J27985N to V.L.R. and NSERC operating grant A7696 to D.R.B.

LITERATURE CITED

PÉREZ-PONCE DE LEÓN, G., V. LEÓN-REGAGNON, L. GARCÍA-PRIETO, U. RAZO-MENDIVIL, AND A. SÁNCHEZ-ALVAREZ. 2000. Digenean fauna of the Isthmus 3.5–5.7 million yr ago (Lessios, 1979). The biological richness of Costa Rica is due in great part to its biotic influences from both the north and the south (Janzen, 1983). Only by including information of more species and more characters in a phylogenetic analysis will we be able to test the phylogenetic, biogeographic and coevolutionary affiliations of *H. meridionalis*.