
Invited Paper

MMI: Multimodel Inference or Models With
Management Implications?

JOHN FIEBERG,1 Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, Suite 135, Saint
Paul, MN 55108, USA

DOUGLAS H. JOHNSON, U.S. Geological Survey, Northern Prairie Wildlife Research Center, 2003 Upper Buford Circle, Suite 135, Saint Paul,
MN 55108, USA
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Consider the following—very realistic—scenario. Because of
the concern about declining populations of many grassland
birds, investigators decide to study a number of grassland
fields in the Midwest. Their objective is to identify features
conducive to supporting high densities of grassland birds.
They select, as randomly as feasible, a number of fields to
study and record the number of each species present in each
field during the birds’ breeding season. They also record a
number of potential explanatory variables. Some of these
they obtain from remote sensing, such as the area of
contiguous grassland embedding each field; proximity to
trees; and the percentages of tree cover, grassland cover,
wetland cover, and cropland cover within 400m, 800m, and
1,200m of a field. Some explanatory variables are measured
in the field, including vegetation height-density measures
(Robel readings; Robel et al. 1970) and their coefficient of
variation (to measure heterogeneity), and percentage cover
by grasses, forbs, woody species, litter, and bare ground
along with their coefficients of variation. They also record
the latitude and longitude of each study field, which, along
with their interaction, could account for variation in bird
density in relation to the breeding range of a particular
species.
The investigators were able to collect complete information

of 25 fields each year for 3 years. We assume that different
fields were available each year so that we do not have to deal











Supplementary Appendix A: Graphical Models
Description: we consider a simple causal network that describes the short-term effects of fire on a  suite of 
intervening variables (woody vegetation, grass and forb abundance, and litter depth), which in turn influence 
grassland bird abundance. This network can be described qualitatively using a graph connecting variables 
(Figure S1, below), or quantitatively using a set of equations.

Figure S1: C  ausal n etwork d escribing s hort-term e ffects o f fire o n a  suite o f intervening v ariables (woody  
vegetation, g rass a nd forb a bundance, a nd litter d epth), w  hich in turn influence g rassland b ird a bundance.

Variables and Equations

We assume that abundance of woody vegetation (woody.veg), abundance of grass and forbs (grass.forbs),
and litter depth (litter.depth) are continuous variables that have been standardized by subtracting their
mean and dividing by their standard deviation. In addition, we will consider a continuous, non-negative
index of burn intensity.

The values of the explanatory variables are determined by the equations below. For convenience, we omit a
subscript indexing each observational unit (i = 1, 2, . . . , n).

Burn intensity

burn.intensity = 0 if control site
log(burn.intensity) ∼ N(µ, σ2

burn) for burned sites.

Default parameter values: µ = 0, σburn = 0.2

Explanatory variables

woody.veg = τwoody.veg × burn.intensity + εwoody.veg

grass.forbs = τgrass.forbs × burn.intensity + εgrass.forbs

litter.depth = τlitter.depth × burn.intensity + εlitter.depth

Default parameter values τwoody.veg = -2.5, τgrass.forbs = -2.5, τlitter.depth = -2.5.

Error terms for explanatory variable ∼ burn.intensity models

The errors are assumed to be mutually independent.
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εwoody.veg ∼ N(0, σ2
woody.veg)

εgrass.forbs ∼ N(0, σ2
grass.forbs)

εlitter.depth ∼ N(0, σ2
litter.depth)

Default parameter values: σwoody.veg = 0.8, σgrass.forbs = 0.8, σlitter.depth = 0.8.

Abundance

N = Poisson(λ);
log(λ) = βwoody.veg × woody.veg + βgrass.forbs × grass.forbs + βlitter.depth × litter.depth + εN , with
εN ∼ N(0, σ2

N ).

Default parameter values: βwoody.veg = -0.8, βgrass.forbs = 0.4, βlitter.depth = 0.5, σN = 0.03

Simulation

We simulate 1000 data sets containing (n.burn, n.control) burned and controlled sites, respectively. We
then fit 3 Poisson regression models, below:

1. A Full model including an indicator for whether or not the site was burned (burn = 1 if burned, 0
otherwise), woody.veg, grass.forbs, and litter.depth.

2. A model containing only burn.
3. A model containing only woody.veg.

set.seed(10496)

sim.N<-function(ncontrol=45, nburn=30, # number of burned and control sites
sd.burn=0.2, # sigma for burn.intensity distribution
sd.grass=0.8, # sigmas associated with explanatory var~ burn.intensity models
sd.woody=0.8,
sd.litter=0.8,
tau.grass=-2.5, # reg coefs in explanatory variable ~ burn.intensity models
tau.woody=-2.5,
tau.litter=-2.5,
beta.grass=0.4, # reg coefs in abundance ~ explantory variable models
beta.woody=-0.8,
beta.litter=0.5,
beta.burn=0, # will change for a later example
mu.N=0, sd.N=0.03, # Abundance error distribution
out.data=FALSE # determines if the simulated data should be output with the results
){

# Total number of sites
nsites<-nburn+ncontrol

# Determine burn indicator and simulate burn intensity
burn<-rep(c(0,1), c(ncontrol, nburn))
burn.intensity<-c(rep(0,ncontrol), rlnorm(nburn,0,sd.burn))

# Burning and burn intensity determine standing grass/forbs, woody veg, and litter depth.
# Model correlation between these variables using burn intensity
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grass.forbs<-rnorm(nsites, 0, sd.grass) + burn.intensity*tau.grass
woody.veg<-rnorm(nsites, 0, sd.woody) + burn.intensity*tau.woody
litter.depth<-rnorm(nsites, 0, sd.litter) + burn.intensity*tau.litter

# Generate abundance from woody.veg, grass.forbs, and litter.depth plus random noise
log.lam <-rnorm(nsites, mu.N, sd.N)+grass.forbs*beta.grass + woody.veg*beta.woody+

litter.depth*beta.litter + burn*beta.burn
abundance<-rpois(nsites, lambda=exp(log.lam))

# Fit 3 different models
# Model 1: full model
# Model 2: model with just woody.veg
# Model 3: model with just burn
fit1<-glm(abundance~burn+woody.veg+grass.forbs+litter.depth, family=poisson())
fit2<-glm(abundance~burn, family=poisson())
fit3<-glm(abundance~woody.veg, family=poisson())

# Output results
beta.out<-c(coef(fit1), coef(fit2), coef(fit3))
data.out<-data.frame(burn=burn, burn.intensity=burn.intensity, woody.veg=woody.veg,

grass.forbs=grass.forbs, litter.depth=litter.depth,
abundance=abundance)

if(out.data==TRUE){out<-list(beta.out=beta.out, data.out=data.out)}
else{ out<-c(beta.out)

names(out)<-c("int.full", "burn.full", "beta.woody.full", "beta.grass.full",
"beta.litter.full","int.burnonly","beta.burn.burnonly",
"int.woodyvegonly", "beta.woody.woodyonly")

}
out
}

Data structure

Lets look at an example data set using a pairwise scatterplot with correlations in the upper panels (Figure S2).

library(GGally); library(ggplot2)
simulated.data<-sim.N(out.dat=TRUE)
ggpairs(simulated.data$data.out[,-1], lower=list(continuous="smooth"),

axisLabels="internal")+ theme(panel.grid.major = element_blank())
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Figure S2: Pairwise scatterplot illustrating relationships among variables in a simulated data set. Data 
were simulated using the causal network depicted in Figure S1.
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Sampling distribution of coefficients from 1000 simulated data sets

Now, let’s simulate and analyze 1000 data sets.

library(mosaic) # for use of "do" function to allow simple looping

sims<-do(1000)*{sim.N()}

Results

Full model

We see that the sampling distribution for the regression coefficient associated with burn (yes/no) is centered on 
zero (Figure S3A). The effect of burn is mediated by the (woody.veg, grass.forbs, and litter.depth) 
variables. Burn and abundance are independent if we condition on these 3 variables.

We also see that the regression coefficients for the other 3 variables are unbiased (Figure S3B,C,D).

par(mfrow=c(2,2),mar=c(4, 4.1, 4.1 ,1.1))
hist(sims$burn.full, xlab=expression(beta[burn]), main="A)", col="gray", breaks=20)

abline(v=0, lwd=3, lty=2)
hist(sims$beta.woody.full, xlab=expression(beta[woody.veg]), main="B)", col="gray")

abline(v=-0.8, lwd=3, lty=2)
hist(sims$beta.grass.full, xlab=expression(beta[grass.forbs]), main="C)", col="gray")

abline(v=0.4, lwd=3, lty=2)
hist(sims$beta.litter.full, xlab=expression(beta[litter.depth]), main="D)", col="gray")

abline(v=0.5, lwd=3, lty=2)
mtext(outer=T, side=3, line=1, "Full Model", cex=1.2)
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Figure S3: Sampling distribution of regression coefficients when fitting the full model containing burn, 
woody.veg, grass.forbs, and litter.depth. Data were simulated using the causal network depicted in 
Figure S1. Parameter values used to generate the data are indicated by dotted vertical lines.
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Model with only burn (= 1 if burned, 0 otherwise)

If we want to measure the effect of burn on bird abundance, then we should not adjust for mediating
variables (woody.veg, grass.forbs, litter.depth). These variables lie on the causal path between burn and
abundance (as we saw when fitting the full model). We can estimate the effect of burning on abundance by
fitting a model that includes only burn (= 1 if burned, 0 otherwise).

hist(sims$beta.burn.burnonly, xlab=expression(beta[burn]), main="Model with burn (y/n) only",
col="gray", breaks=25)
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Figure S4: Sampling distribution of the coefficient for burn (= 1 if burned, 0 otherwise) in a model that 
excludes all mediating variables. Data were simulated using the causal network depicted in Figure S1.

We see that burns are likely to have an overall negative effect on abundance (Figure S4). Burns contribute posi-
tively to bird abundance through the paths (burn → litter.depth → abundance and burn → grass.forbs 
→ abundance), and contribute negatively through the path (burn → woody.veg → abundance). For 
the set of parameter values we used to simulate the data, the negative effects of burning (mediated by the 
path through woody.veg) generally outweigh the positive effects of burning (mediated by the paths through 
grass.forbs and litter.depth).

Model with only woody.veg

What if we omit grass.forbs and litter.depth and fit a model that only contains woody.veg? In this case,
the regression coefficient associated with woody.veg will be biased, because it will measure the combined
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effect of woody.veg and these omitted variables (Figure S5). The degree of bias will depend on the strength of 
the relationship between the omitted variables and grassland bird abundance as well as the strength of the 
correlation between woody.veg and the omitted variables.

hist(sims$beta.woody.woodyonly, xlab=expression(beta[woody.veg]), main="Model with woody.veg only",
col="gray", xlim=c(-0.82, 0.22))

abline(v=-0.8, lwd=3, lty=2)
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Figure S5: Sampling distribution for the regression coefficient associated with woody.veg in a model that 
excludes all other variables. Data were simulated using the causal network depicted in Figure S1. 
The parameter value used to generate the data is indicated by a dotted vertical line.

Adding a direct link between burn (= 1 if burned, 0 otherwise) and abundance

Let’s add a small, direct effect of burn on abundance and see how it changes the coefficients in the full model.
This effect could be due a prior difference in sites (burned versus control) in their relative abundance (i.e.,
not a result of burning the plots).

N = Poisson(λ);
log(λ) = βwoody.veg × woody.veg + βgrass.forbs × grass.forbs + βlitter.depth × litter.depth + βburn ×
Burn + εN , with βburn = 0.5 (and all other parameter values were kept the same as in the prior example).
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Figure S6: Causal network describing the short-term effects of fire on a suite of intervening variables (woody 
vegetation, grass and forb abundance, and litter depth) that in turn influence grassland bird a bundance. The 
link between Sites (burned, control) and bird abundance captures initial differences in abundance prior to 
initiating the experiment.

sims<-do(1000)*{sim.N(beta.burn=.5)}

par(mfrow=c(2,2),mar=c(4, 4.1, 4.1 ,1.1))
hist(sims$burn.full, xlab=expression(beta[burn]), main="A)", col="gray", breaks=20)

abline(v=0.5, lwd=3, lty=2)
hist(sims$beta.woody.full, xlab=expression(beta[woody.veg]), main="b)", col="gray")

abline(v=-0.8, lwd=3, lty=2)
hist(sims$beta.grass.full, xlab=expression(beta[grass.forbs]), main="C)", col="gray")

abline(v=0.4, lwd=3, lty=2)
hist(sims$beta.litter.full, xlab=expression(beta[litter.depth]), main="D)", col="gray")

abline(v=0.5, lwd=3, lty=2)

In this case, the coefficient for burn (= 1 if burned, 0 otherwise) is positive and captures the initial difference in 
bird abundance between burn and control sites (Figure S7A).
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Figure S7: Sampling distribution of regression coefficients for a full model including burn, woody.veg, 
grass.forbs, and litter.depth. Data were simulated using the causal network depicted in Figure S6. 
Parameter values used to generate the data are indicated by dotted vertical lines.
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Session Info

sessionInfo()

R version 3.1.1 (2014-07-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] mosaic_0.9.1-3 lattice_0.20-29 dplyr_0.4.1 car_2.0-21
[5] ggplot2_1.0.0 GGally_0.5.0

loaded via a namespace (and not attached):
[1] assertthat_0.1 colorspace_1.2-4 DBI_0.3.0 digest_0.6.4
[5] evaluate_0.5.5 formatR_1.0 ggdendro_0.1-14 grid_3.1.1
[9] gridExtra_0.9.1 gtable_0.1.2 htmltools_0.2.4 knitr_1.6

[13] labeling_0.3 magrittr_1.0.1 MASS_7.3-33 mosaicData_0.9.1
[17] munsell_0.4.2 nnet_7.3-8 plyr_1.8.1 proto_0.3-10
[21] Rcpp_0.11.2 reshape_0.8.5 reshape2_1.4 rmarkdown_0.2.49
[25] scales_0.2.4 splines_3.1.1 stringr_0.6.2 tools_3.1.1
[29] yaml_2.1.13
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