2005

Crop Watch No. 2005-23, October 14, 2005

Lisa Brown Jasa
University of Nebraska-Lincoln, ljasa@unlnotes.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cropwatch

Part of the [Agriculture Commons](http://digitalcommons.unl.edu/cropwatch)

http://digitalcommons.unl.edu/cropwatch/302

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in *Crop Watch* by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
New Bt corn hybrids for rootworm management

The U.S. Environmental Protection Agency has registered two new Bt corn hybrids with the Bt proteins, Cry34Ab1 and Cry35Ab1, for use against corn rootworm larvae. They will be sold under the trade name Herculex RW by Pioneer Hi-Bred International, Inc. and Mycogen Seeds/Dow AgroSciences LLC, which jointly developed the genetic material.

These are different Bt proteins than those used in YieldGard Rootworm hybrids or any other Bt corn to date. Company and university research indicates that they effectively protect roots from rootworm feeding injury.

Similar to previous Bt corn hybrids, EPA has required registrants to implement a resistance management plan as a condition of registration. The resistance management plan for Herculex RW hybrids is similar to that for YieldGard Rootworm hybrids:

1) No more than 80% of the acreage on a farm can be planted to Herculex RW hybrids,
2) A minimum of 20% of the acreage on a farm must be planted to a hybrid not containing a Bt protein active against rootworms, and
3) The refuge must be within or adjacent to the Herculex RW field.

Additional refuge details are outlined below.

Adding another source of Bt corn with a different type of Bt protein for rootworm management will provide growers another option to increase the diversity of controls available for this important insect.

Refuge requirements

Grower agreements (also known as stewardship agreements) will specify that growers must adhere to the refuge requirements as described in the grower guide/product use guide and/or in supplements to the grower guide/product use guide.

1. Refuge size. The use of Cry34/35 corn from event DAS 59122-7 requires an accompanying 20% refuge.

2. Refuge location. The rootworm refuge is required to be planted within or adjacent (e.g. (Continued on page 213)

Sugar prices move up dramatically as harvest begins in western Nebraska

Sugar prices in the Midwest increased by more than 50% to $44.00/cwt after Hurricane Katrina, but have dropped back to $34.50/cwt as sugar beet harvest begins in Nebraska. Producers for the Western Sugar Company will see higher prices for the crop they are harvesting, while the farmer-owned cooperative has an opportunity to retire some debt with prices near $35.00/cwt.

United States sugar supply was projected to be tight for the 2005/06 crop prior to the hurricane, and the situation became much tighter as damage from Katrina was determined. Two Louisiana refineries were taken off line, and one remains unable to operate. In addition, the crop along the Gulf Coast has seen the impact of not just one, but two major hurricanes in the past five weeks, causing untold amounts of crop damage. Combined with projections of a lower than expected crop from the Red River Valley in North Dakota and Minnesota, Nebraska producers are looking forward to an average crop with well above average prices. The USDA has increased import quotas by 276,000 short tons to help mitigate the shortage of domestic sugar anticipated for this crop year.

Paul Burgener
Agricultural Economics
Research Coordinator

Continued on page 213
Field updates & ag briefs

John Hay, Extension Educator in Pierce, Madison and Wayne counties: Northeast Nebraska has again dodged the drought bullet. Yields in general are better than expected which makes them closer to the long-term average. Soil type makes a big difference with the western parts of northeast Nebraska having more sandy soils that produce more modest yields. Yields in northern Pierce County and much of Wayne County have been good with dryland beans from 35-60 bu/ac. Bean harvest is in full swing with only a few fields of corn out. Beans are very dry with many reports of 8-11% moisture. In general producers are disappointed with prices more than with yields. When all the corn is out of the bin, it will be interesting to see where it’s stored.

John Wilson, Extension Educator in Burt County: Harvest is in full swing, but showers Tuesday and Wednesday (October 11-12) could slow things down for a couple of days. Many farmers are done with soybeans and making significant progress on corn harvest. Soybean yields have been quite variable, depending on soil type and timely summer showers. The better ground is providing average to above average yields while heavier soils (gumbo) are well below average. Early reports on corn yields show most fields producing better than most farmers expected. Excellent harvest weather conditions have dried corn in the field so little supplemental drying will be required, just aeration to cool grain as air temperatures drop.

Gary W Lesoing, Extension Educator in Nemaha County: Harvest is proceeding along at a steady pace. The lack of rain has allowed farmers to keep harvesting, but a rain is badly needed. We received 0.20-0.40 inches last week. This is about all we have had since mid-August. Overall both soybean and corn yields are very good, better than expected in Nemaha County. The western part of the county was drier so yields are not as good. I have heard reports of corn around 100 bushels per acre and soybeans 30-40 bushels per acre in the northwestern part of the county with yields increasing as you move east. Corn was yielding 130 bushels per acre or more and there were some excellent soybean yields of 55 bushels per acre. On better soil and where timely rains fell, reports of corn yields were higher, with some yields over 200 bushels per acre. Grain storage is tight in the area. Pastures are essentially dried up.

USDA’s National Agricultural Statistics Service Nebraska Field Office: Hard freezing temperatures and dry conditions across most of the state lowered crop moisture levels and allowed soybean harvest to progress rapidly.

Corn condition rated 4% very poor, 8% poor, 20% fair, 44% good, and 24% excellent. Irrigated fields rated 84% good or excellent while dryland fields rated 43% good or excellent. Ninety-three percent of the crop had matured, ahead of 82% last year and 92% for the average. Corn harvest advanced to 28% complete, ahead of last year at 18% but three days behind the average.

Soybean harvest continued to progress rapidly to 75%, ahead of 59% last year and nearly one week ahead of 54% average.

Sorghum conditions rated 3% very poor, 11% poor, 27% fair, 43% good, and 16% excellent. Ninety-two percent of the crop had matured, ahead of 73% last year and 88% for the average. Sorghum harvest moved to 23% complete, behind the average at 34%.

Wheat seeding progressed to 92% complete, ahead of 90% last year and near the average at 93%. Seventy percent of the wheat crop had emerged, similar to average.

Eighty-five percent of the dry bean crop had been harvested, ahead of 47% last year and the average at 79%.

Proso millet harvest was 84% complete, ahead of last year at 60%.

Alfalfa conditions rated 6% very poor, 16% poor, 34% fair, 40% good, and 4% excellent.

Crop Watch is published from March to November by Cooperative Extension and Communications and Information Technology in the University of Nebraska Institute of Agriculture and Natural Resources, PO Box 830918, 108 Agricultural Communications Bldg., UNL, Lincoln, NE 68583-0918. To order a print subscription or to change your address, write to Crop Watch at the above address or call (402) 472-7981. The newsletter also is available on the Web at cropwatch.unl.edu

Disclaimer: Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by University of Nebraska Cooperative Extension is implied.

© 2005 University of Nebraska

CropWatch

cropwatch.unl.edu

© 2005 University of Nebraska

Crop Watch is published from March to November by Cooperative Extension and Communications and Information Technology in the University of Nebraska Institute of Agriculture and Natural Resources, PO Box 830918, 108 Agricultural Communications Bldg., UNL, Lincoln, NE 68583-0918. To order a print subscription or to change your address, write to Crop Watch at the above address or call (402) 472-7981. The newsletter also is available on the Web at cropwatch.unl.edu

Disclaimer: Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by University of Nebraska Cooperative Extension is implied.

Lisa Jasa, Editor; Email: ljasal@unl.edu
Answering grower questions on manure use

This is the third in a series of stories related to applying manure on cropland. In previous articles, the author addressed the value of using manure, how to measure available nutrients, and regulations affecting its use. This week he addresses some of the questions and solutions related to manure application.

Who applies the manure?

Most crop producers do not have manure application equipment. Large animal feeding operations (CAFOs) may be willing to transport and apply the manure. In some cases, however, the feeding operation may ask the crop producer to arrange for transport and application as this relieves the CAFO of some regulatory requirements. The crop producer might then rent the equipment from the CAFO or engage a commercial applicator.

Will manure application give a uniform supply of nutrients?

Uniform application of manure is a major concern. Common problems are that application passes are too wide, leaving strips across the field with inadequate nutrient supply, delayed start of application at the start of a pass, and running low or out of manure before a pass is completed. Avalanching of dry manures during application may result in excessive application in some places followed by areas of no application. Much of the problem is due to operator error. The application equipment also may not be the best for the manure being applied. The crop producer should supervise application until all problems are corrected. The crop producer can gain additional confidence by asking other farmers using this manure source and/or application equipment about their experiences.

New Bt corn hybrids

(Continued from page 211)

across the road) to the Cry34/35 corn field.

3. Refuge management options.
The rootworm refuge may be managed in such a way that there is little or no yield loss to rootworms, but must be managed in a way that it is sufficiently productive of susceptible rootworm adults. The in-field refuge options may be planted as a single block or as a series of strips measuring at least four crop rows wide.

• Seedmixtures of Cry34/35 and refuge corn are not permitted.

• If the refuge is planted on rotated ground, then Cry34/35 corn also must be planted on rotated ground.

• If the refuge is planted in continuous corn, the Cry34/35 field may be planted on either continuous or rotated land (option encouraged where western corn rootworm rotation-resistant biotype [soybean variant] may be present).

• Application of soil insecticide is permitted in the refuge.

• Seed treatment is permitted in the refuge, either for rootworm protection or for controlling secondary soil pests.

• If aerial insecticides are applied to the refuge for control of CRW adults, the same treatment also must be applied in the same time-frame to Cry34/35 corn.

• Pests other than adult corn rootworms can only be treated with CRW-labeled insecticide on the refuge acres without treating the Cry34/35 acres if treatment occurs when adult corn rootworms are not present. Pests on the Cry34/35 acres can be treated as needed without having to treat the refuge.

• The rootworm refuge can be planted to any corn hybrid that does not express Bt proteins for rootworm control (e.g. lepidopteran-protected Bt corn, herbicide-tolerant corn, or conventional corn).

• The refuge and Cry34/35 corn should be sown on the same date, or with the shortest window possible between planting dates, to ensure that corn root development is similar among varieties.

For more information

Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins and the genetic material necessary for their production (plasmid insert PHP 17662) in Event DAS-59122-7 corn Fact Sheet, published by the U.S. Environmental Protection Agency at www.epa.gov/pesticides/biopesticides/ingredients/factsheets/factsheet_006490.htm

Bob Wright
Extension Entomologist
Spend less in the fall to control winter annuals

In the fall producers typically think that they are too busy harvesting to worry about spraying weeds, but there is still plenty of time to get those nasty little critters.

Winter annual weeds (henbit, horseweed, pennycress, etc.) are quite susceptible to fall herbicide application. Winter annuals emerge in the fall (anytime from early September to November) then in the spring these weeds bolt and produce seeds. The next fall the cycle starts all over again.

Too often producers wait until spring to attempt to control these weeds. Of course if you want the best control you need to spray the weeds before they bolt in the spring. While this sounds simple, unfortunately, several factors are working against you in the spring. First is Mother Nature. In the early spring the weather is even more unpredictable than usual. It can be 80 degrees and sunny one day and 20 degrees with 6 inches of snow on the ground the next. Getting a sprayer over your ground can be difficult enough without considering the fact that herbicide performance may be reduced in cooler weather. Second is the growth stage of winter annual weeds. In spring winter annuals are in the reproductive mode. They bolt quickly, flower and before you know it, they are setting seed. Since the plant is larger and flowering, it is less likely to receive a lethal dose of herbicide from your application.

In the fall, however, the weather is more cooperative and weeds are typically in the rosette (vegetative) stage and more susceptible to herbicides. With rising energy costs and water availability concerns, it only makes sense to control these weeds before they economically impact your field.

The timing of fall applications may not be as critical as you think. Winter annuals can typically be sprayed from late September to early December, weather permitting. Of course if snow is on the ground, don’t expect good weed control. Especially with the open falls we’ve had recently, a late fall application can work quite well. As far as rates are concerned, fall applications typically require less herbicide and thus, less expense.

Some of the common winter annuals (henbit, horseweed, and pennycress) can be readily controlled with just 1.5 - 2 pt of 2,4-D ester or 1 pt 2,4-D + 4 oz dicamba, 24 oz of glyphosate, or 1 pt 2,4-D + 16 oz glyphosate. Note that atrazine is not labeled for fall application in Nebraska.

Typically herbicides such as 2,4-D, dicamba, and glyphosate work well and inexpensively on newly germinated winter annual weeds in the fall. Before using a particular herbicide check to make sure it’s labeled for fall application. Atrazine does not have a label for fall application in Nebraska.

Close inspection may be necessary to identify young winter annuals amid the crop residue in your fields, but it’s well worth the effort to provide control in the fall before they have a chance to grow and use valuable soil moisture.

The 15th annual University of Nebraska-Lincoln Ag at the Crossroads Conference will address Nebraska water issues.

This year’s conference begins at 8 a.m. Nov. 3 at the Nebraska East Union on UNL’s East Campus in Lincoln. The conference is sponsored by the Nebraska Ag Relations Council and UNL’s Department of Agricultural Economics.

Morning sessions will focus on the history of water use in Nebraska and current water demands. Afternoon sessions will address these demands and water management options. Speakers will include experts from UNL, IANR, the Nebraska Water Task Force, Nebraska Land Trust, NPPD, Nebraska Department of Natural Resources, Upper Big Blue NRD and the attorney general’s office.

Registration, required by 5 p.m. Oct. 26, is $35 for members and $45 for non-members. To register, contact the Nebraska Ag Relations Council, P.O. Box 830918, University of Nebraska-Lincoln, Lincoln, 68583-0918, call (402) 472-2821 or fax (402) 472-0025.
Decommission old wells, protect water quality

When you’re setting your post-harvest, pre-winter project priorities, make sure to include applying for funding and having any old, unused water wells on your property properly sealed. Decommissioning these wells using an approved process can help prevent groundwater contamination and limit risk to your family’s health and safety. The good news is that funds are generally available to help with decommissioning costs.

Groundwater is one of Nebraska’s most valuable natural resources. Unused and deserted wells, especially those that are old and/or in disrepair or which don’t meet current standards as an inactive well, pose a major threat to groundwater quality and human health and safety because of their direct connection to the underlying aquifer. State law refers to these as “illegal” wells.

These wells can allow surface runoff to flow directly down to the water-bearing zones, often carrying organic wastes, fertilizers, and other chemical residues such as pesticides and petroleum products into the groundwater. Small animals can fall into these wells, further adding to the contamination. Once groundwater is contaminated, it is difficult, if not impossible, to clean, and the process is always expensive. In addition, open wells are especially hazardous to children — a risk to human life that can and should be prevented.

There are hundreds if not thousands of illegal wells located throughout the state. In the early development of communities, most households and businesses had an individual water-supply well. Most of these water wells have since been replaced by community water-supply systems, and, in many cases were not properly decommissioned.

(Continued on page 216)
Decommissioning wells
(Continued from page 215)

Nebraska regulations require that illegal wells be decommissioned following the requirements of Nebraska Health and Human Services System Title 178, Water Well Standards and Contractor’s Licensing Act, Chapter 12, “Regulations Governing Water Well Construction, Pump Installation and Water Well Decommissioning Standards.”

The decommissioning process includes removal of well equipment (pump, piping, etc), disinfection, filling and sealing, capping, and reporting. Figure 1, provided by the Nebraska Department of Natural Resources, illustrates various aspects of proper decommissioning. The cost of decommissioning a well will depend on several factors including diameter, depth, condition, accessibility, and construction technique and materials.

Fortunately, nearly every Natural Resources District (NRD) offers an attractive cost-share incentive to help well owners decommission illegal wells. Payment rates vary by NRD, but typically are 60-75% of the cost. To learn more about this program, contact the appropriate NRD for an information and application packet that gives program guidelines, forms, and instructions. No cost-share payments can be made unless all procedures are followed.

If there is an unused well on your property, contact the NRD office today to begin the decommissioning process and to do your part in protecting groundwater quality and human health and safety.

David Shelton
Extension Agricultural Engineer
Sharon Skipton
Extension Educator

Manure application (Continued from page 213)

Will manure supply nutrients as needed for optimal crop performance?

You need to ask the CAFO for a manure analysis report to learn the amount of nutrients applied per ton (or per 1000 gallons). You also need to know the application rate — how many tons (or thousands of gallons) are applied per acre. This implies that the application equipment is well-calibrated. You can then calculate the application rate and availability rate for the nutrients. You can improve the estimate of nitrogen available to the first crop with further calculation considering factors specific for the manure type and application method; see Determining Nitrogen Availability from Manure in the Sept. 30 CropWatch.

Until you are fully confident of adequate nitrogen availability from manure, consider in-season monitoring of crop and soil nitrogen status. Most valuable may be the pre-sidedress nitrate test where soil at the 0 - 12 inch depth is sampled at the 8-leaf stage of corn and analyzed for nitrate-N; if nitrate-N for soils that received manure application for that year is less than 15 ppm, apply additional nitrogen. Use reference strips to compare areas where manure and additional fertilizer nitrogen were applied. Either a chlorophyll meter or aerial photographs can be used to make the comparison. The stalk nitrate test can be used to determine if nitrogen supply was adequate for the crop.

Does manure need to be injected or incorporated?

The major reasons for injection or incorporation are to reduce odor and fly problems and to reduce loss of ammonium nitrogen. Both of these concerns are especially valid for slurry manures. Nitrogen in feedlot manure and in compost is mostly in organic form; while nitrogen loss can be reduced with incorporation, the loss is much less for feedlot manure than is expected with surface application of slurry manure. If the field is typically tilled, tillage can be done soon after application. If the field is in a no-till system, incorporation of feedlot manure is probably not justified.

Is soil compaction during manure application a problem?

Compaction should be minimal if manure is applied when the surface soil is dry, but is likely to be a problem if manure is applied when the surface soil is not dry. Compaction may be more at the entry points to the field. With proper application, tillage to reduce compaction effects should not be needed. If compaction does occur, it may be sufficient to rip the wheel tracks while leaving the rest of the soil surface undisturbed.

Will the manure contain weed seed?

Raw manure probably will contain viable weed seeds, but in most cases manure application will not introduce new weed species or add significantly to the bank of weed seeds already in the soil. Still, if your field does not have certain species of concern, check with others using this manure source to learn of their experiences.

What are other concerns?

Feedlot manures may contain pieces of concrete; if so, check your fields before or during planting to avoid equipment damage. Large chunks of frozen manure are often applied with winter application; most planting equipment will cut through these but they may need to be broken up. Manure nutrients can be carried into and contaminate surface waters, especially on highly erodible land without effective conservation practices. Generally, however, the risk, is no worse than if the nutrients are applied in inorganic fertilizer.

Charles Wortmann, Extension Nutrient Management Specialist
Directory of extension specialists for crop production and pest management

In this issue of CropWatch, we’re including a directory of University of Nebraska-Lincoln Extension crop production and pest management faculty, many of whom you’ll recognize as regular contributors to this newsletter. Following the name, is their Extension title, area of expertise, location, phone and email. Detailed contact information for each of the Research and Development Centers is also provided. In addition Extension Educators located across the state also have specialties in various subject areas. Your first stop may be your local educator who may have information applying to the question.

Plant Production

Services

Soils and Plant Analytic Lab
139 Keirn Hall, UNL East Campus
402-472-1571
Fax: 402-472-1396

Crop Production

Bruce Anderson
Forage Specialist
Agronomy & Horticulture
402-472-6237
banderson1@unl.edu

Ken Cassman
Crop Management Specialist
Agronomy & Horticulture
402-472-5554
kcassman1@unl.edu

Chuck Francis
Sustainable Agriculture
Agronomy & Horticulture
402-472-1581
cfrancis2@unl.edu

Bob Klein
Cropping Systems Specialist
West Central REC
308-696-6740
rklein1@unl.edu

Drew Lyon
Dryland Crops Specialist
Panhandle REC
308-632-1266
dlyon1@unl.edu

David Baltensperger
Crop Breeding Specialist
Panhandle REC
308-632-1261
dbaltensperger1@unl.edu

Lenis Nelson
Crop Variety and Seed Production Specialist
Agronomy & Horticulture
402-472-1489
lnelson1@unl.edu

Alexander Pavlista
Potato Specialist
Panhandle REC
308-632-1262
apavlista1@unl.edu

Jerry Volesky
Range Specialist
West Central REC
(308) 532-3611 Ext. 147
jvolesky1@unl.edu

Patrick Reese
Range and Forage Specialist
Panhandle REC
308-632-1242
preece1@unl.edu

Soils & Nutrient Management

Achim Dobermann
Soil Fertility & Nutrient Management Specialist
Agronomy & Horticulture
402-472-1501
adobermann@unl.edu

Gary Hergert
Nutrient Management and Soil Quality Specialist
Panhandle REC
308-632-1372
ghergert1@unl.edu

Richard Ferguson
Soils Specialist
Agronomy & Horticulture
402-472-1144
rferguson1@unl.edu

Charles Shapiro
Soils Specialist
Haskell Ag Lab, Northeast REC
(402) 584-3803
cshapiro1@unl.edu

David Tarkalson
Soil Fertility & Nutrient Management Specialist
West Central REC
308-696-6709
dtarkalson2@unl.edu

Charles Wortmann
Nutrient Management Specialist
Southeast REC, Lincoln
402-472-2909
cwortman2@unl.edu

Irrigation

Suat Irmak
Water Resources Engineer
Biological Systems Engineering
402-472-4865
sirmak2@unl.edu

William Kranz
Irrigation Specialist
Haskell Ag Lab, Northeast REC
402-584-3857
wkranzl@unl.edu

Jose Payero
Water Resources Engineer
West Central REC
308-696-6706
jpayero2@unl.edu
Extension specialists
(Continued from page 217)

C. Dean Yonts
Irrigation Engineer
Panhandle REC
402-632-1246
cyonts@unlnotes.unl.edu

Engineering

Bill Campbell
Agriculture Systems Specialist
Biological Systems Engineering
402-472-6714
wcampbell3@unl.edu

Tom Franti
Surface Water Management Engineer, Biological Systems Engineering
402-472-9872
tfranti1@unl.edu

Paul Jasa
Engineer, no-till systems
Biological Systems Engineering
402-472-6715
pjasa1@unl.edu

Dave Shelton
Agricultural Engineer
Haskell Ag Lab, Northeast REC, Northeast REC
402-584-3849
dshelton2@unl.edu

John Smith
Machinery Systems Engineer
Panhandle REC
308-632-1247
jsmith5@unl.edu

Precision Agriculture

Viacheslav Adamchuk
Precision Agriculture Engineer
Biological Systems Engineering
402-472-8431
vadamchuk2@unl.edu

Climate

Al Dutcher
State Climatologist, High Plains Regional Climate Center
402-472-5206
adutcher1@unl.edu

Qi (Steve) Hu
Climatologist, School of Natural Resources
402-472-6642
qhu2@unl.edu

Plant Protection

Services

Plant & Pest Diagnostic Clinic
Jennifer Chaky
Extension Educator
402-472-8725
jchaky2@unl.edu

Insect Management

John Campbell
Entomologist, livestock
West Central REC
308-696-6702
jcampbell1@unl.edu

Gary Hein
Entomologist, wheat, dry beans, sugarbeets, sunflower, range
Panhandle REC
308-632-1269
ghein1@unl.edu

Tom Hunt
Entomologist, field crops
Haskell Ag Lab, Northeast REC
402-584-3863
thunt2@unl.edu

Keith Jarvi
Integrated Pest Management, field crops
Northeast REC
402-370-4016
kjarvi1@unl.edu

Bob Wright
Entomologist, field crops
Department of Entomology
402-472-2128
rwright2@unl.edu

Plant Diseases

Loren Giesler
Plant Pathologist, soybeans
Department of Plant Pathology
402-472-2559
lgiesler1@unl.edu

Bob Harveson
Plant Pathologist
Panhandle REC
308-632-1239
rharveson2@unl.edu

Tamra Jackson
Plant Pathologist, corn & sorghum
Department of Plant Pathology
402-472-2559
tjackson3@unl.edu

John Watkins
Plant Pathologist, wheat
Department of Plant Pathology
402-472-2559
jwatkins1@unl.edu

Stephen Wegulo
Plant Pathologist, wheat
Department of Plant Pathology
402-472-8735
swegulo2@unl.edu

Weed Management

Mark Bernards
Weeds Specialist, irrigated crops
Department of Agronomy
402-472-1534
mbernards2@unl.edu

Brady Kappler
Weed Science Educator
Department of Agronomy
402-472-1544
bkappler1@unl.edu

Stevan Knezevic
Integrated Weed Management Specialist
Haskell Ag Lab, Northeast REC
402-584-3808
sknezevic2@unl.edu

Alexander Martin
Weeds Specialist
Department of Agronomy
402-472-1527
amartin2@unl.edu

Bob Wilson
Weeds Specialist
Panhandle REC
308-632-1263
rwilson2@unl.edu

Pesticide Education

Clyde Ogg
Extension Educator - Pesticide Education
Agronomy & Horticulture
402-472-9546
cogg1@unl.edu

Larry Schulze
Pesticide Education Specialist
Pesticide education, certification and licensing
Agronomy & Horticulture
402-472-1632
lschulze1@unl.edu
Agronomy welcomes irrigated weed specialist

Mark Bernards joined the UNL Extension Weed Science Team on October 1 as the Irrigated Weed Specialist. He will be based on UNL’s East Campus in Lincoln and his research will be centered at the South Central Agricultural Laboratory near Clay Center. His appointment is 50% extension and 50% research and his responsibilities include weed management in irrigated cropping systems, off-target movement of herbicides, and the impact of weeds and weed management on efficient irrigation water use.

Mark received his Ph.D. in Crop and Soil Sciences from Michigan State University in 2004. His research emphasis was soybean cropping systems with projects addressing irrigation scheduling in soybean and the effect of manganese fertilizers on glyphosate activity. Following graduation he worked as a research associate at Michigan State University in the Cropping Systems and Weed Science programs.

Mark was raised in Spanish Fork, Utah. He discovered agronomy his freshman year of college, became fascinated with the science, and earned B.S. and M.S. degrees in Agronomy from Brigham Young University.

“I am excited to be at the University of Nebraska-Lincoln and part of the Weed Science team,” said Bernards. “I look forward to meeting many of you, learning much about agriculture in Nebraska, and working to contribute to its success. I hope you will feel free to contact me with your ideas and questions. I may be reached at (402) 472-1534 or by email at mbernards2@unl.edu.”
Corn rootworm efficacy trial results reported

A replicated experiment was conducted at UNL's South Central Agricultural Laboratory near Clay Center to evaluate a variety of control options against corn rootworms, including transgenic Bt corn hybrids, insecticidal seed treatments, and liquid and granular insecticides applied at planting time. The YieldGard rootworm hybrid NC+ 5414RD was evaluated in comparison to its near isoline NC+5413R, with and without additional insecticide treatments. Plots were planted in an area which was a trap crop area (late planted corn) in 2004 to insure adequate rootworm pressure. At this site western corn rootworm is the predominant species present; very few northern corn rootworms were present. Plots were planted April 25. The plot size was 1 row by 144 feet.

Each treatment was replicated four times in a randomized complete block design. Seed treatments were applied commercially. Liquid insecticides were applied at 5 gallons/acre. All granular insecticides were applied in-furrow because of strong winds at the time of planting. Aztec 4.67G and Force 3G with Poncho 250 treated seed were applied using a SmartBox application system; all other granules were applied using standard insecticide boxes. Additional details of these trials are available at entomology.unl.edu/fldcrops/trials/claycenterOS.pdf.

Yield data will be reported later.

Bob Wright
Extension Entomologist

Table 1. Data from the 2005 Corn Rootworm Trial conducted at Clay Center.

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>Recommended Rate(s)</th>
<th>Placement</th>
<th>Avg. Root Injury Ratings (July 13)</th>
<th>Avg. Root Injury Ratings (July 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aztec 2.1G</td>
<td>6.7 oz/1000 row ft</td>
<td>In furrow</td>
<td>0.10 a</td>
<td>2.25 a</td>
</tr>
<tr>
<td>Regent 4SC</td>
<td>4.16 oz/acre</td>
<td>Microtube</td>
<td>0.11 a</td>
<td>2.45 a</td>
</tr>
<tr>
<td>YieldGard™ Rootworm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn + Poncho 250</td>
<td>0.25 mg ai/seed</td>
<td>Seed trt</td>
<td>0.12 a</td>
<td>2.45 a</td>
</tr>
<tr>
<td>Aztec 2.1G + Poncho 250</td>
<td>6.7 oz/1000 row ft</td>
<td>In furrow</td>
<td>0.12 a</td>
<td>2.55 ab</td>
</tr>
<tr>
<td>Aztec 4.67G + Poncho 250</td>
<td>6 oz/1000 row ft</td>
<td>In furrow</td>
<td>0.12 a</td>
<td>2.55 ab</td>
</tr>
<tr>
<td>Regent 4SC</td>
<td>0.25 mg aiei/seed</td>
<td>Seed trt</td>
<td>0.13 a</td>
<td>2.49 a</td>
</tr>
<tr>
<td>Poncho 250</td>
<td>3.25 oz/acre</td>
<td>Microtube</td>
<td>0.13 a</td>
<td>2.49 a</td>
</tr>
<tr>
<td>Force 3G + Poncho 250</td>
<td>0.25 mg aiei/seed</td>
<td>Seed trt</td>
<td>0.17 a</td>
<td>2.45 a</td>
</tr>
<tr>
<td>Aztec 2.1G</td>
<td>3 oz/1000 row ft</td>
<td>In furrow</td>
<td>0.18 a</td>
<td>2.60 ab</td>
</tr>
<tr>
<td>Poncho 1250</td>
<td>6 oz/1000 row ft</td>
<td>In furrow</td>
<td>0.18 a</td>
<td>2.70 abc</td>
</tr>
<tr>
<td>Cruiser 5FS</td>
<td>1.52 mg aiei/seed</td>
<td>Seed trt</td>
<td>0.18 a</td>
<td>2.70 abc</td>
</tr>
<tr>
<td>Force 3G</td>
<td>1.25 mg aiei/seed</td>
<td>Seed trt</td>
<td>0.21 a</td>
<td>2.65 ab</td>
</tr>
<tr>
<td>Poncho 1250</td>
<td>8 oz/1000 row ft</td>
<td>In furrow</td>
<td>0.23 a</td>
<td>2.70 abc</td>
</tr>
<tr>
<td>Lorsban 15G</td>
<td>2.4 oz/1000 row ft</td>
<td>T-band</td>
<td>0.65 b</td>
<td>3.20 c</td>
</tr>
<tr>
<td>LSD(0.05)</td>
<td></td>
<td></td>
<td>*4.15 d</td>
<td></td>
</tr>
<tr>
<td>Treatment Probability</td>
<td></td>
<td></td>
<td>*<0.0001</td>
<td></td>
</tr>
</tbody>
</table>

1Means in column followed by the same lowercase letter are not statistically different using Fisher's protected LSD (α = 0.05).