Osteomyelitis Associated with *Nocardiopsis composta* in a Dog

Elisa N. Salas
University of Nebraska-Lincoln

Debra Royal
University of Nebraska-Lincoln

Lance Kurz
University of Nebraska-Lincoln

J. Dustin Loy
University of Nebraska-Lincoln, jdloy@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/vetscipapers

Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology Commons

Salas, Elisa N.; Royal, Debra; Kurz, Lance; and Loy, J. Dustin, "Osteomyelitis Associated with *Nocardiopsis composta* in a Dog" (2015). *Papers in Veterinary and Biomedical Science*. 278.
http://digitalcommons.unl.edu/vetscipapers/278

This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
osteomyelitis can be caused by bacterial or fungal agents or may be idiopathic. Cocci, bacilli, and filamentous bacteria such as members of the Actinomycetales have all been determined to be causes of osteomyelitis. Differential diagnoses for Gram-positive filamentous rods in the family Actinomycetales causing osteomyelitis in the dog, include members of the more frequently encountered genera Nocardia and Actinomyces (1,2). Bacteria gain access to the bone via several routes, but are most often associated with direct inoculation (such as percutaneous injuries, compound fractures, or secondary to foreign bodies such as surgical or other material including dirt and wood) and fracture instability. Less frequently, the route is hematogenous, as has been found with Propionibacterium acnes (3). Agents isolated from osteolytic lesions in dogs and cats have included Gram-positive Staphylococcus spp., Streptococcus spp., Gram-negative Escherichia coli, Proteus spp., Klebsiella spp., Pseudomonas spp., anaerobic Clostridium spp., Peptostreptococcus spp., Actinomyces spp., Bacteroides spp., Fusobacterium spp., and rarely Brucella canis, Nocardia spp., and Mycobacterium avium (3.4). Fungal causes include Coccioidoides immitis, Blastomyces dermatitidis, Histoplasma capsulatum, Cryptococcus neoformans, and Aspergillus spp. (3). Osteosarcoma with associated cellulitis is a reported noninfectious cause of osteomyelitis in dogs (5).

Our report details the diagnosis, treatment, and resolution of osteomyelitis in a dog caused by a unique agent, Nocardiopsis composta.

Case description

A 1-year-old neutered male miniature Australian shepherd dog was presented to a primary care veterinarian with a 6-week history of right hind limb weight-bearing lameness. Upon physical examination, a hard, 2-cm diameter mass was palpated at the medial right tibia. Radiographs revealed an osteolytic lesion in the mid-diaphysis of the limb (Figure 1). A 4-mm punch bone biopsy was taken 3 wk following initial examination and was submitted in 10% buffered formalin, decalcified in 12% hydrochloric acid for 4 h, processed, sectioned, and stained with hematoxylin and eosin (H & E). Histologic sections revealed moderate numbers of intact and degenerate neutrophils in the inter-trabecular spaces admixed with moderately abundant fibrin, mild amounts of karyorrhectic and cytolytic cellular debris, and few pyknotic nuclei. Osteolysis was characterized by disruption of boney trabeculae and replacement by fibrin and fibrosis. Few, multifocal, and prominent Howship’s lacunae were present (osteoclastic resorption) (Figure 2A). Brown and Brenn Gram stain and Gomori’s methanamine silver stain on histologic sections failed to reveal a bacterial or fungal etiology, respectively. However, due to the presence of neutrophils, radiographic findings of osteomyelitis, and age of the patient, an infectious, rather than neoplastic, etiology was suspected. Following culture results from a subsequent biopsy, a Fite’s acid fast stain was conducted retrospectively on the initial fixed paraffin-embedded biopsy and revealed small numbers of intralesional, acid fast positive, branching bacilli approximately 3 μm × 1 μm in size (Figure 2B). Empirical antimicrobial treatment was initiated, as fresh tissues were not initially collected for culture. After 4 wk of therapy with amoxicillin and
Figure 1. A — Dorsoventral radiograph of the rear limbs. A midshaft area of radiolucency consistent with bony lysis is seen in the right tibia. The left tibia is normal. B — Left to right lateral view of the left tibia. The area of lucency is oval and is bordered by mild boney proliferation.

Figure 2. Punch biopsy of bone. A — Moderate numbers of neutrophils fill the intertrabecular spaces of lamellar bone. A small focus of osteolysis is present (asterisk) (Hematoxylin and eosin, Bar = 50 μm). B — Few, small, extracellular, 1 μm × 3 μm, Fite’s acid-fast positive, branching bacilli are seen within intertrabecular spaces. (Fite’s acid fast stain, Bar = 10 μm)

Figure 3. Gram-stained heat-fixed colony smear showing Gram-positive branching rods. (Bar = 10 μm)
clavulanate, radiolucency consistent with osteomyelitis of the right tibia was still apparent and clinical lameness persisted. We therefore initiated therapy with clindamycin.

Five months following cessation of antimicrobial treatment, lameness and radiographic osteolysis were still noted. A fresh, non-fixed, bone biopsy was taken and submitted for culture and identification of an etiologic agent. A branching Gram-positive bacillus was observed on Gram-stained colony smears (Figure 3) and was subsequently isolated in pure growth on tryptic soy agar and was subsequently isolated in pure growth on tryptic soy agar. The patient was then placed on high-dose trimethoprim/sulfamethoxazole for 21 d. Therapy was discontinued following elevation of blood urea nitrogen (17.5 mmol/L, reference range: 2.5 to 9.6 mmol/L) due to concern regarding potential antibiotic toxicity. A follow-up examination 8 mo after cessation of antibiotics indicated a resolution of both the presenting clinical signs and radiographic boney lysis with probable clearance of the organism.

Discussion

The genus *Nocardiopsis* in the order *Actinomycetales* contains aerobic actinomycetes and was proposed by Meyer based on morphological and biochemical analyses (9). Although related, these organisms are a distinct genus from the more commonly identified genus *Nocardia*. The genus *Nocardiopsis* was separated from the genus *Actinomadura*, and originally represented actinomycetes with substrate mycelium that fragments into coccoid elements and has a specific cell wall composition of meso-2,6-diaminopimelic acid that contains no diagnostically useful sugars. The genus *Nocardiopsis* has since been refined, based on additional chemotaxonomic analysis, and was revised to include only organisms with a fatty acid composition of type 3d and DNA G + C content of 64 to 71 molar percent (10). *Nocardiopsis composta* was initially isolated from the atmosphere of a composting facility in Germany and is one of 41 validly named species or subspecies within the genus (11,12).

To our knowledge, this is the first report of isolation of *Nocardiopsis composta* in association with a pathologic process in any animal species. Another member of the genus, *Nocardiosis alba*, was recently identified in association with a case of chronic laminitis in a horse, the only report found of a closely related species in animals (13). Other members of the genus *Nocardiosis* have been rarely documented to cause infections in humans, and nearly all of these have been attributed to a single species, *Nocardiosis dassonvelli*. *Nocardiosis dassonvelli* has been isolated in association with human diseases that include cutaneous infection, cellulitis, actinomycetoma, respiratory infection, nasal vestibulitis, blood cultures of a child with respiratory distress and a man with cholangitis (14–22). Although the prevalence of these infections in human medicine is poorly understood, one report indicates that the Centers for Disease Control identified 21 isolates as *N. dassonvelli* between 1981 and 1986.
In many cases described in the literature, patients suffered from protracted disease. In 8 patients described in case reports, I had treatment with corticosteroids prior to presentation and another was concurrently diabetic (15,19). Two patients with cellulitis had reported previous trauma, presumably allowing for a decrease in localized cutaneous defenses (18,20). Thus, immunosuppressive conditions could play a role in pathogenesis of infections with organisms of this genus (18,20).

The human patients affected by cutaneous infection, subcutaneous infection, and nasal vestibulitis lacked osteomyelitis. When performed, histopathologic examination in human cases revealed a suppressive to pyogranulomatous infection with intraleisonal Gram-positive, periodic acid-Schiff negative, and modified acid-fast negative filamentous branching bacilli (15,18,20). In our case, initial histologic examination of H & E stained sections failed to reveal visible bacilli. However, subsequent Fite’s acid fast staining revealed branching acid fast bacilli. Peanut oil used in Fite’s acid fast stain has been shown to enhance penetration of the stain in waxy tissue or bacterial cell walls (24). Thus, it is recommended using this stain over traditional modified acid fast stains if Nocardiosis is suspected.

In human cases of Nocardiosis dasonvelli, therapies that resulted in resolution of clinical signs included oral trimethoprim/ sulfamethoxazole, combination oral therapy of trimethoprim and gentamicin, intravenous piperacillin and ciprofloxacin, trimethoprim/sulfamethoxazole in conjunction with clarithromycin and levofloxacin, and minomycin (14–16,18–20,25). Based on the antimicrobial susceptibility test results which showed resistance to clarithromycin, the patient was then treated with high dose trimethoprim/sulfamethoxazole with complete resolution of clinical signs after a 3-week course of treatment. This patient had no concurrent immunosuppressive conditions and it remains unclear how this organism was introduced into the bone. However, trimethoprim/sulfamethoxazole therapy may be a reasonable selection for treatment of osteomyelitis caused by Nocardiosis, due to in vitro susceptibility of the isolate, efficacy against related organisms, the spectrum of activity, good absorption, and a high calculated volume of distribution throughout the body tissues (26,27). In the absence of official antimicrobial testing methodologies and interpretative data for this particular organism, the Kirby-Bauer disc diffusion susceptibility test results, although not validated, were utilized in a comparative manner to guide the successful antimicrobial therapy of this case of osteomyelitis.

We conclude that nonresponsive cases of osteomyelitis warrant additional diagnostics and an index of suspicion for more fastidious organisms. Testing should include fresh and fixed biopsy, Gram stain, Fite’s acid fast stain for optimal penetration into bacterial cell walls, aerobic culture for a minimum of 3 d, anaerobic culture, and 16S ribosomal DNA sequencing. Treatment should be guided by susceptibility testing using approved CLSI protocols when available (8). In light of our findings, Nocardiosis composta should be considered along with other etiologies as a possible differential for osteomyelitis in animal patients.

Acknowledgments
The authors thank Dr. Bruce Brodersen for the initial evaluation of histologic sections and for advice and the staff of the Veterinary Diagnostic Center for their assistance.

References
of the XI Congress of the International Society for Human and Animal Mycology, Montreal, Canada. 1991: abstr no PSl.91.