Fall 2004

Documentary Editing, Volume 26, Number 3, Fall 2004.

Follow this and additional works at: http://digitalcommons.unl.edu/docedit

Part of the Digital Humanities Commons, Other Arts and Humanities Commons, Reading and Language Commons, and the Technical and Professional Writing Commons

http://digitalcommons.unl.edu/docedit/296

This Article is brought to you for free and open access by the Documentary Editing, Association for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Documentary Editing: Journal of the Association for Documentary Editing (1979-2011) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
"Plat of the Town of Indianapolis"
Photo courtesy of the Bass Photo Co Collection, 334002
Indiana Historical Society
Documentary Editing

EDITORIAL STAFF

Marianne S. Wokeck, Editor
Johanna E. Resler, Managing Editor
David E. Spiech, Assistant Editor
Mark A. Mastromarino, Book Review Editor
Kathryn M. Wilmot, Editorial Assistant

Sponsor, School of Liberal Arts
Indiana University Purdue University Indianapolis
Editorial Advisory Board
Jonathan R. Eller, Textual Editor, Peirce Edition Project; Kristine W. Frost, Associate Editor, Santayana Edition; Nathan Houser, Director, Peirce Edition Project; Thomas A. Mason, Vice President of Publications, Indiana Historical Society; John R. McKivigan, Frederick Douglass Papers; David J. Nordloh, Department of English, Indiana University, Bloomington

Publications Committee
Larry Hickman, chair; James Karman; Robert C. Leitz III; Catherine Kunce; Daniel W. Stowell; Mary-Jo Kline; Marianne S. Wokeck, ex officio

Correspondence on editorial matters and orders for back issues should be addressed to the editor: Marianne S. Wokeck, Department of History, 425 University Blvd., Indiana University Purdue University Indianapolis, Indianapolis, IN 46202-5140, e-mail: mwokeck@iupui.edu. Copies of new editions for review should be sent to the book review editor: Mark A. Mastromarino, Duke University Press, 905 West Main Street, Suite 18B, Durham, NC 27701, e-mail: mamastro@duke.edu. Information about the publication of editions for inclusion in Documentary Editing should be sent to the editor. Inquiries about membership in the Association for Documentary Editing should be sent to the secretary: Anne Decker Cecere, 128 Walnut Street, Apt. 2, Everett, MA 02149, e-mail: adcecere@hotmail.com. Permission to reprint articles may be obtained at no cost by written request to the director of publications: Larry Hickman, Center for Dewey Studies, Southern Illinois University, Carbondale, IL 62901, e-mail: lhickman@siu.edu

Submissions to Documentary Editing should be typed and double-spaced on letter-size paper. If mailed, the article/review must be printed using an easy-to-read font and size. An electronic version on 100MB zip disk or 3.5 floppy disk should accompany the printout. All electronic submissions on disk or via e-mail must be in WordPerfect or Microsoft Word. If photographs, diagrams, or holographs accompany the document, please include each in a file separate from the text or send them as individual e-mail attachments. Scanned images must be in TIFF or JPEG format and at 300dpi or higher resolution. Any images submitted must contain all copyright information in order to provide proper captions. Authors should also expect to assist the editors in obtaining permission for printing such images in Documentary Editing prior to publication.

Documentary Editing (ISSN 0196-7134) is published quarterly (in Spring, Summer, Fall, and Winter) by the Association for Documentary Editing (ADE) and is provided free to all members. Membership categories are: Annual $25, Sustaining $40, Patron $70, Student $15, and Retired $15. Institutional subscription rates are: Annual $25, 2 years $48, and 3 years $70. Single copies (including back issues, most of which are available) are $3 for members and $5 for nonmembers. The ADE accepts no responsibility for statements of fact or opinion made by contributors. Deadlines for submission of material for publication in Documentary Editing are: 1 March for the Spring issue, 1 June for the Summer issue, 1 September for the Fall issue, and 1 December for the Winter issue. Periodicals postage paid at Indianapolis, Indiana. POSTMASTER: Send address changes to Documentary Editing, IUPUI School of Liberal Arts, Cavanaugh Hall 207, 425 University Boulevard, Indianapolis, IN 46202-5140. Cover design by Johanna E. Resler.
Contents

ARTICLES

Editing Textual and Extra-Textual Materials in Charles Darwin’s Correspondence
Duncan M. Porter and Alison M. Pearn 135

The Challenge of Editing Einstein’s Scientific Manuscripts
Tilman Sauer .. 145

REVIEW

Reluctant Revolutionary: The Papers of Henry Laurens
Dorothy Twohig .. 167

RECENT EDITIONS

Compiled by Kathryn M. Wilmot 175

ANNOUNCEMENTS ..

ADE COMMITTEES 2003–2004 191
Contributors

Alison M. Pearn is based in Cambridge, UK, and is the Senior Research Associate and Managing Editor of the Darwin Correspondence Project. She has a BA and MA in history from the University of Oxford and a PhD from the University of Cambridge. She has been with the Project since 1996.

Duncan M. Porter is Professor of Botany at Virginia Tech and Director of the Darwin Correspondence Project. He received his BA and MA at Stanford and his PhD at Harvard, all in Biological Sciences. Before arriving at Virginia Tech in 1975, he taught at the University of San Francisco, and he was Curator at the Missouri Botanical Garden, Editor at the Smithsonian Institution, and Program Officer at the National Science Foundation. A Postdoc at Stanford working on the flora of the Galapagos Islands led to a lifelong interest in Charles Darwin.

Tilman Sauer, a historian of science working on the history of general relativity and unified field theory, holds a PhD in Theoretical Physics from the Free University Berlin. He is Senior Scientific Editor of the Collected Papers of Albert Einstein and Senior Research Fellow in History in the Division of Humanities and Social Sciences at the California Institute of Technology.

Dorothy Twohig served for ten years as an editor on the Papers of Alexander Hamilton at Columbia University and as associate editor, co-editor, and editor-in-chief of the Papers of George Washington at the University of Virginia until her retirement in 1998.
The Darwin Correspondence Project was founded in 1974 by Professor Frederick Burkhardt, President Emeritus of the American Council of Learned Societies, with the collaboration of Dr. Sydney Smith, Reader in Zoology in the University of Cambridge and Fellow of St. Catharine’s College. The project’s editors are producing the first definitive edition of the letters to and from Charles Darwin, arguably the most important scientist of the nineteenth century. To date, thirteen volumes have been published, covering the years up to 1865. Volume fourteen (1866) is in press. The history and description of the Project are given by Burkhardt and Porter.

When the Project began, only about twenty percent of the known letters had already been published, mostly in works edited by Darwin’s son Francis, and many of these letters had been silently edited. Later recognition of this has led one historian of science to refer to them as giving readers the “Franciscan view of the Darwinian landscape”. Darwin’s granddaughter Nora Barlow published excerpts from his earlier letters and much, but not all, of the correspondence between Darwin and John Stevens Henslow, his

Cambridge mentor. Several hundred letters were published elsewhere.

Two advances in technology made the Project feasible. First, photocopiers enabled archivists to exchange and collect copies of archival materials. Consequently, there are now full sets of the known letters at Cambridge University Library, which holds the main Darwin Archive, and at Bennington, Vermont, in the archive maintained by Fred and Anne Burkhardt. Every effort is made to keep the files at Bennington and the American Philosophical Society in Philadelphia, which has the second largest collection of Darwin manuscript letters, up to date with copies of newfound letters. The second advance was the use of the computer as a word processor and text editor, which made it possible to transcribe letters once, store them electronically, and manipulate them.

The evolution of the Darwin Correspondence Project as an electronic resource is described by Pearn, and Weinberger discusses preservation of the editing and typesetting systems for the continued functioning of the Project as they have moved from server to server. This evolution has not always been smooth: “Over the last twenty years, largely as a result of hardware decommissioning beyond the Project’s control, the master files have migrated across five mainframe computers, and a number of different text-handling programs, two typesetting languages, and at least three plain text editors have been employed”. The master files have recently been moved again, to a Linux server maintained by the Project.

Textual Materials
The types of textual objects that constitute the raw materials for the Darwin Correspondence Project are original manuscript letters, photocopies of letters, handwritten or typed copies of letters, published letters, drafts of letters, memoranda, descriptions of letters known only from auction or sale catalogues, third-party letters, journals, notebooks, and specimen catalogues. Each will be discussed briefly. How we deal with these textual materials is

examined in depth in Burkhardt.12 There is also a "Note on Editorial Policy" in each volume, which is revised as new situations are encountered.

Original manuscript letters are the most common material with which we must deal. About ninety percent of the more than 14,500 known letters are of this type. The most difficult problems with these originals are usually reading the handwriting, establishing the date of the letter, and, if the letter was not sent to Darwin, identifying the recipient. The ability to read difficult nineteenth-century handwriting comes only with experience. Correspondents often did not date their letters, envelopes were rarely saved, and the recipient was often addressed only as "Dear Sir" or "Dear Madam." Light can often be shed by establishing relationships with other letters or contemporary events. To ensure accuracy, every transcript is checked word-for-word against the original or a facsimile four times before it is finally printed.

Photocopies of letters generally raise the same problems as original letters. In addition, ink bleeds from the other side of the page may be misread as part of the text, not all punctuation marks may be clear, and photocopies tend to be less legible than the originals. Digital scans, which are increasingly used, are much better than photocopying for our purposes. They are more likely to be in color, which can be significant, especially when colored crayons or pencils are used in annotations, and they are much clearer.

Darwin’s son Francis had copies made of a great many of his father’s letters and used these in preparing his editions of Darwin’s correspondence. Sometimes copies of the originals were sent to him, but usually he was sent original letters, which he gave to a copyist. Francis then checked and edited the copies. In this process he normalized spelling and punctuation, and omitted names and text that might offend Victorian sensibilities, or simply because he thought them superfluous. Often the omissions were made without ellipses to indicate that a change had been made. The originals were then returned to their owners. In some cases, only the copies are now extant.

Some of the letters known to the Project survive only as published in the biographies of Darwin’s contemporaries. In some cases it is evident that they suffer from misreadings of Darwin’s handwriting.

The Darwin Archive also includes a number of drafts of letters written by Darwin. They are more difficult to deal with than the final versions because of Darwin’s propensity to be more in a hurry writing them and to introduce

many alterations to their texts. In many cases, the version sent has not been found, if it was sent at all.

Some letters are known only from descriptions in auction or sale catalogues. These do not usually provide the entire text but only excerpts or a summary. They often have mistakes in dates or transcriptions. The entire text or a facsimile is rarely printed.

Finally, third-party letters (letters not written by or to Darwin) may have been enclosed with a letter to Darwin, because one or the other of the senders wished Darwin to see information in it. Occasionally the decision is made to publish a third-party letter, which although it was not sent directly to Darwin is particularly helpful in understanding his own correspondence or in providing important biographical information about him.

Memoranda include lists of objects (books, species, etc.) or information sent to Darwin, often in response to queries by him. They may be signed by the sender, but are not in the form of letters.

Since the edition aims at being definitive, every effort is made to reproduce the letter texts faithfully, including Darwin’s sometimes idiosyncratic spelling and punctuation, but we do not attempt an exact typographical reproduction of the layout. We have formalized the layout to the extent that, wherever and in whatever format they appear at the beginning of the letter, we always print the address of the correspondent and then the date on separate lines, flush right at the top of the typeset version. Any printed text, for example letterhead, is reproduced in italic, as is any manuscript text that has been underlined. Multiple underlining is rendered in the published version as boldface. If a correspondent has used different colored ink to make significant distinctions, we try to reproduce this using different typefaces and explain what we have done in a footnote.

We made an early editorial decision to adopt the so-called “clear text” method of transcription. This, so far as possible, keeps the published text free of brackets recording deletions, insertions, and other alterations in the places at which they occur. It presents the text as the writer intended it to be read. We do record changes such as deletions and insertions made by Darwin in the course of writing his own letters, however, as these can reveal his thought processes. These are gathered together at the end of each volume under “Manuscript notes and alterations” and are keyed to the letter by paragraph and line number. They can be extremely complex, especially where the text is taken from a letter draft. Any editorial amendments made in transcription, or parts written by an amanuensis, are also indicated. “This practice enables
the reader who wishes to do so to reconstruct the manuscript versions of Darwin’s autograph letters while furnishing printed versions that are uninterrupted by editorial interpolations.”

Darwin’s journal, notebooks, and specimen catalogues kept on the Beagle voyage were important in footnoting letters in earlier volumes. His later yearly journal provides the basis for the chronology appendix in each volume. His later experimental notebooks have become increasingly important in dating and explicating subjects in his letters. Although he did not often give complete dates to his letters, his notebook entries usually are precisely dated. Many entries describe experiments or observations in a level of detail that is usually not present in the letters that mention them. We have been able to date many letters by correlating information in them with notebooks and notes that Darwin kept in portfolios devoted to particular research subjects.

Extra-Textual Materials
Editors must deal with various types of extra-textual materials, that is, objects that were either not part of the letter when it was originally sent (such as annotations) or that are not themselves straightforward text, including tables, formulas, enclosures, specimens, photographs, questionnaires, diplomas, lists, diagrams, drawings, and sketches.

Darwin often annotated letters he received, either to highlight points that aided his research or to indicate points to raise in his answers. Such annotations, including information on the medium employed, are recorded after the letter text. The editors have to exercise judgment in this task. For example, where Darwin has marked a passage by scoring in the margin, they have to decide exactly what part of the text he meant to draw attention to (see page 140).

Tables are not as easy to deal with as they may appear to be. Typesetting even apparently straightforward tables requires complex coding. The typesetting software we use (TeX) is very sophisticated, and was originally developed for mathematicians who needed to lay out formulas. Although formulas are rare—Darwin was no mathematician—there is still plenty of specialized layout to deal with. Tables are reproduced as close to the original format as possible, given typesetting constraints. Special fonts are needed for non-standard character sets, including Greek letters, mathematical symbols,

Documentary Editing 26(3) Fall 2004
A page from a letter written by the naturalist Fritz Müller, showing annotations and scoring by Darwin in red crayon, blue crayon, and ink. CUL DAR 76: B33v; reproduced by permission of the Syndics of Cambridge University Library. See The Correspondence of Charles Darwin, vol. 14, pp. 265–69.

Part of a letter from the American entomologist Benjamin Dann Walsh, with sketches of different modes of coitus in insects. CUL DAR 181: 10; reproduced by permission of the Syndics of Cambridge University Library. See The Correspondence of Charles Darwin, vol. 13, pp. 399–408.
and symbols such as male and female, that often appear in the letters (see page 140).

Enclosures to letters are transcribed following the printed letter text. Usually they give specific information to Darwin; sometimes they are third-party letters, in which case they are transcribed with the same layout and conventions used in the main body of the correspondence; occasionally they are sketches or diagrams.

Specimens of plant or animal parts were occasionally enclosed in letters to or from Darwin. They have been described in footnotes in the published volumes, but not illustrated. However, we have some letters coming up in which the correspondent has glued specimens to the letters as if they were diagrams. We are experimenting with cleaning up digital images and reproducing them as black-and-white pictures in the running text, just as if they were sketches. If that does not work, we probably will have to include the images as plates.

Darwin and his correspondents often exchanged photographs. Some of these have been used as plates to illustrate our volumes. Darwin refers in several letters to having a collection of cartes de visite sent to him, but it has not been found in the Darwin Archive.

The many diplomas Darwin received from learned societies, both British and foreign, are treated as enclosures or given in an appendix, depending upon how they were received. Lists of those to whom Darwin had his books or offprints sent also are presented in appendixes.

Darwin’s correspondence, particularly the incoming letters, is frequently illustrated by hand-drawn or even painted illustrations. These range from quick pencil sketches dashed off hurriedly, to bold ink drawings, diagrams in varying degrees of detail, or even elaborate watercolors. The paper they are drawn on varies in color and can be mottled with age or damp, and the drawings themselves may be faint. The quality of illustrations in the volumes has occasionally been criticized, but for the most part this is due to the quality of the originals.

The editors’ job is to reproduce illustrations as faithfully as possible in their published versions, within the constraints imposed by printing with black ink on white paper. As with editing the letter texts, we have to ensure that no information is lost in this process, and to exercise judgment in enhancing the originals where that will help the reader. So, all associated manuscript captions are removed and replaced with typeset text for the sake of legibility, and where a correspondent has used color to make distinctions...
between lines in a graph, for example, we may substitute dashed or dotted lines or textured shading. Although every attempt is made to position the published illustrations in the same relationship to the text as the originals, it is sometimes necessary to reduce the size of a diagram or reposition it for typesetting reasons. All alterations are recorded in footnotes.

The way in which the reproduction of illustrations has been handled by the Project has changed with changing technology. For the first ten volumes, the originals were photographed and the photos were traced by hand. The tracings were inked over and photocopied and the photocopies were cut and pasted onto the camera-ready copy. Any text associated with the illustration had either to be set in the appropriate locations on the original page, or also cut and pasted onto the camera-ready copy. This was time consuming and insecure—the often tiny scraps of pasted paper occasionally became detached—and involved some inevitable loss of definition and detail. It was extremely difficult to reproduce faithfully variations in weight and thickness of the lines or degrees of shading.

The advent of digital imaging software has allowed us to improve on this process. For the last three volumes, photographs of the original illustrations have been scanned by Project staff and the scans have been cleaned up for publication. This can still be a lengthy process, as the background color, including any blemishes on the paper, has to be removed without losing any of the details of the illustration, requiring constant checking against the original. However, the finished product retains more of the character of the original. In particular, it retains variations in the thickness of lines, and can even accommodate different shades—albeit of gray. Associated text is deleted from the scan and replaced with typeset text that is incorporated in the electronic file. For technical reasons these files have up to now been printed separately from the main electronic file for the volume and the two sets of film have been superimposed by the printers, but starting with volume fourteen, they will be fully incorporated.

One further change is being introduced for volume fourteen. The Project is now able to commission digital scans of original illustrations from the Photography Department of Cambridge University Library, eliminating the need for photographs and enabling us to work with higher resolution images. Occasionally this technique is inadequate for reproducing a particular image, because of its size or complexity, or both. In that case we may resort

to photographing the image and simply reproducing it as a plate (see Moggeridge watercolors of orchids in vol. 12),15 or we may have to both reproduce an image and transcribe the text. The most complex example is the very large family tree of birds sent to Darwin by William Charles Linnaeus Martin between 1859 and 1861 (see page 144). In this case text and layout are so interdependent that no single means of reproduction could convey all the information. The original is more than 60 cm long, so that it was impossible to reproduce it on the page and retain legibility. But a hierarchical transcript of the text alone would not convey the full impact of the diagram, so both were included. The image was reproduced within the body of the volume, rather than as an inserted plate, so that it could be printed as close to the transcript as possible, and a scheme was devised for transcribing the text that we hope allows readers to trace the relationships.

Editing the Correspondence continues to present new challenges. Darwin used printed questionnaires to obtain information on a number of subjects from his correspondents. So far, we have only had to deal with his “Questions about the breeding of animals” of 1839,16 to which there are only two known direct responses: one is fairly straightforward, as the correspondent included the numbers of the original questions; but the other was written directly onto the questionnaire. In that case, we transcribed only the responses and keyed them to the questionnaire by including the question numbers as editorial insertions. The text of the questions themselves was transcribed, without any attempt at reproducing their layout, in an appendix.

However, we are now dealing with a very exciting period in Darwin’s life, as correspondents all over the world began to respond to the various versions, both handwritten and printed, of his questionnaires for The Expression of the Emotions in Man and Animals.17 In this case, an appendix containing the questions would not be straightforward, because Darwin modified the questions over time. There are also far more responses; some are partial, and respondents often did not repeat the questions. Some of the replies are written on the questionnaires. Making this intelligible to our readers while remaining faithful to the original material will make for an interesting time in our lives too.

Documentary Editing 26(3) Fall 2004 143
Acknowledgments

Samantha Evans ably copyedited the manuscript, Frederick Burkhardt and Sarah Porter made helpful comments on it, and Susannah Porter kindly aided in obtaining library materials. The Darwin Correspondence Project is funded by grants from the National Science Foundation, National Endowment for the Humanities, Andrew W. Mellon Foundation, and Alfred P. Sloan Foundation in the US, and the Wellcome Trust, British Academy, British Ecological Society, Natural Environment Research Council, and Royal Society in the UK.

A portion of "An Imaginary Indication of Modern Families & Genera according to self-opinionated Ornithologists" enclosed with a letter from William Charles Linnaeus Martin. CUL DAR 17:1 36/15; reproduced by permission of the Syndics of Cambridge University Library. See The Correspondence of Charles Darwin, vol. 13, pp. 399–408.
The Challenge of Editing Einstein’s Scientific Manuscripts

Tilman Sauer

The Einstein Papers Project is a long-term editorial project devoted to publishing the Collected Papers of Albert Einstein (CPAE). The first volume was published by Princeton University Press in 1987 [CPAE1], followed by eight more volumes to date [CPAE2]–[CPAE9]. To complete the series, some twenty more volumes are anticipated during the next 30–40 years. The documentary edition of the CPAE is supplemented by an English translation series. In addition to these publications in book format, the project has launched a website jointly with the Albert Einstein Archives of the Hebrew University of Jerusalem. Known as Einstein Archives Online (www.alberteinstein.info), the site presently provides over 3,000 high-quality facsimiles from Einstein’s autograph writings, a finding-aid to the Albert

Einstein Archives, and an itemized database of some 43,000 records.

The editorial project draws on the collection of the Albert Einstein Archives. The core of the archives was put together in Princeton after Einstein's death by his long-time secretary Helen Dukas, who acted as archivist in a devoted effort until her death in 1982. The “Dukas collection” comprises some 43,000 documents. The collection was microfilmed into 61 reels during the seventies, and a hardcopy duplicate archive was produced from the microfilm and collated with the originals for editorial purposes. Following Einstein’s will, which bequeathed his literary estate to the Hebrew University of Jerusalem, the collection was shipped to Jerusalem after Helen Dukas’s death, and has been housed since then at the Jewish National and University Library. Since 1982 some 20,000 additional documents have been collected both by curators of the Albert Einstein Archives and by editors of the CPAE. These documents, mostly hardcopies from archives all over the world, were added to the original collection in a supplementary archive.

The documentary edition of the CPAE publishes all of Einstein’s scientific writings, both published and unpublished, as well as drafts, notebooks, scientific and personal correspondence, in chronological order. With the exception of the first volume, covering the early years 1879–1902, the published volumes have been divided into a Writings series [CPAE2, CPAE3, CPAE4, CPAE6, CPAE7] and a Correspondence series [CPAE5, CPAE8, CPAE9]. The editorial method follows rigid standards of documentary editing. In the Writings volumes, published items are reproduced in facsimile; comparisons to drafts or versions are examined and detailed in the footnotes. Unpublished materials are transcribed, maintaining substantial faithfulness to the original text. No silent corrections of typographical or other errors are applied, and punctuation and style are reproduced, while errors of fact or calculation are explained in the annotation. Specific references to persons, places, literature, scientific developments, organizations, and events are identified. Details of the annotation follow the general aim of “bridging the gap” of knowledge familiar to the author or intended audience and that of contemporary readers. An introduction to each volume and various editorial headnotes analyze major themes in Einstein’s life and work.

3Hence archival call numbers for items of the Einstein Archives are of a two-number format, e.g. 3-006, where the first number indicates the reel and the second number the sequentially numbered document in that reel.

4A detailed account of the editorial method is given in toto in CPAE1 with volume-specific supplements in subsequent volumes. Beginning with CPAE8 the full editorial method is reproduced in each volume.
The website *Einstein Archives Online* presently publishes high-quality facsimiles of all of Einstein's autograph writings extant in the original Dukas collection. Presently, no correspondence is included, nor does the website present typescripts or third-party documents. Eight important autographs whose facsimiles are provided on the site but that are not part of the AEA belong to the Schwadron and Yahuda Collections held at the Jewish National and University Library. The website also presents PDF versions of those 39 documents in the published volumes of the *CPAE* for which autographs are also presented in facsimile.

In addition to the original documents, the website provides a finding aid to the original Einstein Archives. The finding aid provided on the website is an HTML transform using XSL style sheets from an XML file incorporating the Encoded Archival Description (EAD) markup.\(^5\)

The itemized archival database that is made accessible on the website is a subset of a master archival database that is jointly maintained by both the Albert Einstein Archives and the Einstein Papers Project. It provides basic information on the author, receiver, dating, title, language, location, and physical description of a document. If applicable, the database also provides publication information in the *CPAE*. The archival database covers all items of the original Dukas collection plus those items of the "supplementary archives" that have already been published in the *CPAE* series (634 records). The archival database information displayed on the website is intended to facilitate general access to the holdings of the Einstein Archives. In contrast to the editorial apparatus in the documentary edition, where every effort is made to check the accuracy of any information against the original sources, no guarantee is given as to the accuracy, consistency, or completeness of the information displayed in the database records. In fact, the database records are continuously revised and periodically updated as additional research is carried out at both the Albert Einstein Archives and the Einstein Papers Project.

Neither the *Collected Papers of Albert Einstein* nor the *Einstein Archives Online* are concerned with non-textual material in the strict sense. The Einstein Papers Project does not edit any audio material unless as transcripts, nor does it include pictures or images, other than select images for illustrative

\(^5\)The EAD Document Type Definition (DTD) is a standard for encoding archival finding aids using the Standard Generalized Markup Language (SGML) and is maintained in the Network Development and MARC Standards Office of the Library of Congress, in partnership with the Society of American Archivists.
purposes. There are no concerns about material witnesses like experimental setups, astrographical plates, or the like. There is, however, a category of textual material that is of central importance for the edition and that defies to some extent standard procedures of documentary editing, i.e., Einstein’s research manuscripts.

1 Einstein’s Scientific Manuscripts

Albert Einstein (1879–1955) is a household name, a synonym for scientific creativity and responsibility. He was honored as “person of the 20th century” by TIME magazine. In 2005, all over the world numerous conferences, lectures, exhibitions, and other events are being planned for the centennial anniversary of his “miracle year.” It was in 1905 when Einstein, an unknown technical expert at the Swiss federal patent office in Bern, published, within a few months, a series of five papers, each of which had a profound and lasting impact on the development of twentieth-century physics. The papers deal with the determination of molecular dimensions, give an explanation of the phenomenon of Brownian motion, expound what we now call the Special Theory of Relativity, including the equivalence of mass and energy captured in the famous equation $E = mc^2$, and present an explanation of the photoelectric effect by putting forward the light quantum hypothesis. The latter contribution alone later earned Einstein the Nobel Prize for 1921.

Ten years later, Einstein had risen up through the ranks of academic hierarchy as Privatdozent in Bern, Extraordinary and Full Professor in Zurich and Prague, and in 1914 had accepted a position without teaching obligations as member of the Prussian Academy of Science in Berlin. It was then that Einstein crowned his earlier scientific contributions with another conceptual breakthrough that came after years of strenuous efforts to generalize the special theory of relativity to include gravitation. The General Theory of Relativity was completed with the publication of generally covariant field equations of gravitation in late 1915. It is these equations that even today are the basis for extensive research, both theoretical and experimental, e.g., with respect to finding evidence for gravitational waves.

In addition to his major contributions of 1905 and 1915, Einstein published numerous papers of significant importance in various fields of physics.

6The papers are reprinted as facsimiles with extensive editorial annotation as Docs. 14, 15, 16, 23, and 24 in CPAE2. As an offshoot of the editorial project the papers are also available, in English translation, as John Stachel’s (editor) Einstein’s Miraculous Year: Five Papers that Changed the Face of Physics (Princeton, NJ: Princeton University Press, 1998.)
These papers include theoretical investigations into the foundations of kinetic theory, statistical physics and radiation theory, work on the law of photochemical equivalence, on the specific heat of solids at low temperatures, on the phenomenon of opalescence, on the so-called Einstein-De Haas experiment to determine the relationship between magnetic moments and moments of inertia, a number of critical investigations into the foundations of quantum physics, and some ground-breaking investigations into the consequences of general relativity, such as gravitational waves, cosmological consequences, equations of motion, and gravitational lensing. During his later years, Einstein worked intensely on the problem of finding a unified field theory of gravitation and electromagnetism that would also account for the structure of matter and the quantum phenomena.

Given Einstein’s exceptional significance as a highly creative, successful, and productive scientist, a natural and significant interest for an edition of his works arises from the wish to better understand the working and circumstances of his productivity. His burst of creativity in his miracle year still provides a major challenge for a historical reconstruction that would in some sense explain his creativity of this year. Unfortunately any such attempts are hampered by the scarcity of documentary evidence even after publication of the respective volumes of the CPAE series \([\text{CPAE1, CPAE2, CPAE5}].\) The situation is much better for Einstein’s search for a General Theory of Relativity, where many more pertinent documents have survived and are now available. It is in the context of the attempt to come to a better historical understanding of Einstein’s thinking that his research manuscripts acquire a special importance.

The term “research manuscript” here refers to a document that was written in the creative process of thinking about a scientific problem, mainly for the purpose of developing one’s own thoughts and of realizing implicit consequences inherent in a mathematical formalism. The manuscripts are written without any potential audience or readership in mind, other than the author himself. If the creative work involves two individuals that are collaborating, the manuscript may serve for communication between the researchers. A common characteristic of research manuscripts in Einstein’s case is an abundance of mathematical formulae without, or with only very few, explicit words. In most cases, the manuscripts are not dated, neither explicitly nor indirectly. In many cases, the calculations are on single sheets of paper but in a few cases they are contained in bound notebooks.

Research manuscripts are the most immediate written evidence of a cre-
ative process since they are produced without further reflection during that process. Later stages of writing about a scientific topic tend to be more organized or organized differently, and to the extent that the composer of the manuscript is aware of his addressing a potential audience, he begins to explicate the tokens of the abstract formalism and tries to convey the meaning of the mathematical expressions by linking it with words of natural or scientific language.

Given the significance of the creative process in Einstein's case, his research manuscripts carry a unique value for historians of science. At the same time, they often pose a problem for the explicit rules of editorial procedure laid out in the editorial method. These problems pertain most importantly to the uncertainty of dating and to the uncertainty of the coherence and sequence of calculations.

In the following I will discuss four examples of research manuscripts that have already been published in the *Collected Papers of Albert Einstein* and one example of a batch of research manuscripts that poses a formidable problem for future volumes of the series.

1.1 Einstein's Scratch Notebook, 1910–1914?

The first *Writings* volume of the *CPAE* series covers the years 1902–1909 [*CPAE2*]. It thus contains his very first published papers, all of his famous publications from his annus mirabilis 1905, as well as all later publications that he wrote while working at the Patent Office in Bern. Sadly, no manuscripts from this period are extant and all documents of this volume are reprinted facsimiles of his publications.

This situation changes with Volume 3 [*CPAE3*], which covers the years 1909–1911, when Einstein accepted his first call as an Extraordinary Professor at the University of Zurich and, a little later, another call as Full Professor at the German University of Prague. This volume reprints some twenty published documents but also publishes seven manuscripts. Most of these posed no problem for the editorial method. Three items are lecture notes that Einstein wrote in preparation of academic courses which he had to give as a professor in Zurich and Prague or for a lecture that he gave in

7 For a general perspective on the significance of research notes and notebooks for the history of science, see Holmes, Frederic L., Renn, Jürgen, Rheinberger, Hans-Jörg (eds.), *Reworking the Bench. Research Notebooks in the History of Science* (Dordrecht, Boston, London: Kluwer 2003 (Archimedes, Vol. 7)).
Einstein's Scratch Notebook, 1910-1914? was reproduced as facsimile with accompanying conformal transcription in CPAE3, App. A. This page [CPAE3, p. 585] shows Einstein's earliest calculations about gravitational lensing. For a high-quality facsimile, see Doc. 3-013, images 23 and 24, of Einstein Archives Online at www.alberteinstein.info.

© The Hebrew University of Jerusalem, Albert Einstein Archives.
Zurich in 1911. Two items are short manuscripts: one was a written response to a paper by Planck, another one was a statement written in response to a request by the Berlin autograph collector Darmstaedter. Another item consists of handwritten discussion remarks following lectures delivered at the first Solvay Congress in late 1911. These manuscripts, in each case, are perfectly coherent and datable documents.

The one research manuscript included in Volume 3 that did pose a problem to the editors was eventually printed in the appendix. The editors prefaced this appendix by the following comments:

This notebook was probably purchased by Einstein in 1909 when he began his appointment at the University of Zurich. It bears a sticker of the Zurich stationer Landolt and Arbenz. The last entries suggest that Einstein did not use the notebook after taking up a position in Berlin in 1914. The disparate nature and discontinuity of entries (e.g., diagrams, equations, notes on appointments, references to scientific literature, and addresses), as well as their disjointed chronological sequence, argue for preserving unity in the presentation of this notebook. It is printed here in its entirety in facsimile, with accompanying pages of transcription to make it readily accessible.

The notebook is then presented with facing pages in such a way that the top half of each page of the volume presents the facsimile of two facing pages of the Scratch Notebook. Below the facsimile, on the bottom half of each page, a conformal transcription of the page is given. Following the notebook, the editors provide a descriptive note and a list of the literature referenced in the notebook, in the order of appearance.

The context of a few significant pages of this scratch notebook that clearly contain research calculations was identified some time after its publication in the CPAE. It was shown that eight pages of the Scratch Notebook contain calculations that are fully equivalent to calculations that were only published by Einstein in 1936—some 24 years later—in a paper on what is now known as gravitational lensing (see Fig. 1 on page 151).

The differences amount to mere differences of mathematical notation, and the pages could be dated, by reference to neighboring pages and histor-

ical context, to a week in April 1912. The reconstruction also confirmed a feature that was evident to readers of the document edition only through the descriptive note. One page of the notebook was a loose page inserted within the bound pages and was facsimilized together with the pages where it was physically found. It nevertheless contained a part of the calculation that was independent from the flow of the calculation in the bound part of the notebook. The phenomenon of gravitational lensing was first observationally confirmed in 1979 and today presents a highly active field of modern astrophysical research.

1.2 Research Notes on a Generalized Theory of Relativity

Volume 4 of the *CPAE* series covers the writings of the years 1912–1914, up until Einstein’s move to Berlin in April 1914 [*CPAE4*]. It is a period in which Einstein is deeply involved in a search for a generalized theory of relativity and a theory of gravitation. This search produced two research manuscripts that posed new problems for the editorial method. One is a bound notebook with research notes by Einstein, dealing mainly with the theory of gravitation. It is commonly referred to as the “Zurich Notebook” because it dates from Einstein’s time as a professor at the ETH Zurich. It documents Einstein’s search for a gravitational field equation from the first insight into the significance of the metric tensor in summer 1912 until he settled on a preliminary theory of gravitation that he published together with his friend and colleague Marcel Grossmann in an *Entwurf*, i.e., “Outline” of the theory in spring 1913 (see *CPAEA*, Doc. 13). The other one is a research manuscript consisting of loose sheets, written partly by Einstein and partly by his friend and collaborator, Michele Besso, which deals with the problem of calculating the motion of the perihelion of Mercury on the basis of the preliminary *Entwurf* theory of gravitation.

The significance of the Zurich Notebook for a detailed understanding of Einstein’s path towards a general theory of relativity was first realized by John Stachel in the course of preparing the editorial project of the *CPAE*. It was then studied by John Norton, who based some decisive arguments in his ground-breaking 1984 account of Einstein’s search for his gravitational field equations on a reconstruction of some pages of this document.9 While the

content of a major portion of this notebook was thus clearly identified as dealing with the problem of gravitation and could be related on the basis of content and idiosyncratic notation quite unambiguously to Einstein's publications between summer 1912 and spring 1913, many problems remained. Norton had based his 1984 account only on a reconstruction of a few individual pages of the notebook, and although some pages in the later part of the notebook could be reconstructed as coherent calculations that extended over several pages, the majority of the entries were still unidentified. Two other problems arose. First, entries were made in the bound notebook starting at two ends, with one page showing entries from both sides where the flows of entries met. This fact as well as indications of later corrections made a determination of the sequence of entries ambiguous despite the fact that the pages have a natural sequence in the bound notebook. Second, about a third of the entries in the notebook were apparently not dealing with gravitation but with other problems of statistical physics and radiation theory. Despite efforts by the editors to reconstruct the meaning of these parts of the notebook, they remained unidentified.

The editors of Volume 4 of the series decided to publish only that portion of the "Zurich Notebook" that deals with gravitation, and only mentioned and briefly described the other part of the notebook in the descriptive note [CPAE4, Doc. 10]. The part that deals with gravitation theory was presented in conformal transcription. In order to facilitate access to the manuscript, the document was prefaced by an editorial note that elaborates on the context and content of the research notes. In a slight deviation of the general rules of presentation, explanatory notes to the text were printed as footnotes rather than endnotes. The annotation is sparse but does provide some information pertaining to a reconstruction of the calculations, reflecting the degree of understanding obtained by the editors at that time.

The significance of the Zurich Notebook for the history of science lies in the fact that it allows for unique insights into a crucial period of Einstein's path towards a general theory of relativity.10 The attention that the notebook received in the course of preparing the pertinent volume of the Collected Papers triggered a research effort by five historians of science, all of them past

Einstein’s “Zurich Notebook” contains research notes on a relativistic theory of gravitation from the period of ca. August 1912 to spring 1913. This page shows "gravitational equations" ("Gravitationsgleichungen") that are equivalent to the linearized form of the gravitational field equations of general relativity published by Einstein in late 1915. For a facsimile of this page, see Doc. 3-006, image 20, on Einstein Archives Online at http://www.alberteinstein.info; for an annotated transcription, see CPAE4, Doc. 10, esp. pp. 247f.

© The Hebrew University of Jerusalem, Albert Einstein Archives.
or present editors of the project. The group embarked on a line-by-line reconstruction of the gravitational parts of the notebook. They found that it documents Einstein’s growing familiarity with an unknown formalism of tensor calculus following his insight that the metric tensor would have to play a crucial role in the formulation of the general theory of relativity. The notes, in fact, document Einstein’s search for a gravitational field equation with the investigation of a sequence of candidate equations that are being tested against heuristic requirements. Among other things, it turned out that Einstein investigated the correct field equations of gravitation already in 1912, if only in linear approximation, but at that time discarded them as unacceptable from a physical point of view (see Fig. 2 on page 155). The very same equations were nevertheless published as the final field equations of gravitation in November 1915 [CPAE6], and this publication marks the breakthrough to the final theory of general relativity, as we still accept it today. The reconstruction of this particular research notebook thus offers unparalleled insights into the considerations of a creative scientific mind that were eventually crowned with remarkable success. A two-volume monograph on the genesis of general relativity that gives an account of Einstein’s search based on a meticulous reconstruction of these notes is currently being prepared for publication [Renn et al. forthcoming]. It will include a line-by-line commentary together with a facsimile and transcription of the complete notebook.

In contrast to Einstein’s early scientific achievements and especially his special theory of relativity, his later path toward a general theory of relativity is rather well documented by publications, correspondence, and research notes. Among these documents, the Zurich Notebook is perhaps the most elucidating, but there are more research notes pertinent to this period. Another set of research manuscript pages that bears testimony to Einstein’s efforts of this period also presented an editorial challenge to the editors of Volume 4 of the series. The Einstein-Besso document consists of 51 manuscript pages plus additional text and calculations that were noted on a letter that Einstein received. This set of research notes deals with the problem of

Calculations on the verso of a letter by Anton Lampa to Einstein, 1 February 1920 [CPAE9]. Due to their disparate and disconnected nature these notes were only described in the descriptive note to the edited document. © The Hebrew University of Jerusalem, Albert Einstein Archives.
calculating the perihelion advance of Mercury on the basis of the Einstein-Grossmann Entwurf theory of gravitation of summer 1913.

An anomalous secular advance of Mercury’s perihelion had been well established around the turn of the century, and since it could not easily be explained in the framework of Newtonian gravitation theory, this anomaly presented a touchstone for any alternative theory of gravitation. After settling on the field equations of his preliminary Entwurf theory, Einstein set out to compute this problem together with his friend Michele Besso. The manuscript documents their collaboration. About half of the pages are written in Einstein’s hand, the other half in Besso’s hand. The manuscript consists of loose sheets and a determination of the proper sequence of the sheets presented a major problem of the editorial work. But the coherence of the notes made an almost complete reconstruction of the calculations possible and on the basis of this reconstruction a likely original sequence of the notes could well be established.

The full manuscript was presented in conformal transcription in Volume 4 [CPAE4, Doc. 14]. As in the case of the Zurich Notebook, the document was prefaced by an editorial note elaborating specifically on its context and content, and the pages were also annotated with footnotes rather than endnotes. In contrast to the Zurich Notebook the editors decided to complement the transcription with a full facsimile of the manuscript in an appendix.

Again, this particular research manuscript was subject to intensive historical research. Its analysis helped explain why Einstein was very quick in computing the correct value of the perihelion precession two years later on the basis of his final field equations.12 This question is an important aspect of the history of general relativity, since the successful explanation of the Mercury perihelion anomaly sealed Einstein’s breakthrough to general relativity in November 1915 and played an important role in convincing the physics community to accept the general theory of relativity.

No serious editorial challenges of this caliber were encountered for the other two Writings volumes that have already been published. Both volumes 6 and 7 also differ from earlier Writings volumes in that they present unpublished manuscripts by Einstein that are of a non-scientific nature, e.g., polit-

ical statements. In addition to Einstein’s published papers, both volumes contain lecture notes, draft manuscripts intended for publications, and expert opinions. Volume 7 presents some small research manuscripts in an appendix [CPAE7, App. A] and [CPAE7, App. B]. Here five pages of calculations and graphical integration are reproduced in facsimile without further commentary, since they are clearly related to a published paper that is reprinted in the volume (Doc. 56). The five pages are identified as coming from different sources and are presented as one document on the basis of their contentual relation to the published paper. The other manuscript appendix is a transcription of the first part of an autograph manuscript by Einstein’s collaborator Wander J. de Haas that de Haas attributes to Einstein as author, together with a transcription of a page of calculations for this part in Einstein’s hand.

1.3 “Back-of-the-Envelope Calculations”

Another category of research manuscripts that are encountered frequently in the Einstein Papers are small pieces of calculations or notes scribbled on the verso of letters, on the back of envelopes, etc. To the extent that these notes can be identified as being related to the main document they are either included in the edited text or transcribed, described, or discussed at the appropriate places in the annotation. In many cases, however, the notes defy a clear identification other than that they do not show any apparent relation to the main document. These research notes pose a problem particularly for the Correspondence volumes.

An example is given in Fig. 3 (see page 157). The calculations are found on the verso of a letter by Anton Lampa, formerly a colleague of Einstein’s as professor at the German University of Prague, who had recently accepted a position as Director of Public Education at the School Department in Vienna. The letter discusses a matter of appointment policy for a vacant chair in Vienna. The calculations on the back are only mentioned in the descriptive note, which reads:

On the verso of the document, Einstein calculated expressions involving quantum numbers $n_1=n$ and $n_2=n+1$ for a few values of n, possibly related to Bjerrum’s explanation of rotational spectra (see Doc. 335 and its note 9). [CPAE9].

The calculations are too short to be identified unambiguously and they are too short to be published separately either as a document of its own or in an
A page of Einstein's research notes on unified field theory (Call Nr. 62-007). This particular page can be identified as being related to a publication from 1929. There are more than 1700 undated pages of this kind in the Einstein Archives. This batch of research manuscripts presents a major challenge for future volumes of the Collected Papers of Albert Einstein. © The Hebrew University of Jerusalem, Albert Einstein Archives.

Figure 4

© The Hebrew University of Jerusalem, Albert Einstein Archives.
appendix. But the cross reference to another document in the volume indicates that the editors saw a possible connection to a scientific problem that plays a role elsewhere in Einstein’s correspondence. Clearly such description of material that is omitted from the edition represents a compromise between the wish to present as complete an edition as possible and to present only documents that have been identified with respect to content and dating. It remains a judgment call for the editors to decide on the level of detail to use in describing this material.

1.4 The Berlin and Princeton Manuscripts on Unified Field Theory

Presumably, many research manuscripts extant in the Einstein Archives will pose no significant new problems from an editorial point of view, exciting and illuminating as they might be for their content. There is, however, a significant amount of material that does represent a challenge for the editors of future volumes of the *CPAE* series: a batch of some 1750 manuscript pages with calculations dealing mostly with Einstein’s search for a unified theory. Einstein began thinking about the problem of a unified field theory of gravitation and electromagnetism soon after the completion of the general theory of relativity, and his first publications on this topic date from 1919. The problem remained on his mind through the next three-and-a-half decades until his death in 1955. Some fifty publications from this period attest to his sustained interest in this problem.

The manuscript pages are not part of the original Dukas collection. According to anecdotal information, the batch of manuscript pages, surprisingly, turned up behind a filing cabinet when the archival offices used by the late Helen Dukas at the Institute for Advanced Study in Princeton were cleared up in preparation for sending the Einstein Estate to Jerusalem. The batch was then added to the Einstein Archives and, after shipping to Jerusalem, it was microfilmed into reels 62 and 63 and accordingly accessioned under archival call numbers 62-001 through 63-416.

The manuscripts are undated pages, for the most part single sheets; see Fig. 4 for an example (see page 160). From the later years (reel 63), the paper of these sheets appears to have been taken from loosely bound typewriter paper tablets, many of them of the same kind. Some of the sheets were

bound together by means of paper clips. In some rare cases, the versos of letters or other paper was used. The manuscripts almost exclusively contain research calculations. They were made for Einstein's own use, i.e., they very rarely contain explanatory remarks about the context or meaning of the calculations. In some rare cases, more elaborate parts of drafts of manuscripts are found in the set. Some pages contain calculations and comments that are not in Einstein's hand.

The material poses a problem for the editorial project specifically in all of the aspects discussed so far, i.e., dating, coherence, and chronology as well as logical sequence of the pages. Two aspects of the material add to its being an editorial challenge. For one, the sheer amount of the material precludes any detailed or in-depth analysis without some global assessment of what is to be expected. Second, in contrast to Einstein's manuscripts from his earlier years, these manuscripts, for all we know, do not document a productive creativity that eventually led to a successful theory. Hence, to this date historical interest in Einstein's investigations into a unified field theory has been rather limited, some important exceptions notwithstanding.\(^\text{14}\)

With respect to dating, a superficial survey of the material showed at least one example where calculations were found on an envelope that carries a poststamp of 1919 (Call Nos. 62-052 and 62-053). Since this implies a terminus a quo that would perhaps render some of the material relevant for volumes of the \textit{CPAE} series that are presently under preparation, a more detailed investigation of the whole set of pages was called for.

In order to better deal with the material, copies extant in the duplicate Archives at the Einstein Papers Project were scanned in as images of low-resolution black-and-white quality. The pages were then looked at individually using the scanned version, and a multipurpose database application was used to establish a page-by-page catalog of the manuscript pages. The information recorded in this database pertained primarily to any legible word or phrase that could be deciphered on the page. In the example of the page reproduced in Fig. 4, the only legible phrase in this sense is in the fourth line and reads: “nur von \(x_1\) abh.” The mathematical formulae and variables were gen-

erally completely ignored. In some cases, where it seemed useful to also enter a mathematical expression or formula, that expression or formula was transcribed using standard LaTeX markup.15 Any obvious peculiarities of the manuscript pages, such as specifics of the paper or ink, or entries in a different hand, etc., were also added to the records. Most importantly, any information that is relevant for dating a particular page was noted. Such information comes from the use of dated sheets of paper, e.g., verso of letters, draft of letters or use of hotel stationery; from an unambiguous identification of content of the material; from the appearance of a different handwriting or the mention of a collaborator of Einstein's; from the identification of specific literature; and similar hints.

The descriptive database of the set of manuscript pages in conjunction with scanned images of the manuscript pages represents a working tool for further analysis of the manuscripts. Thus, unidentified copies of certain manuscript pages extant in the supplementary archives could in part be identified with known ones by searching for the legible word or phrase content. Also, generic concordance tools of computational linguistics are applicable to create word indices for the manuscript pages. Despite the preliminary character of the database, some facts about the manuscript pages could already be established.

Putting together a survey of all dated or datable pages, it appears highly likely that none of the material dates any earlier than 1928. This is probably also true for the single instance of Call No. 62-052, which remains undated but may well be much later than the post stamp of 1919. A very strong indication for taking 1928 as the earliest date for the whole manuscript set is given by the fact that, in general, independent hints for dating of different pages tend to corroborate each other for pages that are close in the sequence of sheets, and all those hints point to dates later than 1928. It also seems that the sequence of sheets in which they are preserved roughly reflects a chronological order, although exceptions are very well possible and in some cases even likely. Hence, the manuscript pages are removed from the immediate concerns of the editors of the \textit{CPAE} series. Nevertheless, they continue to represent a major editorial challenge for future volumes.

15The LaTeX transcription provides a representational description, not a contentual one. It also does not allow, in general, to search for specific mathematical expressions, since the same mathematical expression can be represented in several ways using LaTeX markup. As a simple example, the LaTeX markups \$x_1\$ and \$x_{[1]}\$ are representationally equivalent.
2 Concluding Remarks

In order to be published as an individual document in a *Writings* volumes of the *CPAE* series, research manuscripts need to meet at least two criteria: They need to be dated with sufficient accuracy and they need to be sufficiently coherent so as to be identified as one document. In the case of the Scratch Notebook, 1910–1914?, the coherence was primarily suggested by the fact that the notes were entered in a physically bound notebook. But neither could the notes be dated accurately, nor could a unity of content be established, hence, the notebook was reproduced in its entirety in an appendix. In the case of the Zurich Notebook, only a part of the entries in the bound notebook could be identified as a sufficiently coherent and datable set of research notes, and that set of pages was included as an edited document. The Einstein-Besso manuscript could be dated and identified as a coherent set of notes through a reconstruction of its content. Many small “back-of-the-envelope” calculations cannot be edited as texts because their meaning and significance cannot be identified. Since they are part of another document, they are in many instances at least mentioned in the descriptive note of the respective document.

With our present understanding of Einstein’s Berlin and Princeton research manuscripts on unified field theory, a considerable amount of scientific manuscripts left by Einstein defies the procedures of the documentary edition of the *CPAE*. Neither can we already date the material with sufficient accuracy, nor do we have a sufficient understanding of their coherence and of their chronological or logical sequence.

Does the launch of the *Einstein Archives Online* website change the situation by providing other ways of publishing important documents? High-quality images of both the Scratch Notebook and of the full Zurich Notebook are, in fact, now available online. The Einstein-Besso manuscript, however, is not included on the present website, since the original is not part of the holdings of the Albert Einstein Archives. And none of the small “back-of-an-envelope” calculations are presently available on the site since it does not include any correspondence. It would indeed be a natural expansion of the present website to include at least facsimiles of those letters that are not included in the respective *Correspondence* volumes. It is also conceivable that facsimile images of Einstein’s Berlin and Princeton manuscripts might be

16The manuscript is in private possession. It was auctioned through Christie’s in October 2002.
added to the document content of the *Einstein Archives Online* website before it is published in the documentary series.

Nevertheless, the mere publication of the manuscript images online does not represent a proper documentary editing of this important manuscript material. The database content that goes with the facsimiles of the documents on the website is far less explicative and not as reliable as the carefully established information in the documentary edition. More importantly, no transcription, no translation, and none of the editorial apparatus of the documentary edition is included. I hope to have shown that a successful response to the editorial challenge posed by Einstein’s research material goes hand in hand with a scholarly investigation into its content and context. Only by trying to understand the content and context of the manuscripts will we be able to satisfactorily edit those manuscripts, be it in conventional large book format or electronically. We may also hope to get further exciting insights into the workings of a highly creative mind.
Reluctant Revolutionary: The Papers of Henry Laurens

Dorothy Twohig

In the early 1950s, when President Harry S. Truman called upon the scholarly community to undertake the publication of the papers of individuals important to an understanding of American history, Henry Laurens of South Carolina was among the 112 figures recommended. Laurens was not well known to twentieth-century historians outside of South Carolina even though he had held several prestigious appointments on a national level. Indeed, one of the goals of the Laurens Papers was to rescue him from an undeserved obscurity, and it is certain that the superb sixteen-volume edition of Laurens’s papers, published for the South Carolina Historical Society by the University of South Carolina Press, will perform that function admirably.

Born in 1724 in Charleston, the son of a well-to-do saddler of French Huguenot ancestry, Laurens had received an adequate education for his day, served an apprenticeship in a London countinghouse, and returned to Charleston in 1747 to begin a career that was to make him one of the wealthiest and most influential merchants and landowners not only in South Carolina but in the mainland colonies at large. The early volumes of the Papers chronicle Laurens’s ascent to the status of colonial gentleman through his marriage, his acquisition of land, his mercantile ventures, and his election to the Commons House of Assembly in 1757—a typical path to colonial gentility. His pre-Revolutionary War career often parallels that of George Washington.

Like Washington he hungered for land. By the outbreak of the
Revolution Laurens owned eight plantations in South Carolina and Georgia; by the time of his death he had amassed over 24,000 acres of land in both states. Like Washington, he married into money. His union with Eleanor Ball, the daughter of a leading South Carolina landowner, was a factor in his growing financial and social position. Again like Washington, Laurens’s service in his colony’s military service—as a lieutenant colonel in South Carolina’s campaign against the Cherokee during the French and Indian War—contributed to his growing stature as a leader. He began his political career in the colony with his election to the South Carolina Commons House of Assembly in 1757.

Laurens spent several years in England in the early 1770s, and after his return to Charleston, his position at first in the approaching conflict with Britain was, to use the term used by the editors of the Papers, that of a “conservative revolutionary.” Only reluctantly did he move into the forefront of the opposition to the crown. From his sojourns in England Laurens had many ties—social, intellectual, and economic—with the mother country, and he was not favorably impressed by the mob violence that too often accompanied opposition to crown policies in the colonies. In South Carolina he quickly took his place as one of the cooler heads. During his years in London he had become an astute observer of the growing intransigence of Britain toward the colonies but he still hoped that the American differences with the government in London could be settled peaceably. By early 1774, however, he was growing discouraged, noting pessimistically in a letter to his son John that British policy would “make a good Platform for the Invincible Reasoning from the Mouths of four and twenty Pounders.”

But he left the old ties reluctantly. As he wrote his son in August 1776, “even at this Moment I feel a Tear of affection for the good Old Country & for the People in it whom in general I dearly Love.” Laurens gradually succumbed, however, at least on some level, to the growing feeling that there was a conspiracy between the crown and its appointees in South Carolina to circumvent the colony’s liberties. And Laurens was, as his letters reveal, quick tempered and outspoken and often drawn into personal disputes with crown appointees. (On one occasion he tweaked the nose of newly appointed collector of the customs Daniel Moore in a confrontation on the Battery.) He may have been a reluctant convert to the American cause but by 1775 he was striding into the forefront of colonial resistance to the crown, serving in South Carolina’s Provincial Congress—acting as its president after June 1775—and in March 1776 he was elected vice-president of the state under
its new constitution. In 1777 Laurens moved onto the national scene when he was elected to represent South Carolina in the Continental Congress. He was to return to his native state only once in the next eight years.

During these years Laurens performed yeoman service on numerous congressional committees and served as president of Congress from November 1777 to December 1778. In 1779 Congress appointed him minister to Holland with instructions to open negotiations with the Dutch government for a loan to support the war. He was successful in securing limited aid, but on his return voyage to America his ship was taken by the British, and, charged with treason, he was an unhappy and complaining prisoner in the Tower of London for the next fifteen months until he was exchanged in December 1781 for Lord Cornwallis. Laurens remained in Europe until 1784, serving as one of the commissioners to negotiate peace with Great Britain.

Like all the major editions, the Laurens Papers offers a rich field of research for historians in countless disciplines. But as regional studies grow steadily more sophisticated, the area for which these volumes will make the greatest contribution is as a major—and largely untapped—source for the study of the eighteenth-century South. The pre–Revolutionary War volumes, covering the period when Laurens was heavily engaged in mercantile and agricultural ventures in South Carolina, provide a unique source for the growth of the rice and indigo economy of the late-eighteenth-century Deep South and for the growing hunger for slaves that was to mark South Carolina's political and economic scene for future decades. Laurens's correspondence with his factors and his fellow merchants is one of the best historical sources of information on the export of rice, naval stores, and indigo, and the importation of slaves, tropical products, and rum from the West Indies.

The earlier volumes delve into other little-known episodes as well. There is extensive correspondence on Laurens's role in the South Carolina Committee of Safety's attempts to circumvent the activities of British Indian agents engaged in fomenting an uprising of the Creek and Cherokee on the South Carolina frontier. The exchange of letters between Laurens and George Galphin and others illuminate the problems of South Carolina and other southern colonies with substantial Indian populations on their borders.

With the success of the colonies in the French and Indian War, the South Carolina aristocracy of which Laurens was now a prominent member had become, as George Rogers has observed, "immensely rich and immensely secure." But Laurens's Charleston, in spite of its already legendary charm, was also, as these volumes reveal, a place plagued by hurricanes, malaria,
and yellow fever. Smallpox visited with devastating results. Fear of slave revolts permeated every level of society. Antagonistic policies acerbated relations between the tidewater and the frontier. The city offered a fertile field for the personal and political feuds that frequently erupted.

But Laurens's correspondence in the project's early volumes indicates that various pleasures compensated for the stifling heat of a Charleston summer. A vivid tapestry emerges of the social and family life of a slightly exotic southern pre-Revolutionary War society. Laurens, like many of his South Carolina peers, was obsessed with the landscaping and architectural improvement of his Charleston mansion and of his other plantations. Assisted by gardener John Watson, he pursued the rarest of exotic plants both from America and abroad. Writing in 1809, David Ramsay noted that Laurens had introduced "olives, capers, limes, ginger, guinea grass, the alpine strawberry, bearing nine months in the year... blue grapes, and also directly from the south of France, apples, pears, and plums of fine kinds."

Laurens was in the forefront of Charleston's intellectual development as well. Over the years his correspondence had developed a literary style that reflected his wide reading. Certainly this was reflected in his extensive purchases from London bookseller Samuel Birt and his leadership in the formation of the Charleston Library Society, of which he long served as vice-president. His substantial library held not only the volumes on literature and politics owned by most eighteenth-century gentlemen but with more practical works as well. Books on gardening by Peter Collinson of London influenced the layout of Laurens's famous Charleston garden. He was not, however, completely seduced by the superior advantages of a literary education. "Hundreds of Men," he noted in a letter to John Rose, 28 December 1771, "have their Mouths fill'd with jabbering Latin, while their Bellies are empty."

Laurens's devotion to his family permeates the Papers. The Laurens family presents a prototype for the extent of family mortality in the eighteenth century. It was perhaps more usual for a child to die than to survive to maturity. Of the twelve (possibly thirteen) children born to Henry Laurens and Eleanor Ball, seven of them died before the death of his wife in childbirth in 1770. Henry and Eleanor had been married for twenty years, and Laurens mourned her death. "I have lost a faithful bosom Friend," he wrote Matthew Robinson, 1 June 1770, "a Wife whose constant Study was to make me happy." He never remarried, and, aside from an occasional mention in her husband's letters, Eleanor remains a shadowy figure. Laurens outlived all
except three of the children. Some of them died in childhood, others shortly after birth. Death was so common that it could become a subject for black humor. After the death of his three-week-old son, Laurens wrote his friend George Appleby, 9 November 1764, that his wife “was safely deliver’d of a fine Boy on the 10th of September, but the little fellow finding what a World of vanity & vexation he had come into, went back again the 24th.” In 1771 in what was an unusual step for a colonial entrepreneur, he gave up his mercantile business to oversee personally the education of his younger children in London, remaining abroad with them until the end of 1774.

Aside from his wife, Laurens’s closest tie was to his eldest son John, one of the American Revolution’s most attractive if ill-fated players. Much more radical than his father in his support of American independence, John had rushed home, against his father’s advice, from his last year of studying law at the Inns of Court in London to join the American forces, leaving behind a young and pregnant wife in England. Inspired by a demanding father, John embarked on an exciting, if sometimes controversial, military career, becoming an aide-de-camp to Washington and participating in a number of military actions. He was greatly admired by his contemporaries. During their service together on Washington’s staff, he became young Alexander Hamilton’s best friend—a friend Hamilton was never able to replace during his long career. But many of his military superiors and comrades, including Washington, deplored his reckless disregard for his own safety. In August 1782, at the age of twenty-seven, and to almost universal regret, John was killed in a senseless skirmish with a British foraging expedition.

Henry and his son were separated more than they were together during the years while John was at school abroad and later, during the war years, by their public service, but they kept in touch constantly by letter. The rich correspondence between father and son, on national and local politics, on military affairs, and on family matters, gives the Laurens Papers a uniquely personal perspective on the events of the war and its effect on its participants. (The volumes for the war years are almost as much John’s as Henry’s.)

It is in his correspondence with John that Henry Laurens’s essentially conservative approach to the Revolution is most apparent. The correspondence between Henry and John also presents one of the most interesting—and significant—late-eighteenth-century dialogues on slavery. Given their backgrounds, the two were unlikely proponents of any radical approach to emancipation. Beginning in 1776 John advanced a series of proposals that would allow slaves to enlist and serve in the Continental Army in return for...
their freedom. Henry displayed his usual caution, while John pressed ahead with his equally usual reckless enthusiasm. By 1778 the desperate need of Congress for troops persuaded Henry, now president of Congress to back his son's plan. The scheme eventually foundered on pro-slavery sentiment both in the South and in Congress, but the correspondence between John and Henry in the Laurens Papers presents ample evidence of the impending arguments between pro- and anti-slavery advocates. In his letters to his father, John argued eloquently that the South's peculiar institution was incompatible with the ideals of the Revolution and that the goal was emancipation—sooner rather than later. Henry was by no means an advocate of slavery. "I abhor slavery," he wrote his son. But he spoke, as usual, for a more conservative faction of southern—and northern—constituencies. In his view, slavery, propelled by its social and economic problems, would eventually disappear on its own. For the present, emancipation would face insurmountable obstacles in its interruption of what he called the "tranquility" of southern society in its dependence on slavery to preserve a social and economic way of life. And he held a common, if naive, belief that his own slaves were happy in their servitude and devoted personally to him.

Looming over the final volume is Henry Laurens's grief at the death of his son, an event from which he never really recovered. More than simply a familial relationship, more than father and son, the two had an intellectual connection that Henry would find impossible to replace. Upon his return to America at the end of 1784, the period covered by volume 16, he declined any further public service, except for his brief role in supporting the new Constitution at the South Carolina Ratifying Convention. Until his death in 1792 he largely devoted himself to the restoration of his plantations which had been devastated by the war.

The Papers of Henry Laurens illustrates, probably better than any other papers project, the evolution of historical editing over the last half-century. When volume 1 appeared in 1968 under the editorship of Philip M. Hamer and George C. Rogers, Jr., the transcription policy generally followed the middle ground between the literal and modernized proscribed in the Harvard Guide to American History. The editors agreed upon producing "an accurate but a readable text" but "in as much as printing is unable to reproduce a longhand manuscript exactly and eighteenth-century manuscripts have certain peculiarities, the editors have made some modification and modernization of the text." An examination of the caveats in the description of editorial policies, however, indicates that the editors took more liberties
with a literal text than their statement would imply. For the most part, abbreviations were spelled out, punctuation was often regularized (the dash was deleted except in its modern usage), commas were inserted according to project rules, slips of the pen were silently corrected. The result, for the first nine volumes, was pretty much a clear text transcription policy.

Since the publication of the first volume in 1968, the relatively small editorial staff has produced volumes at an admirably steady rate. The longest hiatus between volumes occurred between 1981 and 1985 and coincided with the extensive changes in editorial policies initiated in chapter 10. No doubt partly influenced by the comments of Thomas Tanselle and by the example of other editorial projects, transcription policies underwent a metamorphosis from clear text to an almost literal transcription policy. Indeed, the later volumes of the Laurens Papers are probably more conscientious than most projects in describing vagaries in text. Annotation of documents in all of the volumes has been concise, accurate, appropriate, and consistently distinguished.

With Laurens’s assumption of his seat in the Continental Congress in 1777, the editors encountered a problem that has plagued all of the Founding Fathers projects—the question of duplication of documents that are published in the volumes of other editorial projects. For the first nine volumes the project’s editors included almost all extant Laurens documents. But with Laurens’s arrival as a delegate to the Continental Congress, the situation changed drastically. For the Laurens Papers, the main source of duplication would be Paul Smith’s edition of Letters of Delegates to Congress, 1774–1781, which would include Laurens’s papers not only as delegate but as president of Congress, although there would clearly be duplication of documents in other editions as well. The Smith edition includes almost every letter written by Laurens during his period of service in Congress, a period covered mainly in volumes 12, 13, and 14 of the Laurens Papers but in other later volumes as well. Laurens’s official correspondence during these years provides a rare view of the day-to-day activities of Congress, the elation over the Franco-American treaty of alliance, and on Laurens’s reservations concerning the accompanying commercial treaty. Given Laurens’s familiarity with British affairs, his comments provide one of the best sources from the American side for the negotiations over Lord North’s conciliatory resolutions in Parliament. To omit such documents would obviously vitiate these volumes. As the editors—and users—of other projects dealing with public papers have discovered, there is no completely satisfactory solution for the
problem of documentary duplication.

The editors of most of the Founding Fathers papers have chosen not to confront this issue squarely, usually taking the path of publishing letters between major figures with the token concession of cutting down on the annotation of such documents. The editors of the Laurens Papers took a more courageous, if controversial, path. Urged on also by the exigencies of time and funding, they included in volume 13 approximately only one-fourth of Laurens’s correspondence, with even more stringent cuts to follow. However since the Smith edition included none of the letters written to delegates unless both parties were members of Congress, the editors were still left with an extraordinary treasure trove. As is the case with other projects, incoming and private letters (particularly Henry’s correspondence with his son and with political and business friends) are often more revealing and significant than official documents. Thus, in spite of omitted documents, the volumes are still able to contribute a rare view of the everyday workings of the delegates and their interaction with each other.

With the publication of the final volumes of the project, the selection policy has grown steadily more stringent; volume 16—the project’s final volume—contains only approximately twenty-four percent of extant Laurens documents that were created in the years covered by the volume. The editors have, with varying degrees of success, tried to ameliorate the problems created by their selection policies with various devices. As often as feasible they have used omitted documents in the annotation. They chose not to include a calendar entry for documents at their appropriate place in the volumes but at the end of each volume there is a list of all known documents, giving the date and the sender/recipient, with the documents that appear in the volumes listed in italics. There is no description of the contents of omitted documents.

There have been tentative plans during the course of the project to issue after the publication of the final volume supplementary material dealing with omitted documents. Wisely, given the speed with which electronic forms are developing and the current difficulties in funding, these plans have been currently placed on hold. The editors of the Laurens Papers, however, have long been in the forefront of electronic publication, and there is good reason to hope for progress on this front. A cumulative index is currently in progress.
Recent Editions

Compiled by Kathryn M. Wilmot

This quarterly bibliography of documentary editions recently published on subjects in the fields of American and British history, literature, and culture is generally restricted to scholarly first editions of English language works. In addition to the bibliographical references, Internet addresses are provided for the editorial project or the publisher. To have publications included in future quarterly lists, please send press materials or full bibliographic citations to Johanna Resler, Managing Editor, Documentary Editing, IUPUI, ES 0010, 902 West New York Street, Indianapolis, Indiana 46202–5157 or email: jeresler@iupui.edu.

http://www.pitt.edu/~press

http://www.cup.org

http://www.upne.com

published in 1837, this translated and edited work presents the observations
of the Catholic missionary Bishop Frederic Baraga, who worked among the
Ojibwa and Ottawa in the Great Lakes region of North America.

http://www.msupress.msu.edu

BRITTEN, BENJAMIN. Letters from a Life: The Selected Letters of
Benjamin Britten, Volume Three, 1946–1951. Edited by Donald Mitchell,
Philip Reed, and Mervyn Cooke. Berkeley: University of California Press,
2004. 784 pp. $55.00. ISBN 0520242459. Supplemented by scholarly anno-
tations, the letters in volume three describe the composer’s life and creative
efforts during the immediate post-war era.

http://www.ucpress.edu

CIVIL WAR. Affectionately Yours: The Civil War Home-Front
Letters of the Ovid Butler Family. Edited by Barbara Butler
pp. $27.95. ISBN 0871951754. This work consists of letters sent
to Civil War soldier Scot Butler from his family and documents
what life was like for those on the home front.

http://www.indianahistory.org/ihs_press

CHAMBERLAIN, JOSHUA L. The Grand Old Man of Maine: Selected
Letters of Joshua Lawrence Chamberlain, 1865–1914. Edited by Jeremiah E.
$39.95. ISBN 0807828645. The post-Civil War letters of Chamberlain
reveal his thoughts on issues such as Civil War battles and race relations, in
addition to detailing his personal struggles.

http://www.uncpress.unc.edu

CHANDLER, ELIZABETH MARGARET. Remember the Distance that
Divides Us: The Family Letters of Philadelphia Quaker Abolitionist and
Michigan Pioneer Elizabeth Margaret Chandler, 1830–1842. Edited by
Marcia J. Heringa Mason. East Lansing: Michigan State University Press,
2004. 432 pp. $42.95. ISBN 0870137131. The letters of social and political
activist Elizabeth Margaret Chandler provide insight into frontier life and
her involvement in issues such as abolition and women’s rights.

http://www.msupress.msu.edu
DE VILLAGRÁ, GASPAR PÉREZ. *Historia de la Nueva México, 1610.* Edited and translated by Miguel Encinias, Alfred Rodriguez, and Joseph P. Sánchez. Albuquerque: University of New Mexico Press, 2004. 416 pp. $45. ISBN 0826313922. This travel journal and poem about the entry of Juan de Oñate into New Mexico has served as a historical source and is now critically presented within a literary context, including annotation.

http://www.unmpress.com

http://www.press.uillinois.edu

http://www.press.jhu.edu

http://www.utpress.utoronto.ca

http://www2.warwick.ac.uk/fac/arts/ren

http://www.utpress.org

Volume 16, Correspondence: First Session June–August 1789. 776 pp. $85. ISBN 0801871611.

Volume 17, Correspondence: First Session September–November 1789. 696 pp. $85. ISBN 080187162X.

The correspondence in these volumes presents the difficulties encountered by the First Federal Congress in attempting to establish their agenda and includes the personal and political concerns and opinions of members and constituents.

http://www.press.jhu.edu

http://www.mnhs.org/market/mhspress

ings provide a glimpse into the personal and spiritual lives of Quaker women during the time period 1650–c. 1710; includes headnotes, footnotes and biographical and historical information.

Documentary Editing 26(3) Fall 2004
JOLAS, MARIA. *Maria Jolas, Woman of Action: A Memoir and Other Writings.* Edited by Mary Ann Caws. Columbia: University of South Carolina Press, 2004. 176 pp. $29.95. ISBN 1570035504. This memoir details the personal and professional experiences of this influential member of the literary world; also includes letters, lectures, and journal entries.

This annotated volume of Madison’s papers addresses foreign and domestic issues, such as the difficulties encountered during the War of 1812, the questioning of Madison’s leadership skills by both parties, and problems within his own cabinet.

http://www.upress.virginia.edu

http://www.cup.org

http://cuapress.cua.edu

http://www.unmpress.com

http://www.wesleyan.edu/wespress

Documentary Editing 26(3) Fall 2004 181

http://www.ashgate.com

http://www.ashgate.com

http://www.ashgate.com

http://www.oup.com

182 Documentary Editing 26(3) Fall 2004
State University Press, 2004. 428 pp. $39. ISBN 0873387996. This memoir, written by Otto based on the journal he kept while serving in the Union Army, details his participation in many of the Civil War’s western front campaigns.

http://upress.kent.edu

http://www.ashgate.com

http://www.sc.edu/uscpress

http://www.oup.com

http://www.eup.ed.ac.uk
SCOTT, WALTER. *Reliquiae Troclosienses*. Edited by Gerard Carruthers and Alison Lumsden. Edinburgh, UK: Edinburgh University Press, 2004. 168 pp. $64. ISBN 0748620729. Previously available only in extracts, this is the first complete edition of Scott’s work based on the original manuscript.

SHAKESPEARE, WILLIAM. *Romeo and Juliet*. Edited by Burton Raffel and Harold Bloom. New Haven, CT: Yale University Press, 2004. 256 pp. $6.95. ISBN 0300104537. This fully annotated version of Shakespeare’s play is intended to enhance the reader’s comprehension via the editors’ thorough explanation of elements such as Elizabethan vocabulary and historical context.

http://www.unmpress.com

http://www.wwnorton.com

http://www.yale.edu/yup

http://www.ucpress.edu

http://www.wisc.edu/wisconsinpress

http://www.state.gov/r/pa/holfrus

http://www.bdlev.com

http://www.unitedfunduntpress

http://www.kentuckypress.com

http://www.nebooks.nevada.edu

http://system.missouri.edu/upress

http://www.upress.virginia.edu

http://www.fordhampress.com

http://system.missouri.edu/upress

Documentary Editing 26(3) Fall 2004 187
Modern Language Association

This year’s ADE-sponsored session at the annual Modern Language Association convention was “Primary Documents and the Web,” chaired by Elizabeth Dow, with papers on “Primary Documents: The Challenge for Teachers” by Carol Conrad, “Primary Documents: The Challenge for Archivists and Librarians” by Elizabeth Dow, and “Primary Documents: The Challenge for Scholars” by David Chesnutt. The session was on 28 December from 3:30 to 4:45 p.m. in Room 307 of the Philadelphia Marriott. Anyone interested in proposing a future ADE session for MLA should contact Joel Myerson (myersonj@gwm.sc.edu).

Assistant Editor Needed

The Papers of Clarence Mitchell, Jr., at SUNY College at Old Westbury, is seeking an assistant editor for the 5-volume edition on which work is now underway. The assistant editor will participate in all aspects of editing and publishing, including setting the overall direction of the project, maintaining an orderly collection of documents, and developing editorial policy. Specifically, the assistant editor will serve as in-house copy editor; have primary responsibility for indexing the edition; be responsible for preparing the Bibliography for each volume, including conducting on-line searches for relevant and newly published works; have primary responsibility for preparing the Biographical Directory for each volume, including conducting on-line and library searches; have primary responsibility for preparing a corporate directory, or similar editorial tool, where needed, including conducting on-line and library searches; conduct all other forms of on-line research; help in conducting research at libraries; participate in working with host institution’s library and making contributions relative to that work; and participate in supervising Visiting Fellows, Research Assistants and Work Study Students. The assistant editor must be knowledgeable about current documentary standards and bring the highest standards of scholarly documentary editing to the project.
Qualifications include a Ph.D. in History or equivalent in Political Science, or any other relevant field, with experience in documentary editing. The candidate must be able to work cooperatively as well as individually, and be a self-starter. The salary is provided by the NHPRC and benefits are commensurate with SUNY standards. The Old Westbury campus is in Nassau County on Long Island, 45 to 60 minutes from New York City.

The position is open. For immediate response, interest may be expressed by e-mail to: watsond@oldwestbury.edu.

More detailed responses should be sent to: Prof. Denton L. Watson, editor, The Papers of Clarence Mitchell, Jr., Campus Center E-215, SUNY College at Old Westbury, P.O. Box 210, Old Westbury, NY 11528. Phone: 516-876-2889.
ADE Committees 2003–2004

Officers
President: Esther Katz; President Elect: Dennis Conrad; Secretary: Anne Decker Cecere; Treasurer: Gary E. Moulton; Director of Publications: Larry Hickman; Councillors-at-Large: Ronald A. Bosco; Harriet F. Simon; Beth Luey, ex officio; Michael Stevens

Committees
Constitution and Bylaws Committee: Ronald A. Bosco, chair; Beth Luey; Mary-Jo Kline; Ann D. Gordon

Julian P. Boyd Award: John P. Kaminski, chair; Ann D. Gordon; Helen R. Deese; Carol DeBoer-Langworthy; Leslie S. Rowland

Jo Ann Boydston Prize: Marta Werner, chair; Robert N. Hudspeth; Peter L. Shillingsburg

Lyman H. Butterfield Award: C. James Taylor, chair; Richard Leffler; Joseph R. McElrath, Barbara Oberg

Education and Information: Ellen R. Cohn, chair; Barry Pateman; Linda A. Fisher; Kenneth R. Bowling; Sharon Ritenour Stevens

Electronic Standards: Cathy Moran Hajo, chair; Christopher Alhambra; David R. Chesnutt; Elizabeth H. Dow; Larry Hickman; Paul B. Israel; Albert C. Lewis; Daniel W. Stowell

Federal Policy: Charlene Bickford, chair; Theresa M. Collins; Ann D. Gordon; Stanley N. Katz; Barbara Oberg; Leslie S. Rowland; Charles T. Cullen, ex officio; Ira Berlin, ex officio

Finance: Gary E. Moulton, chair; William M. Ferraro; Elaine W. Pascu

Fundraising: Roger A. Bruns, chair; Allida Black
Local Arrangements: Thomas A. Mason, chair; Marianne S. Wokeck; Suzanne S. Bellamy; Pamela J. Bennett; Marcia R. Caudell; Douglas E. Clanin; Paula J. Corpuz; Jonathan R. Eller; Leigh Fought; Kristine W. Frost; Nathan Houser; John R. McKivigan; Johanna E. Resler

Meetings: Susan Krause, chair; William M. Ferraro; Mary Hackett; Christine S. Patrick; Thomas A. Mason

Membership: Kate Culkin, chair; Peter C. Engelman; Elizabeth Nuxoll

Nominating: Joel Myerson, chair; Helen R. Deese; William M. Ferraro; Robert F. Karachuk; Mary-Jo Kline

Program: Dennis Conrad, chair; Leigh Fought; Ann D. Gordon; David Hoth, Rowena McClinton; Elizabeth Hall Witherell

Publications: Larry Hickman, chair; James Karman; Robert C. Leitz III; Catherine Kunce; Daniel W. Stowell; Mary-Jo Kline; Marianne S. Wokeck, ex officio

State Policy: Theresa Collins, chair; Janette Pardo; Richard Leffler; Thomas A. Mason; Kenneth H. Williams; Michael Stevens, ex officio

Travel Funds: Beverly Wilson Palmer, chair; Anne Decker Cecere; Chuck diGiacomantonio; Mary Hackett; Leigh D. Johnsen; Catherine Kunce

Subcommittee on Standards: Mary-Jo Kline; Ronald A. Bosco

Web Site: Kenneth Williams, chair; Chris Alhambra; Kathleen W. Dorman; Carol Faulkner; Cathy Moran Hajo; John P. Kaminski; Martha J. King; Mary-Jo Kline; Kenneth M. Price; Daphnée Rentfrow, Constance Schulz
Other Officials: Charles T. Cullen, Association representative to the National Historical Publications and Records Commission (NHPRC); Richard Leffler, Association archivist