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Effective Capacity of Two-Hop Wireless
Communication Systems
Deli Qiao, Mustafa Cenk Gursoy, and Senem Velipasalar

Abstract—A two-hop wireless communication link in which a
source sends data to a destination with the aid of an intermediate
relay node is studied. It is assumed that there is no direct link be-
tween the source and the destination, and the relay forwards the
information to the destination by employing the decode-and-for-
ward scheme. Both the source and intermediate relay nodes are
assumed to operate under statistical quality of service (QoS) con-
straints imposed as limitations on the buffer overflow probabilities.
The maximum constant arrival rates that can be supported by this
two-hop link in the presence of QoS constraints are characterized
by determining the effective capacity of such links as a function
of the QoS parameters and signal-to-noise ratios at the source and
relay, and the fading distributions of the links. The analysis is per-
formed for both full-duplex and half-duplex relaying. Through this
study, the impact upon the throughput of having buffer constraints
at the source and intermediate relay nodes is identified. The inter-
actions between the buffer constraints in different nodes and how
they affect the performance are studied. The optimal time-sharing
parameter in half-duplex relaying is determined, and performance
with half-duplex relaying is investigated.

Index Terms—Buffer violation probability, effective capacity,
fading channels, full-duplex and half-duplex relaying, quality of
service (QoS) constraints, two-hop wireless links.

I. INTRODUCTION

F UELED by the fourth-generation wireless standards,
smart phones and tablets, social networking tools, and

video-sharing sites, wireless transmission of multimedia con-
tent has significantly increased in volume and is expected to
be the dominant traffic in data communications. Such wireless
multimedia traffic requires certain quality of service (QoS)
guarantees so that acceptable performance and quality levels
can be met for the end-users. For instance, in voice over IP, in-
teractive-video (e.g., videoconferencing), and streaming-video
applications in wireless systems, latency is a key QoS metric. In
such cases, information has to be communicated with minimal
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delay. Hence, certain constraints on the queue length should be
imposed in order to have the data not wait too long in the buffer
at the transmitter. At the same time, satisfying these QoS con-
siderations is challenging in wireless communication scenarios.
Due to mobility, changing environment, and multipath fading,
the power of the received signal, and hence the instantaneous
rates supported by the channel, fluctuate randomly [1]. In such
a volatile environment, providing deterministic delay guaran-
tees either is not possible or, when it is possible, requires the
system to operate pessimistically and achieve low-performance
underutilizing the resources. Therefore, wireless systems are
better suited to support statistical QoS guarantees.
In [2], Chang employed the effective bandwidth theory to an-

alyze systems operating under statistical QoS constraints. These
constraints are imposed on buffer violation probabilities and are
specified by the QoS exponent , which is defined as

(1)

where is the queue length in steady state and is a
threshold indicating the maximal tolerable queue length. If the
aforementioned limiting formulation is satisfied, then the buffer
violation probability behaves as
for large . Therefore, QoS exponent is the exponential
decay rate of the buffer overflow probability for large . A
larger implies a lower probability of violating the queue length
and is a more stringent QoS constraint. In [3], Chang and Zajic
characterized the effective bandwidths of the time-varying de-
parture processes. In [4], Chang and Thomas applied the effec-
tive bandwidth theory to high-speed digital networks. More re-
cently, Wu and Negi in [5] defined the dual concept of effective
capacity, which provides the maximum constant arrival rate that
can be supported by a given departure or service process while
satisfying statistical QoS constraints. The analysis and applica-
tion of effective capacity in various settings have attracted much
interest recently (see, e.g., [6]–[13] and references therein). For
instance, optimal power control policies that maximize the ef-
fective capacity of a point-to-point link have been derived in
[6]. In [10], the authors study the multiple-input single-output
channels and determine the optimal transmit strategies with co-
variance feedback when effective capacity is adopted as the per-
formance metric. In [11], effective capacity in a time-division-
based downlink system is characterized, and optimal scheduling
schemes that achieve the points on the boundary of the effective
capacity region are identified.
In this paper, we consider two-hop wireless links and in-

vestigate the throughput in the presence of QoS constraints by
studying the effective capacity. We note that the authors in [12]
and [13] have also recently investigated the effective capacity
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Fig. 1. System model.

of relay channels. Tang and Zhang in [12] analyzed the power
allocation policies in relay networks under the assumption that
the relay node has no buffer constraints. Parag and Chamber-
land in [13] provided a queuing analysis of a butterfly network
with constant rate for each link. However, they assumed that
there is no congestion at the intermediate nodes. In this study,
as a significant departure from previous studies, we assume that
both the source and the relay nodes are subject to QoS con-
straints specified by the QoS exponents and . Now, we face
a more challenging scenario in which the buffer constraints at
the source and relay interact. Moreover, we consider a general
relay channel model in which the fading coefficients for each
link can have arbitrary distributions. We concentrate on the de-
code-and-forward relaying scheme. Assuming that the relay op-
erates in full-duplex or half-duplex mode, we determine the ef-
fective capacity as a function of and .
Note that our analysis is based on the individual QoS con-

straints at each node. End-to-end QoS analysis of the multihop
systems can be found in [14]–[16]. For instance, Wu and Negi
in [14] considered statistical end-to-end QoS provisioning and
gave an effective capacity formulation. Du et al. in [16] im-
posed individual QoS constraints at each node and provided a
characterization of the end-to-end delay violation probability.
However, the effective capacity achieved by the two-hop system
was not derived explicitly. In our paper, starting from the indi-
vidual QoS constraints at each node, we determine the effective
capacity. The end-to-end QoS performance can be character-
ized from the individual QoS constraints following the approach
in [16].
The rest of this paper is organized as follows. In Section II,

the system model and necessary preliminaries are provided.
In Section III, we describe our main results on the effective
capacity and present numerical results. Finally, in Section IV,
we conclude this paper. Lengthy proofs are relegated to the
Appendix.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

The two-hop communication link is depicted in Fig. 1. In this
model, source is sending information to the destination
with the help of the intermediate relay node . We assume that
there is no direct link between and (which, for instance,
holds, if these nodes are sufficiently far apart in distance). Both
the source and the intermediate relay node operate under QoS
constraints (i.e., buffer constraints) specified by the QoS ex-
ponents and , respectively. Hence, the source and relay
buffer violation probabilities should, for some large , sat-
isfy and

, respectively. Above, and denote the stationary
queue lengths at the source and relay, respectively.

We consider both full-duplex and half-duplex relay opera-
tion. The full-duplex relay can receive and transmit simultane-
ously, while the half-duplex relay first listens and then transmits.
Therefore, reception and transmission at the half-duplex relay
occur in nonoverlapping intervals.
Next, we identify the discrete-time input and output relation-

ships. In the symbol duration, the signal received at the
relay from the source and the signal received at the destina-
tion from the relay can be expressed as

(2)

(3)

where for denote the inputs for the links
and , respectively. More specifically, is

the signal sent from the source and is sent from the relay.
The inputs are subject to individual average energy constraints

where is the bandwidth.
Assuming that the symbol rate is complex symbols per
second, we can easily see that the symbol energy constraint
of implies that the channel input has a power constraint
of . We assume that the fading coefficients
are jointly stationary and ergodic discrete-time processes, and
we denote the magnitude square of the fading coefficients by

. Above, in the channel input–output relation-
ships, the noise component is a zero-mean, circularly
symmetric, complex Gaussian random variable with variance

for . The additive Gaussian noise
samples are assumed to form an independent and identi-
cally distributed (i.i.d.) sequence. We denote the signal-to-noise
ratios as .

B. Effective Capacity

We first state the following result from [3], which identi-
fies the QoS exponent for given arrival and departure processes
under certain conditions.

Theorem 1 ([3]): Consider a queuing system, and sup-
pose that the queue is stable and that both the arrival process

and service process
satisfy the G rtner–Ellis limit, i.e., for all , there exists
a differentiable asymptotic logarithmic moment generating
function (LMGF) defined as1

(4)

and a differentiable asymptotic LMGF defined as

(5)

If there exists a unique such that

(6)

1Throughout the text, logarithm expressed without a base, i.e., , refers
to the natural logarithm .
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then

(7)

where is the stationary queue length.

Now, we discuss the implications of this result on the two-hop
link we study. Assume that the constant arrival rate at the source
is , and the channels operate at their capacities. To satisfy
the QoS constraint at the source, we should have

(8)

where is the solution to

(9)

and is the LMGF of the instantaneous capacity of the
link.

According to [3], the LMGF of the departure process from
the source, or equivalently the arrival process to the relay node,
is given by

(10)

Therefore, in order to satisfy the QoS of the intermediate relay
node , we must have

(11)

where is the solution to

(12)

Above, is the LMGF of the instantaneous capacity of the
link.

After these characterizations, effective capacity of the
two-hop communication model can be formulated as follows.

Definition 1: The effective capacity of the two-hop commu-
nication link with the QoS constraints specified by at the
source and at the relay node is given by

(13)

where is the collection of constant arrival rates for which
the solutions and of (9) and (12) satisfy and ,
respectively. Hence, effective capacity is the maximum constant
arrival rate that can be supported by the two-hop link in the
presence of QoS constraints at both the source and relay nodes.

III. EFFECTIVE CAPACITY OF A TWO-HOP LINK IN
BLOCK-FADING CHANNELS

We assume that the channel state information of the link
is available at and , and the channel state information of the
link is available at and . The transmission power
levels at the source and the intermediate-hop node are fixed
and hence no power control is employed (i.e., nodes are sub-
ject to short-term power constraints). We further assume that
the channel capacity for each link can be achieved, i.e., the ser-
vice processes are equal to the instantaneous Shannon capacities
of the links. Moreover, we consider a block-fading scenario in
which the fading stays constant for a block of seconds and
change independently from one block to another.
We assume that uses of the time for transmission, uses
of the time. The instantaneous capacities of the and

links in each block are given, respectively, by

(14)

in the units of bits per block or equivalently bits per seconds.
These can be regarded as the service processes at the source
and relay. Note that for full-duplex relaying, . For
half-duplex relaying, we let , where ; then,

.
Under the block-fading assumption, the LMGFs for the ser-

vice processes of links and as functions of are
given by [6]2

(15)
and as a result

(16)

where we have defined

(17)

With these formulations for , , and , we can nowmore
explicitly express the equations in (9) and (12) as

(18)

2Due to the assumption that the fading changes independently
from one block to another, we can, for instance, simplify (4) as

.
If fading is correlated, such simplifications are in general not possible and anal-
ysis needs to be based on the limit forms of the asymptotic LMGFs. However,
if the service rates can be regarded as Markov modulated processes, then it is

shown in [19, Sec. 7.2] that
where denotes the spectral radius or equivalently the maximum of the
absolute values of the eigenvalues of the matrix , and is a matrix
which depends on the transition probabilities of the Markov process. In such
cases, an analysis similar to the one given in this paper can be pursued to
identify the effective capacity of the two-hop system.
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and

(19)

respectively.

A. Full-Duplex Relay

In this section, we consider the full-duplex relay.3 We have
in (15)–(19). We seek to identify the constant

arrival rates that can be supported in the presence of QoS
constraints specified by the QoS exponents for the link
and for the link. In this quest, we have the following
characterization. The rates , which simultaneously satisfy the
equations in (18) and (19) with some and are
the arrival rates that can be supported by the two-hop link while
having the buffer violation probabilities, for large , behave
approximately as
and , where
and are the stationary queue lengths at the source and relay,
respectively. We first need the following properties of effective
capacity.

Lemma 1: Consider the function

(20)

where we again defined . This func-
tion is decreasing in , and increasing in .

Proof: First consider the function
. Note that and is mono-

tonically increasing in due to the monotonicity of
and the fact that nonnegative integral

and logarithm function do not change the monotonicity and
logarithm is multiplied with . Furthermore, from Jensen’s
inequality, we have . Since ,
increases at most linearly in the vicinity of the origin. Indeed,
we can easily obtain

and

(21)
Note that and . There-

fore, as pointed out previously, is an increasing
function of and increases linearly around . Fur-
thermore, from Cauchy–Schwarz inequality, we have

3Note that full-duplex relaying can be performed, for instance, via directional
antennas [17], and several strategies can be employed to mitigate the self-inter-
ference at the relay [18].

with equality
only when and are linearly dependent, im-
plying that . Hence, the rate of increase of
decreases and therefore grows only sublinearly in gen-
eral. This observation immediately leads to the conclusion
that dividing with the linearly increasing leads to the
decreasing function defined in the Lemma.
The second part of the Lemma follows much more easily.

Note that is decreasing in . Since non-
negative integral and logarithm function preserve the mono-
tonicity, is decreasing in .
Multiplying this with results in a function that increases
with increasing .

Next, we establish an upper bound on the arrival rates sup-
ported by the two-hop system.

Proposition 1: The constant arrival rates, which can be sup-
ported by the two-hop link in the presence of QoS constraints
with QoS exponents and at the source and relay, respec-
tively, are upper bounded by

(22)

Proof: We can see from (8) and (18) that

(23)

Note that the aforementioned inequality follows from the
assumption that and the fact that

is a decreasing function of as can
be seen from Lemma 1. Another upper bound can be obtained
through the following arguments. Consider the idealistic sce-
nario in which the link is deterministic (i.e., there is
no fading) and additionally can support any constant arrival
rate (i.e., the capacity of this link is unbounded and
link is the bottleneck). In such a case, the arriving data can
immediately be sent without waiting and consequently there
is no need for buffering at the source. Hence, any source QoS
constraint can be satisfied. More specifically, if the service rate
matches the constant arrival rate, the equation in (9) holds for
any , i.e.,

(24)

where instantaneous service rate is assumed to be equal to the
constant arrival rate (rather than the random quantity as
we have in the fading channel case). Since no buffering is now
required at the source, we can freely impose the most strict QoS
constraints and assume to be unbounded as well. Then, we
have for any . With this, we see from (19) that

(25)



QIAO et al.: EFFECTIVE CAPACITY OF TWO-HOP WIRELESS COMMUNICATION SYSTEMS 877

where, similarly as earlier, the inequality is due to the assump-
tion that . Combining the bounds in (23) and (25), we
can equivalently write

(26)

concluding the proof.

Remark 1: Note that is the effective
capacity of the link with QoS exponent . Similarly,

is the effective capacity of the
link with QoS exponent . Hence, the arrival rates that can be
supported by the two-hop link are upper bounded by the min-
imum of the effective capacities of the individual links.
In the following, we identify, for full-duplex relaying, the ef-

fective capacity of the two-hop link, i.e., maximum of the arrival
rates that can be supported in the two-hop link in the presence
of QoS constraints. According to [3], we know that the queues
are not stable if the average transmission rate of link is
less than the average transmission rate of link . There-
fore, in order to ensure stability, we assume that the condition

is satis-
fied in the following result.

Theorem 2: The effective capacity of the two-hop commu-
nication system as a function of and is given by the fol-
lowing:

Case I: If

(27)

Case II: If and

(28)

where is the unique value of for which we have the
following equality satisfied:

(29)

Case III: Assume and .
III.a: If

then

(30)

where is the smallest solution to

(31)

III.b: If

and

(32)

where is the essential infimum of , and is
the solution to

(33)

III.c: Otherwise

(34)

Proof: See Section A in the Appendix.

Remark 2: We see that in Case I in which , the effec-
tive capacity upper bound identified in Proposition 1 is attained.

Remark 3: Note that if , then the source is operating
under more stringent QoS constraints than the relay. In this case,
if we have

(35)

then

(36)

Therefore, under these assumptions, the effective capacity is
equal to the effective capacity of the link, and the perfor-
mance is not affected by the presence of the buffer constraints
at the relay node . This is because of the fact that the effec-
tive bandwidth of the departure process from the source can be
completely supported by the link when the QoS expo-
nent imposed at the relay node is smaller.
The inequality in (35) is, for instance, satisfied when and
(which are the fading powers in the and links)

have the same distribution, and we have . We
can easily see that

(37)

where (37) follows from Lemma 1.
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Also, even if the source operates under more strict buffer con-
straints, if the fading in the link is worse than that in
the link and/or the signal-to-noise ratio of the relay is
smaller, i.e., while satisfying the stability con-
dition, then we can still have

(38)

(39)

and hence experience the link as the bottleneck.

B. Half-Duplex Relay

We consider the half-duplex relaying in this section. We have
, in (15)–(19). Similar to the discussion

in Section III-A, the following result provides the effective ca-
pacity, which is defined as the supremum of such rates. Similarly
as in full-duplex relaying, we assume that the average trans-
mission rate of the link is less than the average trans-
mission rate of the link in order to ensure stability in
the buffers. Therefore, we suppose

. Accordingly, in the following
result, we assume that the feasible values of for half-duplex
relaying are upper bounded by

(40)

The following result gives the effective capacity optimized
over .

Theorem 3: In half-duplex relaying, the effective capacity of
the two-hop communication link with statistical QoS constraints
at the source and the intermediate relay nodes is given by

(41)

(42)

where and is the solution to

(43)

and and is the solution to

(44)

Proof: See Section B in the Appendix.

C. Numerical Results

We consider the relay model depicted in Fig. 2. The source,
relay, and destination nodes are located on a straight line. The
distance between the source and the destination is normalized to
1. Let the distance between the source and the relay node be

Fig. 2. Relay model.

Fig. 3. Effective capacity as a function of . .

Fig. 4. versus for .

. Then, the distance between the relay and the destination
is .We assume the fading distributions for and
links follow independent Rayleigh fading with means

and , respectively, where we assume
that the path loss . We assume that and

in the following numerical results.
In Fig. 3, we plot the effective capacity as a function of the

QoS constraints of the full-duplex relay node for different
values. We fix , in which case the and
links have the same channel conditions. From the figure, we can
see that the effective capacity does not decrease for a certain
range of , and this range is increased by increasing .
Motivated by this observation, we plot the value of , up to
which the effective capacity is unaffected, as a function of
in Fig. 4. Note that for all values of the pair below
the curve shown in the figure, the QoS constraints of the relay
node do not impose any negative effect on the effective ca-
pacity. This provides us with useful insight on the design of
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Fig. 5. Effective capacity as a function of .

Fig. 6. Effective capacity as a function of . .
.

wireless systems. In Fig. 5, we plot the effective capacity as
varies. We assume . We are inter-
ested in the range in which the condition for stable queues (as
stated above Theorem 2) is satisfied. More specifically, we note
that the optimal is lower bounded by the value at which we
have . We
can see from the figure that for small (i.e., for
and ), the effective capacity curves overlap. In these
cases, link is the bottleneck and the throughput is deter-
mined by the effective capacity of this link. When is greater
than (i.e., when or 0.1), it is interesting that the
effective capacity decreases first and then increases until the

link becomes again the bottleneck, in which case the
curves overlap. This tells us that with stringent QoS constraints
at the relay, having symmetric channel conditions for the links

and , i.e., having , generally leads to lower
performance.
In Fig. 6, we plot the effective capacity as a function of for

half-duplex relaying. We set . From the figure, we can
find that the effective capacity stays constant for small , i.e.,
the QoS constraints at the relay node do not impose any nega-
tive effect on the effective capacity of the system. We can also

Fig. 7. Effective capacity versus and . .

Fig. 8. Effective capacity as varies. .
.

see that as increases, larger QoS constraints at the relay
node can be supported while having the effective capacity of
the system unaltered. One stark difference from the full-duplex
relay is that as increases, the effective capacity of the
system increases as well even for small . This is due to the
nature of the half-duplex operation. As increases, more
time can be allocated to the transmission between the source and
relay nodes while satisfying (40).
In Fig. 7, we plot the effective capacity as and varies.

We assume . As we can see from the figure, there
exists an optimal that maximizes the effective capacity of the
system. Besides, the optimal increases as increases. This
is due to the fact that as the QoS constraints at the relay node
become more stringent, the effective bandwidth supported by
the link decreases and this link becomes the bottleneck
of the system. In order to counterbalance this negative effect,
the channel conditions of the link should be improved,
which results in a larger . It is also interesting that the curve is
nearly flat for small when is large. So, we plot the effec-
tive capacity as varies for in Fig. 8.
Confirming the observation in Fig. 7, we see that the two curves
for and overlap as increases. This is
because the upper bound for specified in (40) is achieved for
both curves.
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IV. CONCLUSION

In this paper, we have analyzed the maximum arrival rates
that can be supported by a two-hop communication link in
which the source and relay nodes are both subject to statistical
QoS constraints. We have determined the effective capacity in
the block-fading scenario as a function of the signal-to-noise
ratio levels and and the QoS exponents and
for both full-duplex and half-duplex relaying. Through this

analysis, we have quantified the throughput of a two-hop link
operating under buffer constraints. In particular, we have shown
that effective capacity can have different characterizations de-
pending on how buffer constraints at the source and relay or
more specifically how and compare. We have noted that if

, the upper bound on the effective capacity is attained.
We have also seen that under certain conditions depending on
the levels and fading distributions, link becomes
the bottleneck and buffer constraints at the relay do not incur
performance losses when the QoS exponent is sufficiently
small but nonzero. In the numerical results, the threshold for
above which the effective capacity starts diminishing is

identified and is shown to increase with increasing . In
a simple linear setting, we have numerically investigated the
impact of the location of the relay on the effective capacity for
different values of the QoS exponents. In half-duplex relaying,
we have determined the optimal time-sharing parameter . In
the numerical results, we have had several interesting observa-
tions. We have shown that as the level at the relay node
increases, the effective capacity of the system increases for
all . Additionally, as the QoS constraints at the relay node
become more stringent, we have observed that the effective
capacity of the system can be increased by improving the
channel conditions in the link through having the relay
node approach the destination.

APPENDIX

A. Proof of Theorem 2

Case I :
For this case, we can show that the upper bound in (22) can

be attained. First assume that

(45)

Hence, the second term on the right-hand side of (22) is the
minimum one. Now, set in (19). Assume that
where is the solution to (18). The validity of this assumption
will be shown later in the following. Under these assumptions,
we see from (19) that

(46)
Now, in order to show that this rate can be supported, we have
to prove that the equation in (18) is also satisfied for this choice
of , i.e., we should have

(47)

for some satisfying and . From (45) and
(46), we have

(48)

From Lemma 1, (48) implies that there exists a such that

(49)

showing that (47) holds. Note that in Case I, the original as-
sumption is that . Then, we have .
Hence, in case I, we satisfy , verifying the earlier
assumption. In summary, we have shown that (18) and (19) si-
multaneously hold for and when we have

(50)

(51)

Hence, the upper bound in (22) can be achieved and this is the
effective capacity.
Above, we have assumed that the second term in (22) is the

minimum one. On the other hand, if we have

(52)

similar arguments follow. In particular, we can choose
in this case, and have from (18)

(53)

Through a similar approach as earlier, we can show that (19)
can be satisfied with for this choice of and establish
that the upper bound in (22) is again attained.
Case II : and :
Suppose that the effective capacity is decided by the

link and returns the highest . Hence, we set in
(18) and have

(54)

Clearly, this rate can be supported by the link while the
QoS constraint at the source is satisfied. In order to prove that
this rate is viable for the two-hop link in the presence of the QoS
constraint at the relay, we have to show that the equality in (19)
is satisfied as well for some . Note that the assumption
in Case II is . Then, having implies that

. Consequently, in order to satisfy (19), we should
have

(55)

where we have used the assumption that . Our goal is
to see whether (54) and (55) for some can be satisfied
simultaneously. In this quest, we first show several properties
of the function on the right-hand side of (55).
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Lemma 2: Consider the function

(56)
This function has the following properties.
a) .
b) The first derivative of with respect to at
is positive, i.e., . Hence, is initially an
increasing function in the vicinity of the origin as in-
creases.

c) is a concave function of .
d) If

where is the essential supremum of
the random variable and is the essential infimum
of , then there exists a such that .
Proof:

a) This property can be readily seen by evaluating the func-
tion at .

b) The first derivative of with respect to can be evaluated
as

(57)
Then, can be written as

(58)

Let us define

(59)

We can see that (due
to our original assumption to ensure stability). The first
derivative of with respect to is

(60)

By Cauchy–Schwarz inequality, we know that
. Then, denoting

and , we easily
see that for all . Thus, is an increasing
function and we have . Hence,

.
c) The second derivative of with respect to can be ex-
pressed as

(61)

(62)

Fig. 9. Virtual effective capacity and virtual effective bandwidth as a function
of in Rayleigh fading channels with full-duplex relay. .

where Cauchy–Schwarz inequality is used again. With
this characterization, we establish that is a concave
function of .

d) We first express in the following form:

(63)

where

(64)

is the virtual effective capacity with respect to , and

(65)

is the virtual effective bandwidth with respect to .
Note that depends on and . We know
that is decreasing in . Moreover, when ,
we have , and as ,

approaches the delay limited capacity [9], i.e.,
where is

the essential infimum of the random variable . Further-
more, is an increasing function of . For

, has a negative value. At , we
have . As ,

approaches the highest rate of the link,
i.e., where

is the essential supremum of the random variable
. Therefore, as long as

, the decreasing curve
and increasing curve will meet

at some point at which we have
.

A numerical result provides a visualization of the afore-
mentioned discussion. In Fig. 9, we plot the virtual effec-
tive capacity and virtual effective bandwidth normalized
by as a function of in the Rayleigh fading channel.
We assume that , , ,

, and . Note that we
have and in the Rayleigh fading
model.
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Recall that we are seeking to establish whether (54) and (55)
can simultaneously be satisfied for some . With the def-
inition of the function whose properties are delineated in
Lemma 2, the equations in (54) and (55) can be combined to
write

(66)

Hence, our goal is to see whether the equation in (66) can be
satisfied for some . In Lemma 2, we have noted that
the function is equal to the right-hand side of (66) at
, and then it increases. At some point, approaches zero.
Since it is a concave function, we immediately see that is a
function that initially increases, hits a peak value, and then starts
decreasing. This leads us to conclude that becomes equal
to the right-hand side of (66) once again at some unique .
Let us denote this unique point as . Hence

(67)

If , then (66) is satisfied for . Therefore, (54)
and (55) are satisfied simultaneously. Hence, the arrival rate

(68)

can be supported by the two-hop link. Since this rate is an upper
bound on the arrival rates as proved in Proposition 1, this arrival
rate is the effective capacity, proving (28) in Theorem 2.
It is important to note that the aforementioned result

implicitly assumes that
which is a condition in part e)

of Lemma 2. Note that if this condition does not hold, then it
means that the maximum service rate from the source is equal to
or lower than the minimum service rate from the relay. Hence,
the relay can immediately support any arrival rate without
requiring any buffering. The bottleneck is the link and
arrival rates are limited by the effective capacity of this link.
Therefore, we again have effective capacity of the two-hop link
given by (28).
Case III : Assume and :
Above, we have discussed the case in which . If, on the

other hand, , then (66) and consequently (55) cannot be
satisfied for some . Hence, the arrival rate in (68) cannot
be supported by the two-hop link, and we need to consider pos-
sibly smaller rates, i.e.,

(69)

for some . The rate given previously is supported by the
two-hop link if the equation

(70)

is satisfied for some and . We first note that for
fixed , is a decreasing function of due to similar ar-
guments in Lemma 1. Therefore, in order to identify the highest

arrival rates , we consider the smallest allowed value of and
set . We now consider the equation

(71)

and seek whether this equation is satisfied for some . At
, the left-hand side of (71) becomes

(72)

while the right-hand side is

(73)

(74)

where is the function defined in Lemma 2. Note that our
assumption in this case is . Recalling (67), we know that

(75)

Then, from the properties of and the assumption that ,
we immediately see that

(76)

Therefore, at , the left-hand side of (71) is larger than the
value at the right-hand side.
Now, let us consider the values at . The left-hand and

right-hand sides of (71) become, respectively,

(77)

and

(78)

If we have

(79)

then the left-hand side of (71) is smaller that the value of the
right-hand side at . Therefore, being continuous functions,

and meet at some . Denote the
smallest value of for which we have as .
Then, the highest rate that can be supported by the two-hop link
is

(80)

The aforementioned result is obtained under the assumption
that . Let us now consider the other possibility
in which . For this case, we first have the
following lemma.
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Lemma 3: Assume that . Then,
is an increasing function of for .

Proof: For , we can express

(81)
The first derivative of with respect to is

(82)

where is given by

(83)

We can show that is nonnegative.
The first derivative of with respect to is

(84)

(85)

where Cauchy–Schwarz inequality is used for (85). Therefore,
is a decreasing function of , and hence for , we

have

(86)

(87)

Note that our assumption is that

(88)

Since , the aforementioned
inequality implies that

(89)

which further implies that . Finally, we immediately
see that

(90)

proving that is an increasing function of for .

In effect, we have shown that if , then
for all . Note that since is a de-

creasing function, for all . Combining
these, we observe that

(91)

Therefore, the equality cannot be satisfied for
any . Hence, we should have . Note that for

, , which can be expressed as

(92)

is a constant for given . On the other hand

(93)

is a decreasing function with minimum value given by

(94)

where is the essential infimum of . Hence, if

(95)
then the equation can be satisfied at some

, and the maximum arrival rate is given by

(96)

If on the other hand

(97)

the bottleneck is the link, and the highest arrival rate that
can be supported by the two-hop link is

(98)

Note that this arrival rate is smaller than the smallest possible
transmission rate of the source and hence no buffering is needed
at the source in this extreme case.

B. Proof of Theorem 3

We first identify the following upper bound on the rates that
can be supported with half-duplex relaying in the two-hop link:

(99)

(100)

where and is the solution to

(101)



884 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 2, FEBRUARY 2013

and , as defined in (40), is the upper bound on the time-sharing
parameter . Above, (99) can be easily obtained by using a sim-
ilar approach as in the proof of Proposition 1. Equation (100)
follows from the fact that the first term inside the minimization
in (99) is an increasing function of , while the second term is
a decreasing function. Hence, the upper bound in (99) is maxi-
mized at at which the two terms inside the minimization are
equal to each other. If , the optimal value of is se-
lected as . If, on the other hand, exceeds the upper bound,
i.e., , then the optimal value is
Case I :
In this case in which the QoS constraint at the source is more

stringent, we can show that the upper bound in (100) can be
achieved or be approached arbitrarily closely. Let us set ,

, and choose the time-sharing parameter as
. Now, the equation in (18) becomes

(102)

Since by our assumption in Case I, (19)
reduces to

(103)

Now, first assume that . As seen in (101), we have, by the
definition of , that the right-hand sides of (102) and (103) are
equal and therefore these equations are simultaneously satisfied.
Next, consider the other possibility in which

which implies that . Note again that
is the value of at which the functions

(104)

and

(105)

are equal. Note that the function in (104) increases with in-
creasing , while the function in (105) decreases. They meet
at . Therefore, at , we have

(106)
Hence, the rate

(107)

can be supported. More specifically, the equations in (18) and
(19) can simultaneously be satisfied by setting ,
, and also by choosing so that the right-hand side

of (19) becomes smaller than and
matches .
One subtlety in the aforementioned argument is the fol-

lowing. Note that we have the strict inequality . Hence,
we cannot actually set but we can select a value of that
is arbitrarily close to . Therefore, since the function in (104)
increases with increasing , we can approach the maximum
rate arbitrarily closely. Because the

effective capacity is defined as the supremum of rates (see e.g.,
(13)), is indeed the effective
capacity.
Case II :
We now consider the scenario in which the relay node is sub-

ject to amore stringent QoS constraint. In this case, the approach
behind the proof is identical to the one employed in Case I.
Again, we set and . Because, otherwise if we
have and/or , we impose more strict QoS con-
straints than necessary and hence end up supporting only lower
arrival rates. Now, for fixed , the equations in (18) and (19)
become

(108)

and

(109)

(110)

respectively. Note that (110) follows from (19) by noting that
in this case. Similarly as earlier, the right-hand

side of (108) is an increasing function of , while the right-hand
side of (110) is a decreasing function. Therefore, the equations
in (108) and (110) can simultaneously be satisfied by choosing

where is solution to

(111)

Choosing values other than , , and will lead
to smaller arrival rates. Hence, the effective capacity is given by

(112)

The aforementioned discussion implicitly assumes that
. If exceeds the threshold , then the optimal value of the

time-sharing parameter is set to . Using similar ideas as
in Case I, we can show that the effective capacity in this case is

(113)
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