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Here, θ is the generated ability value is the estimated ability value and n is the number of 

cases in the analysis. 

The goal of this study is to establish whether multiple imputation of the guessing 

parameter outperforms several commonly used techniques. The next section will discuss 

the relative performance of each of these approaches in greater detail.  We comment 

briefly on the bias introduced by each missing data condition along the ability 

continuum.  We compare the accuracy of the estimates of ability calculated from the 

datasets for each missing data condition to those generated from the complete dataset, as 

well as the originally generated values of θ. We comment on the performance of each 

strategy in different regions of the ability continuum, and evaluate the RMSE and bias 

present for each of the 41 groups of generated theta values.    
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Chapter 4 

Results 

  

 The datasets for each missing data condition, as well as the complete simulated 

dataset, were scored using our estimator that appears in Appendix A.  As suggested by 

Rose et. al (2010), the tolerance for convergence was set to 0.00005 and the maximum 

iterations to 10.  The proportion of converged cases for each ability group in each missing 

data condition are shown in Appendix B.  Note that, in the ranges of the ability 

continuum where the test provided the most information (-0.4 < θ < 1.6), 99 percent or 

more of cases converged for all missing data conditions.  We observed more 

nonconverging cases in ranges where the test provided the least information, particularly 

in the lower end of the ability continuum (-2 < θ < -1).  These nonconverging cases were 

not included in the analysis.   We observe that multiple imputation of the response 

yielded much higher convergence rates than any of the other missing data conditions in 

the low end of the ability continuum (-2 < θ < -1).  At the higher end of the ability 

continuum, (1.5 < θ < 2), all of the missing data handling techniques had similar 

convergence rates.  For this simulated dataset and scoring estimator, multiple imputation 

provided the best performance in terms of convergence, with multiple imputation 

replacing the guessing parameter as a close second. 

 The bias and RMSE of each condition is presented in Table 4.  In terms of 

minimizing bias in recovering the generated value of θ, scoring missing items as incorrect 

was the best-performing strategy.  It was followed by multiple imputation replacing the 
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guessing parameter, imputing a guessing parameter of 0.5, multiple imputation, no 

missing data, and proportion correct imputation. 

 When RMSE is considered, all missing data strategies performed comparably.  

The no-missing data condition yielded the least error (RMSE = 0.338), followed by 

proportion correct imputation (RMSE=0.346).  Scoring missing as incorrect performed 

the worst (RMSE = 0.352).  Appendix B includes tables of bias and RMSE for each θ 

group. 

 

Table 7. Bias and RMSE for each condition. 

Condition 	 Bias	 RMSE	

No missing data	 0.045	 0.338	

Missing scored as incorrect	 -0.002	 0.352	

Guessing parameter imputed with 
.5	 0.027	 0.351	

Proportion correct imputation	 0.055	 0.346	

Multiple imputation 	 0.028	 0.350	

Multiple imputation replacing the 
guessing parameter	 0.012	 0.354	

 
 	

To better evaluate how each missing data handling technique performed, bias was 

calculated for each θ grouping for each condition.  The conditional standard deviations of 

the deviations were also calculated and used to indicate variability at each logit.  Figures 

7 through 12 contain these plots.  Note that ability estimates are positively biased near the 

ends of ability continuum, where the test provides little information. Where the test 
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provides the most information, the scores are slightly negatively biased. On the extreme 

low end of the ability continuum, the amount of bias is quite large compared to the rest of 

the range. In the areas with less information, the standard deviation of the differences 

tends to be larger.     

 

Figure 7.    Bias and conditional deviation with no missing data as a function of theta. 
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Figure 8.  Bias and conditional deviation with missing scored as incorrect as a function 

of theta. 
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Figure 9. Bias and conditional deviation with guessing parameter imputed at 0.5 as a 

function of theta. 
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Figure 10. Bias and conditional deviation with proportion correct imputation as a 

function of theta. 
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Figure 11. Bias and conditional deviation with multiple imputation as a function of theta. 
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Figure 12. Bias and conditional deviation with multiple imputation of the guessing 

parameter as a function of theta. 

	

 
 
 

RMSE was evaluated along the continuum of theta as well, and is presented in 

Figures 13 through 18.  Unsurprisingly, in regions where the test provided the most 

information, estimates of θ were more accurate.  Near the ends of the ability continuum, 

where the test provided less information, we see greater error values. 
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Figure 13. RMSE and conditional deviation with no missing data as a function of theta. 
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Figure 14. RMSE and conditional deviation with missing scored as incorrect as a 

function of theta. 
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Figure 15. RMSE and conditional deviation with guessing parameter imputed at 0.5 as a 

function of theta. 
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Figure 16. RMSE and conditional deviation with proportion correct imputation as a 

function of theta. 
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Figure 17. RMSE and conditional deviation multiple imputation as a function of theta. 
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Figure 18. RMSE and conditional deviation with multiple imputation of guessing 

parameter as a function of theta. 

	

 

 

To compare the effects of the different missing data handling techniques, a 

locally-weighted scatterplot smoothing (LOWESS) line was created for the bias and 

RMSE for each condition.  In Figures 19 through 24, LOWESS lines were overlaid to 

depict the relative performance of each of the conditions.  Figure 19 depicts the bias 

introduced by each missing data condition along the ability continuum.  Figure 20 
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includes standard errors in the bias to assess the overlap of the different conditions.  

Similarly, Figure 21 displays the RMSE for each condition along the ability continuum, 

and Figure 22 includes the standard errors for RMSE. 

For Figures 19 through 22, the black solid line represents the complete data 

condition.  This is the criterion. When gauging the performance of the different missing 

data conditions, the line that falls closest to the black line performs best.  Note that 

different conditions outperform the others in different places along the ability continuum. 

In terms of bias, the strategy of scoring missing data as incorrect performed the 

worst along most of the ability continuum (-1.5 < θ < 2).  On the low end of the 

continuum (θ < -1), replacing the guessing parameter with 0.5 gave ability estimates that 

best matched those given by the complete dataset.   In regions where the test provided the 

most information (-0.5 < θ < 1), multiple imputation and proportion correct imputation 

outperformed the others.  On the high end of the continuum (1 < θ), all strategies 

performed comparably, except for scoring missing items as incorrect. 
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Figure 19. LOWESS lines for all conditions predicting bias. 
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Figure 20. LOWESS lines for all conditions predicting bias with standard errors. 

	

 

Inspecting the RMSE for each missing data condition, we see that, for the lower 

end of the ability spectrum (θ < -0.5), replacing the guessing parameter with 0.5 

introduced the least error into ability estimates.  In the range (0 < θ < 2), all techniques 

except scoring the missing data as incorrect performed comparably.  Where the amount 

of test information was greatest (-0.5 < θ < 0.5), scoring the missing data as incorrect 

introduced the most error.    
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Figure 21. LOWESS lines for all conditions predicting RMSE. 
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Figure 22. LOWESS lines for all conditions predicting RMSE with standard errors. 
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Chapter 5 

Discussion 

In this study, we investigated the proposed approach of using multiple imputation 

of the guessing parameter for both the examinee’s ability and the item difficulty for 

addressing missing data.  This technique was compared to other commonly used 

methods, such as scoring missing items as incorrect, imputing a guessing parameter of 

0.5, proportion correct imputation, and multiple imputation of a response.  A complete 

dataset was generated from SERCE data.  Missing data was simulated.  The dataset with 

simulated missing data was adjusted using each missing data technique.  Ability for each 

adjusted dataset was estimated and compared to ability estimates obtained from the 

complete dataset. Aggregate RMSE and bias across theta appear in Table 4.  Plots of 

these values as a function of theta appear as Figures 7 - 18.  For the following discussion, 

it is important to note that RMSE and bias for each missing data technique were not 

constant values for all locations along the ability continuum.  For example, in regions 

were the test provided less information, some missing data handling techniques 

outperformed others, while the opposite might be true in regions where more information 

was available.  Therefore, we advise caution when drawing conclusions from the 

aggregate values for each missing data technique.	

The proposed method, multiple imputation of the guessing parameter using item 

parameters and examinee ability, did not significantly outperform other strategies for 

dealing with missing data.  The proposed approach introduced the most bias in ability 

estimation of all the techniques for individuals at the extreme low end of the ability 

spectrum (θ < -1.5).  This is one region where the test provides the least information.  In 
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the region where the test provides the most information (-0.5 < θ < 0.5), it introduced the 

second-largest amount of bias, next to treating missing data as incorrect.  At the high end 

of the ability spectrum, the proposed method performed similarly to most of the other 

techniques.  In terms of RMSE, the proposed approach performed comparably to most of 

the other techniques across the ability continuum.  In the region of (0 < θ < 2), the 

proposed technique produced a RMSE nearly identical to that of the criterion.  Given the 

difficulty of implementing multiple imputation of the guessing parameter, the proposed 

approach is an unattractive option for missing data handling.  We cannot recommend 

adopting it. 

This study provided further evidence that there is no one-size-fits-all approach to 

missing data handling.  In situations where test information is sparse, such as the extreme 

ends of the ability continuum in this study, replacing the guessing parameter with 0.5 for 

missed items seems to be the most effective technique at this point in the continuum.  It 

introduced the lowest bias and RMSE under these conditions in this study.  These 

findings should be taken with some caution, as the regions of the ability continuum where 

the test provided the least information also had the most issues with score non-

convergence. In the range (-1 < θ < 1.5), convergence rates were higher and this 

technique still performed well.  However, at the locations where the test gave the most 

information, multiple imputation and proportion correct imputation gave the least bias 

and RMSE to ability estimates.   

This study provided further evidence that treating missing data as incorrect yields 

the most inaccurate ability estimates.  This was not surprising, as several other studies 

have had similar findings (De Ayala et al., 2001; Finch, 2008; Oshima, 1994).  For those 
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who are drawn to this technique because of its simplicity, we instead recommend 

replacing the guessing parameter with 0.5. 

For this study, involving a multiple-choice test with missing data, we found that 

multiple imputation, proportion correct imputation or replacing the guessing parameter 

with 0.5 were the best approaches.  When greater accuracy is required where the test 

provides the most information - such as tests with a cutoff score - we find that multiple 

imputation and proportion correct imputation are the best options of the methods we 

investigated.  If scoring accuracy is important in regions where a test provides limited 

information, replacing the guessing parameter with 0.5 could be the best choice. 

In terms of ease of implementation and computation, replacing the guessing 

parameter with 0.5 or using proportion correct imputation are the least cumbersome 

techniques.  Multiple imputation helps with estimation convergence; however, it 

performed so similarly to proportion correct imputation in this study that the additional 

effort of implementing this strategy may not be worthwhile in many cases.    

In real-world testing, other issues must be considered when selecting a method to 

deal with missing data.  We have to account for test fairness, scoring transparency, 

financial considerations and time constraints.  For example, proportion correct imputation 

may be an inappropriate choice for real-world high-stakes testing, because it could give 

an unfair advantage to individuals who understand and adapt their omitting behavior to 

the scoring system.  For example, only answering the questions the individual knows for 

certain would result in a perfect score on the test - even if most of the items were omitted.  

Scoring missing items as incorrect provides an incentive to complete the test, but this 

approach has been shown to disadvantage people with higher risk aversion as well as 
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those with disabilities and language barriers.  Multiple imputation of response was shown 

to produce more accurate ability estimates than scoring missing items as incorrect, but the 

cost and effort required to implement this scoring system may put it beyond the reach of 

all but large-scale standardized tests.   

Because of logistical considerations and the need to provide a uniform testing 

experience, time limits for tests are not going away.  Choosing a fair and accurate method 

for dealing with missing data in the age of speeded tests is of paramount importance. 

	

Limitations   

The complete dataset for this study was empirically simulated from real test data.  

Realistic missing data patterns were simulated using contingency tables and generated 

values of theta for the simulated individuals.  Although this paradigm for creating 

missing data is plausible for the simulated dataset from this specific test, it may not be 

applicable for other tests.  Therefore, the findings of this study may not be generalizable 

to other tests given in other settings to other populations.  The problem is that we can 

never know for certain what missing data mechanisms appear in a real test and still have 

a criterion for accuracy.  Studies with missing data must choose either to have a criterion 

and sacrifice the plausibility of the missing data mechanism, or use empirically-derived 

data to have a realistic missing data mechanism but be left without a criterion. 

In our research design, a plausible criterion was created in the form of ability 

estimates from the complete dataset.   This study generated missingness using a 

contingency table based on fractals derived from correct scores.  Because the original 

SERCE dataset contained missing data, we cannot say for certain that those items would 
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have been answered correctly or incorrectly.  The simulated missingness was based on 

item correct scores of the generated data; it may not perfectly model the mechanisms in 

play on the actual test.   

Because the simulated dataset was drawn from a block of test data, rather than an 

entire stand-alone examination, there exists a possibility that the assumptions of the IRT 

model may have been violated.  In that case, the estimated item parameter values may be 

affected.  However, our basic technique for simulating realistic missing data can easily be 

used with other real-world datasets.  

The scoring estimator used in this study was adapted for the specific purpose of 

this study, and it had issues with nonconvergence on the low end of the ability spectrum 

(θ < -1). We include our observations about performance for this range for completeness, 

but caution that inferences relying on data from this range may be called into question. 

The missing data strategy that was the most effective at the low end of the ability 

continuum was replacing the guessing parameter with 0.5.   

 

Future research  

The use of imputation techniques to aid estimation in the presence of missing data 

should be further examined. Researchers who have investigated different types of 

imputation have reported that they increase the accuracy of ability estimates, although 

they may add considerable cost and effort to the test development cycle (Culbertson, 

2011; Finch, 2008; Huisman & Molenaar, 2001).  While multiple imputation of the 

guessing parameter using item and person information did not produce enough 

improvement in ability estimates to justify wide adoption, it is possible that further 
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refinement of the concept will prove useful in some testing scenarios. We also see a need 

for flexible, modular software packages to further reduce the cost and effort of 

implementing scoring systems involving imputation techniques, especially for smaller-

scale testing.  



 78 
References 

Baker, F. B. & Kim, S. H.  (2004).  Item response theory: Parameter estimation 

techniques.  Boca Raton, FL: CRC Press. 

Basturk, R. (2009). The relationship between test completion time and test scores by test 

type and gender. Elementary Education Online, 8, 587-592. 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s 

ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test 

scores (pp. 397–472). Reading MA: Addison-Wesley. 

Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a 

microcomputer environment. Applied Psychological Measurement, 6, 431–444. 

doi:10.1177/014662168200600405 

Bridgeman, B., & Cline, F. (2002, April). Fairness issues in computer adaptive tests with 

strict time limits. In annual meeting of the American Educational Research 

Association, New Orleans, LA. 

Bridgeman, B., & Cline, F.  (2004).  Effects of differentially time-consuming tests on 

computerized-adaptive test scores.  Journal of Educational Measurement, 41, 137-

148. 

College Entrance Examination Board (1984). The College Board technical handbook for 

the Scholastic Aptitude Test and achievement tests. New York, NY: CEEB.  

Cromer, W. (1970). The difference model: A new explanation for some reading 

difficulties. Journal of Educational Psychology, 61, 471. 



 79 
Cronbach, L. J. & Warrington, W. G. (1951)  Time limit tests: estimating their reliability 

and degree of speeding.  Psychometrika, 16, 167-188. 

Culbertson, M. J. (2011, April)  Is it wrong? Handling missing responses in IRT.  Paper 

presented at the Annual Meeting of the National Council on Measurement in 

Education, New Orleans, LA.    

De Ayala, R. J. (2009). The theory and practice of item response theory. New York, NY:  

Guilford Press. 

De Ayala, R. J., Plake, B. S., & Impara, J. C. (2001). The impact of omitted responses on 

the accuracy of ability estimation in item response theory. Journal of Educational 

Measurement, 38, 213–234. doi:10.1111/j.1745-3984.2001.tb01124.x 

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, 

NJ: Lawrence Erlbaum Associates. 

Enders, C. K.  (2010).  Applied missing data analysis.  New York, NY: Guilford Press. 

Evans, F. R. & Reilly, R. R. (1972).  A study of speededness as a source of test bias. 

Journal of Educational Measurement, 9, 123–131. 

Finch, H. (2008). Estimation of item response theory parameters in the presence of 

missing data. Journal of Educational Measurement, 45, 225–245. 

doi:10.1111/j.1745-3984.2008.00062.x 

Foos, P. W. (1989). Completion time and performance on multiple-choice and essay 

tests. Bulletin of the Psychonomic Society, 27, 179-180. 



 80 
Furukawa, J. M. (1970). Chunking method of determining size of step in programmed 

instruction. Journal of Educational Psychology, 61, 247-254. 

Grandy, J. (1987). Characteristics of examinees who leave questions unanswered on the 

GRE general test under rights-only scoring (GRE Board Professional Report No. 

83–16P). Princeton, NJ: Educational Testing Service. 

Grima, A., & Liang, J. (1992, April). The effect of response rate to multiple-choice and 

open-ended items on differential item functioning. In Annual Meeting of the 

National Council on Measurement in Education, San Francisco, CA. 

Harris, G., & Burke, D.  (1972). The effects of grouping on short-term serial recall of 

digits by children: developmental trends. Child Development, 43, 710-716. 

Holland, P. W., & Wainer, H. (2012) Differential item functioning.  Hillsdale, NJ: 

Erlbaum. 

Huisman, M., & Molenaar, I. W. (2001). Imputation of missing scale data with item 

response models. In A. Boomsma, M. A. J. van Duijn, & T. A. B. Snijders (Eds.) 

Essays on item response theory (pp. 221–244). New York, NY: Springer. 

Kaplan. (2014a). Kaplan ACT 2015 strategies, practice and personalized feedback with 8 

practice tests: Book + DVD + online + mobile. Fort Lauderdale, FL: Kaplan 

Publishing. Retrieved from 

http://books.google.com/books?id=nTJrAwAAQBAJ&pgis=1 

Kaplan. (2014b). Kaplan SAT 2015 strategies, practice and review with 5 practice tests: 

Book + online.  Fort Lauderdale, FL: Kaplan Publishing. Retrieved from 

http://books.google.com/books?id=XZ9hAwAAQBAJ&pgis=1 



 81 
Kennedy, R. (1994, November). A study of the relationship between scores and time on 

tests. Paper presented at the Annual Meeting of the Mid-South Educational Research 

Association, Nashville, TN.  

Landrum, R. E., Carlson, H. & Manwaring, W. (2009).  The relationship between time to 

complete a test and test performance.  Psychology Learning & Teaching, 8, 53-56. 

Lord, F. M. (1974). Estimation of latent ability and item parameters when there are 

omitted responses. Psychometrika, 39, 247-264.  

Lord, F. M. (1980). Applications of item response to theory to practical testing problems. 

Hillsdale, NJ: Lawrence Erlbaum Associates. 

Lu, Y., & Sireci, S. G. (2007). Validity issues in test speededness. Educational 

Measurement: Issues and Practice, 26(4), 29–37. doi:10.1111/j.1745-

3992.2007.00106.x 

Ludlow, L. H. & O’Leary, M. (1999).  Scoring omitted and not-reached items: Practical 

data analysis implications.  Educational and Psychological Measurement, 59, 615-

630. 

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our 

capacity for processing information. Psychological Review, 63, 81–97. 

Mislevy, R. J., & Wu, P. K. (1988). Inferring examinee ability when some item responses 

are missing. (Report No. RR-88-48-ONR). ETS Research Report Series, 2: i-75. 

Mislevy, R. J., & Wu, P. K. (1996). Missing responses and IRT ability estimation: Omits, 

choice, time limits, and adaptive testing. (Report No. RR-96-30-ONR).  ETS 

Research Report Series, 2: i-36. 



 82 
National Center for Education Statistics (NCES).  (2008).  Treatment of missing 

responses in NAEP.  Retrieved from NCES website:  

https://nces.ed.gov/nationsreportcard/tdw/analysis/2000_2001/scaling_missing.aspx 

Oshima, T. C. (1994). The effect of speededness on parameter estimation in item 

response theory. Journal of Educational Measurement, 31(3), 200–219. 

Powers, D. E., & Rock, D. A. (1999). Effects of coaching on SAT I: Reasoning test 

scores. Journal of Educational Measurement, 36(2), 93–118. doi:10.1111/j.1745-

3984.1999.tb00549.x 

Pohl, S., Gräfe, L., & Rose, N. (2014). Dealing with omitted and not-reached items in 

competence tests: Evaluating approaches accounting for missing responses in item 

response theory models. Educational and Psychological Measurement, 74, 423-452. 

Rindler, S. E. (1979). Pitfalls in assessing test speededness. Journal of Educational 

Measurement, 16(4), 261-270. 

Rose, N., von Davier, M., & Xu, X. (2010). Modeling nonignorable missing data with 

item response theory (IRT) (Report No. ETS RR-10-11).  Retrieved from 

Educational Testing Service website: https://www.ets.org/research/contact/ 

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592. 

San Martín, E., del Pino, G., & De Boeck, P. (2006). IRT models for ability-based 

guessing. Applied Psychological Measurement, 30, 183-203. 

Shell, D. F., Brooks, D. W., & Trainin, G. (2010). The unified learning model. New 

York, NY: Springer. Retrieved from 

http://books.google.com/books?id=SkKOHRr35b4C&pgis=1 



 83 
Sijtsma, K., & van der Ark, L. A. (2003). Investigation and treatment of missing item 

scores in test and questionnaire data. Multivariate Behavioral Research, 38, 505–

528. doi:10.1207/s15327906mbr3804_4 

Sireci, S. G. (2005). Unlabeling the disabled: A perspective on flagging scores from 

accommodated test administrations. Educational Researcher, 34, 3–12. 

doi:10.3102/0013189X034001003 

Sireci, S. G., Scarpati, S. E., & Li, S. (2005). Test accommodations for students with 

disabilities: An analysis of the interaction hypothesis. Review of Educational 

Research, 75, 457–490. doi:10.3102/00346543075004457 

Stocking, M. L., Eignor, D., & Cook, L. (1988). Factors affecting the sample invariant 

properties of linear and curvilinear observed and true score equation procedures 

(ETS Research Rep. no. RR-88-41). Princeton, NJ: Educational Testing Service. 

Stretch, L. S. & Osborne, J. W. (2005).  Extended time test accommodation: Directions 

for future research and practice.  Practical Assesment, Research & Evaluation, 10, 1-

8. 

UNESCO (2016).  Second regional comparative and explanatory study (SERCE).  

Retrieved from UNESCO website:  

http://www.unesco.org/new/en/santiago/education/education-assessment-

llece/second-regional-comparative-and-explanatory-study-serce/ 

van der Linden, W. J.  (2011a).  Test design and speededness.  Journal of Educational 

Measurement, 48, 44-60. 



 84 
van der Linden, W. J.  (2011b)  Setting time limits on tests.  Applied Psychological 

Measurement, 35, 183-199. 

van der Linden, W. J., Breithaupt, K., Chuah, S. C., & Zhang, Y. (2007). Detecting 

differential speededness in multistage testing. Journal of Educational Measurement, 

44, 117–130. doi:10.1111/j.1745-3984.2007.00030.x 

von Schrader, S., & Ansley, T. (2006). Sex differences in the tendency to omit items on 

multiple-choice tests: 1980–2000. Applied Measurement in Education, 19, 41-65. 

Weber, J. E., Bohnen, H., & Smith, J. A. (2011).  One more time: The relationship 

between time taken to complete an exam and the grade received.  Business Research 

Yearbook, 2011(1), 301-302.  Retrieved from 

http://www.unf.edu/~s.gupta/pubs/G40115_BRY_2011_volume1.pdf. 

Wierzbicki, M. (1994). Relation between order of completion and performance on timed 

examinations. Psychological Reports, 74, 411-414. 

  



 85 
	

Appendix A  

MLE.estimator	<-	function(resp.vect	,	alpha	,	beta	,	chi,	xi.start	,	tol)	{	

		xi	<-	xi.start	

		d1.logLikDiff	<-	999	

		it.log	<-	matrix(ncol=3,nrow=0)	

		max.itr<-10	

		theta.jump<-.5	

		colnames(it.log)	<-	c("	estimator	",	"d1.logLik",	"d2.logLik")	

			

		while(d1.logLikDiff	>	tol)	

		{	

				probs.1	<-	chi	+	(1-chi)*	

						1/(1+	exp(-alpha*(xi	-	beta)))	

				probs.no.guess<-	1/(1+	exp(-alpha*(xi	-	beta)))	

				probs.0	<-	(1-probs.1)	

				wij=probs.1*(probs.0)	

				vij=(resp.vect	-	probs.1)	

			

				#protection	0	divide	

				probs.1[probs.1<.00001]=.00001	

				probs.1[probs.1>.9999]=.9999	

				psp=(probs.no.guess/probs.1)	

					

#	first	derivative	

				d1.logLik	<-	sum(alpha	*	vij	*	psp)	

					

				#	second	derivative	
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				d2.logLik	<-	-1*	sum((alpha	^2)	*	wij	*	psp	*	psp)	

				it.log	<-	rbind(		it.log,	c(xi	,d1.logLik	,d2.logLik	))	

				delta<-(d1.logLik	/	d2.logLik)	

				if	(delta>theta.jump)	

				{					

						delta=theta.jump	

				}	

				if	(delta<(-theta.jump))	

				{					

						delta=(-theta.jump)	

				}	

				#	Newton	-Raphson	

				xi	<-	xi	-	delta	

				#	convergence	criteria	

				if(nrow(it.log)	>	1)	

				{	

						d1.logLikDiff	<-	abs(d1.logLik	-	it.log[(nrow(it.log)-1),	2])	

				}	

				#xi<-ifelse(is.nan(xi),-4,	xi)	

				#xi<-ifelse(is.infinite(xi),	it.log[(nrow(it.log)-1),	1],	xi)					

				if	(nrow(it.log)>	max.itr)	

				{	

						xi<-NA	

						break	

				}	

		}	

		#	Standard	error	

		SE.xi	<-	1/sqrt(-1	*	d2.logLik)	

		#	Output	of	the	MLE.	estimator	function	



 87 
		Results	<-	list(xi,	SE.xi,	it.log)	

		names(Results)	<-	c("point	estimator	",	"standard	error",	"	iteration	log")	

		return(Results)	

}	 	
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Appendix B	

 

Table 7. Proportion of converged cases over theta grouping -2 to -0.1. 

 

Theta No Missing PCI GPI incorrect MI MIGP 

-2 0.45 0.618 0.608 0.544 0.842 0.662 

-1.9 0.538 0.65 0.644 0.602 0.86 0.678 

-1.8 0.528 0.682 0.668 0.602 0.872 0.72 

-1.7 0.58 0.722 0.7 0.648 0.87 0.746 

-1.6 0.628 0.756 0.742 0.694 0.914 0.764 

-1.5 0.658 0.772 0.75 0.706 0.89 0.782 

-1.4 0.704 0.824 0.81 0.784 0.928 0.83 

-1.3 0.732 0.83 0.816 0.792 0.922 0.842 

-1.2 0.774 0.848 0.846 0.82 0.934 0.86 

-1.1 0.83 0.91 0.9 0.878 0.966 0.912 

-1 0.854 0.924 0.928 0.906 0.962 0.926 

-0.9 0.914 0.95 0.946 0.934 0.976 0.944 

-0.8 0.912 0.944 0.948 0.936 0.978 0.954 

-0.7 0.952 0.976 0.97 0.966 0.994 0.98 

-0.6 0.944 0.978 0.98 0.972 0.99 0.98 

-0.5 0.986 0.992 0.99 0.988 0.998 0.994 

-0.4 0.992 0.998 0.998 0.998 0.998 0.998 

-0.3 0.996 0.998 0.998 0.998 0.998 0.998 

-0.2 0.996 0.998 0.996 0.996 1 0.996 

-0.1 0.998 0.998 0.998 0.996 1 1 
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Table 8. Proportion of converged cases over theta grouping 0 to 2. 
 
 

Theta No Missing PCI GPI incorrect MI MIGP 

0 0.998 1 1 1 1 1 

0.1 0.998 0.998 0.998 0.998 1 1 

0.2 1 1 1 1 1 1 

0.3 1 1 1 1 1 1 

0.4 1 1 1 1 1 1 

0.5 1 1 1 1 1 1 

0.6 1 1 1 1 1 1 

0.7 1 1 1 1 1 1 

0.8 1 1 1 1 1 1 

0.9 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1.1 1 1 1 1 1 1 

1.2 1 1 1 1 1 1 

1.3 1 1 1 1 1 1 

1.4 1 1 1 1 1 1 

1.5 0.996 0.996 0.996 0.996 0.996 0.996 

1.6 0.99 0.99 0.99 0.99 0.99 0.99 

1.7 0.982 0.982 0.982 0.982 0.982 0.982 

1.8 0.986 0.986 0.986 0.986 0.986 0.986 

1.9 0.954 0.954 0.954 0.954 0.954 0.954 

2 0.96 0.96 0.96 0.962 0.962 0.962 
  



 90 
 
Table 9. Bias over theta grouping -2 to -.01. 
 

Theta No Missing PCI GPI incorrect MI MIGP 

-2 0.503 0.371 0.477 0.342 0.356 0.309 

-1.9 0.461 0.347 0.450 0.322 0.286 0.298 

-1.8 0.360 0.234 0.338 0.242 0.225 0.182 

-1.7 0.364 0.247 0.331 0.227 0.220 0.175 

-1.6 0.234 0.115 0.194 0.085 0.107 0.078 

-1.5 0.239 0.149 0.208 0.126 0.114 0.105 

-1.4 0.179 0.097 0.168 0.034 0.060 0.055 

-1.3 0.126 0.034 0.100 -0.016 0.016 -0.012 

-1.2 0.054 -0.018 0.056 -0.050 -0.035 -0.049 

-1.1 0.057 -0.027 0.025 -0.072 -0.037 -0.054 

-1 0.059 -0.009 0.056 -0.041 0.003 -0.020 

-0.9 0.014 -0.015 0.027 -0.056 -0.017 -0.029 

-0.8 -0.010 -0.049 0.003 -0.090 -0.054 -0.073 

-0.7 -0.018 -0.029 0.000 -0.078 -0.036 -0.057 

-0.6 -0.025 -0.065 -0.027 -0.104 -0.058 -0.078 

-0.5 -0.015 -0.020 0.008 -0.061 -0.019 -0.041 

-0.4 -0.041 -0.053 -0.023 -0.097 -0.042 -0.066 

-0.3 -0.033 -0.041 -0.018 -0.080 -0.034 -0.054 

-0.2 -0.040 -0.038 -0.017 -0.078 -0.036 -0.051 

-0.1 -0.045 -0.047 -0.025 -0.082 -0.043 -0.060 
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Table 10. Bias over theta grouping 0 to 2. 
 

Theta No Missing PCI GPI incorrect MI MIGP 

0 -0.030 -0.035 -0.017 -0.071 -0.031 -0.046 

0.1 -0.047 -0.052 -0.034 -0.088 -0.052 -0.066 

0.2 -0.019 -0.019 -0.005 -0.050 -0.018 -0.028 

0.3 -0.013 -0.011 0.001 -0.039 -0.010 -0.019 

0.4 0.007 0.006 0.017 -0.019 0.007 -0.001 

0.5 -0.013 -0.014 -0.004 -0.040 -0.014 -0.021 

0.6 0.004 0.006 0.014 -0.019 0.005 -0.001 

0.7 0.017 0.016 0.023 -0.008 0.015 0.010 

0.8 0.018 0.016 0.023 -0.008 0.015 0.010 

0.9 -0.008 -0.008 -0.002 -0.028 -0.008 -0.012 

1 0.032 0.034 0.038 0.018 0.033 0.030 

1.1 0.034 0.036 0.041 0.019 0.035 0.032 

1.2 0.025 0.026 0.029 0.012 0.025 0.023 

1.3 0.030 0.031 0.033 0.020 0.029 0.028 

1.4 0.051 0.050 0.052 0.039 0.049 0.048 

1.5 0.049 0.050 0.051 0.040 0.049 0.047 

1.6 0.075 0.074 0.076 0.065 0.073 0.072 

1.7 0.037 0.036 0.037 0.029 0.035 0.035 

1.8 0.023 0.022 0.023 0.015 0.021 0.021 

1.9 0.065 0.066 0.067 0.059 0.065 0.065 

2 0.008 0.008 0.008 0.003 0.009 0.009 
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Table 11.  RMSE over theta grouping -2 to -.01. 
 
 

Theta No Missing PCI GPI incorrect MI MIGP 

-2 0.570 0.531 0.576 0.523 0.496 0.526 

-1.9 0.540 0.534 0.556 0.509 0.487 0.511 

-1.8 0.493 0.481 0.471 0.447 0.430 0.465 

-1.7 0.498 0.507 0.500 0.481 0.463 0.505 

-1.6 0.431 0.465 0.461 0.447 0.422 0.457 

-1.5 0.448 0.459 0.454 0.437 0.448 0.460 

-1.4 0.418 0.446 0.425 0.461 0.446 0.456 

-1.3 0.391 0.442 0.430 0.441 0.440 0.452 

-1.2 0.404 0.441 0.411 0.437 0.439 0.449 

-1.1 0.366 0.419 0.404 0.427 0.426 0.426 

-1 0.386 0.418 0.392 0.415 0.407 0.416 

-0.9 0.374 0.394 0.383 0.396 0.396 0.395 

-0.8 0.374 0.406 0.385 0.412 0.411 0.415 

-0.7 0.352 0.366 0.363 0.377 0.373 0.378 

-0.6 0.359 0.397 0.386 0.402 0.393 0.399 

-0.5 0.338 0.352 0.344 0.358 0.352 0.360 

-0.4 0.330 0.335 0.328 0.348 0.330 0.339 

-0.3 0.321 0.328 0.322 0.336 0.323 0.331 

-0.2 0.324 0.330 0.327 0.339 0.328 0.332 

-0.1 0.327 0.332 0.327 0.338 0.328 0.334 
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Table 12. RMSE over theta grouping 0 to 2.  
 

Theta No Missing PCI GPI incorrect MI MIGP 

0 0.300 0.309 0.305 0.316 0.305 0.310 

0.1 0.313 0.320 0.314 0.328 0.320 0.326 

0.2 0.284 0.286 0.282 0.296 0.285 0.290 

0.3 0.300 0.300 0.296 0.308 0.298 0.301 

0.4 0.280 0.283 0.281 0.289 0.282 0.285 

0.5 0.264 0.263 0.260 0.269 0.262 0.264 

0.6 0.277 0.281 0.277 0.288 0.279 0.282 

0.7 0.273 0.272 0.270 0.281 0.271 0.274 

0.8 0.268 0.268 0.266 0.277 0.268 0.270 

0.9 0.275 0.275 0.272 0.282 0.273 0.276 

1 0.272 0.273 0.271 0.279 0.273 0.274 

1.1 0.292 0.292 0.290 0.302 0.292 0.294 

1.2 0.297 0.297 0.295 0.306 0.298 0.299 

1.3 0.295 0.294 0.293 0.299 0.295 0.296 

1.4 0.316 0.315 0.315 0.318 0.315 0.315 

1.5 0.329 0.329 0.328 0.335 0.330 0.331 

1.6 0.333 0.334 0.333 0.341 0.334 0.335 

1.7 0.320 0.320 0.319 0.320 0.320 0.320 

1.8 0.347 0.346 0.346 0.352 0.347 0.348 

1.9 0.349 0.350 0.349 0.352 0.350 0.350 

2 0.338 0.338 0.337 0.339 0.339 0.339 
 
 
 


